
A Framework for Classifying IPFIX Flow Data, Case KNN Classifier

Jussi Nieminen, Jorma Ylinen, Timo Seppälä, Teemu Alapaholuoma, Pekka Loula
Telecommunication Research Center

Tampere University of Technology, Pori Unit
Pori, Finland

jussi.nieminen@tut.fi, jorma.ylinen@tut.fi, timo.a.seppala@tut.fi, teemu.alapaholuoma@tut.fi, pekka.loula@tut.fi

Abstract — Flow-level measurement applications and
analysis in IP networks are inevitably gaining popularity, due
to the unstoppable increase in the amount of transmitted data
on the Internet. It is not reasonable or even possible to examine
each and every packet traversing through a network. Our
research focuses on passive flow level data classification and
characteristic identification. To be more exact, our goal is to
design a framework for extracting certain classes, feature(s)
and behavior from IP flow data. One of the goals is to achieve
this without examining the payload of any of the IP packets
and without compromising the anonymity of the flow
counterparts. Traditionally, Deep Packet Inspection or port
mapping techniques have been applied for this purpose. In this
paper, we present an alternative framework for classifying the
IP traffic, which we aim to utilize in the future for separating
classes from the IP traffic for information security purposes.

Keywords-Flow; IP; IPFIX; KNN; Classification

I. INTRODUCTION
In this paper, we study the possibility of identifying

traffic characteristics from IP traffic, and more precisely
from the IP/TCP/UDP/ICMP header data. We utilize the
KNN Classifier method (K Nearest Neighbors) through
passive data analysis on IPFIX [1] [2] flow data. The
motivation for our research comes from the area of
information security. We are keen on finding methods for
separating classes from the data in order to be able to
identify a measurable unit (IPFIX flow in this case) for
example as normal or malicious in future analysis work. In
this paper, we present a framework, which can be utilized for
that purpose. Our research relies on total anonymity. The IP-
addresses are either anonymized or cut off prior to analysis
execution. The payload of each IP packet is cut off in the
data capture phase, so all the details compromising the user
privacy of the connection counterparts are discarded.

The KNN Classifier method determines the class of a
new data point based on its K-nearest neighbors in a selected
feature space. The class that exists the most among the K-
nearest neighbors is given to the test data point. The KNN
Classifier is based simply on the distance metric of data
points. The Euclidean distance metric is the most common
one, while also other metric methods are available. This
obviously means that a variety of different KNN
implementations have been introduced.

Our data for the analysis was captured from a large-scale
local area network. The selected network is known to have a
large amount of hosts and good set of services active. It is
also known that the information security policy doesn’t
restrict the usage of any service in the network. This is a
clear advantage from the analysis point of view, because the
captured data is as pure as it can be without any restrictions
or filtering in any way at any point.

The data was captured from the network and stored to
disk in IPFIX format. In the analysis phase the data was first
divided into two classes. We use a class distribution of
WWW-type traffic versus other traffic in this paper. WWW
as a service provides interesting viewpoints for future
analysis, as it is commonly used, uses standard port numbers,
and therefore also has a lot of information security aspects.
The following step was to select the parameters for the
classification execution. K-fold cross-validation was used as
the classification framework to determine the best value for
the constant ‘K’ in KNN-Classifier. Another important factor
was to select suitable input parameters (features) for the
classification. We came up with a set of three parameters.
Once the parameters were selected, the actual classification
was executed. As a result, the details were obtained about
how the classification succeeded. The results were studied
and written down, along with conclusions and observations
about the functionality of the analysis framework and the
methods used. Based on the analysis, we present our
framework for classifying IP Flow data. In addition, some
thoughts on how the results could be utilized in practice are
provided.

This paper consists of seven sections. In the next section,
the related work in the field of IP-traffic data classification is
presented and analyzed briefly. In Section three, the data is
presented in terms of how the data is obtained, how it is pre-
processed, what is the total amount of data and how it is
connected to real life time-wise. The theory behind the
analysis is presented in Section four. Section five presents
the analysis framework and the execution of each step during
the analysis. The observations and results of the analysis are
presented in Section six. Finally, conclusions and future
plans are given in Section seven.

II. RELATED WORK
The quest for finding solutions for extracting IP-traffic

characteristics from IP traffic has been a challenge for

14Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

researchers since the early years of the Internet. Words like
generic, dynamic, effective, intelligent and self-learning are
all features of a desirable solution. DPI (Deep Packet
Inspection) techniques have been found effective to a certain
degree by several studies. The drawback of DPI techniques
is that you have to examine the payload of each and every IP
packet, which is very expensive from the resource usage
point of view in large-scale IP networks. Payload inspection
might also compromise the anonymity of the connection
counterparts, which might be unacceptable in some cases.
Bendrath has examined the effects of DPI from the Internet
governance point of view very carefully in his research [3].
Along with DPI techniques a variety of transport port-based
methods have been introduced. These methods rely on a
static port number mapping, where a certain port number is
linked to a certain service in the network. Direct mapping is
obviously effective but somewhat unreliable due to the
possibility of port number faking or misuse. For example,
Karagiannis et al. have made similar observations in their
research work [4].

Various classification and clustering methods for
grouping IP traffic have been introduced over the years. The
focus is typically similar to this paper. By defining an
analysis framework and utilizing a chosen method, a solution
to a given problem is presented. Kumpulainen et al. have
successfully utilized multi-level K-means clustering for
separating traffic classes and behavioral patterns from IP-
traffic [5]. Karagiannis et al. have used their own approach
by classifying IP traffic in a three-layer classification setup.
Their framework classifies the data in social, functional and
application levels [4].

Moore et al. have successfully utilized a Naïve-Bayes
classifier for identifying application details from network
traffic. They achieved a significant improvement to the
classification result by training the classifier with several
simple operations [6].

In their paper, Yarifard et al. study unsupervised learning
methods for identifying application specific behavior
patterns from IPFIX flow data. They studied three different
clustering algorithms and got good results from K-means and
SNN-clustering [7].

Nguyen et al. examined a vast variety of machine
learning techniques for classifying internet traffic in their
paper [8]. This is an informational study rather than a survey
focusing on mining the data with different methods. It
provides a good overview of the methods studied and their
benefits and drawbacks.

Countless studies with different goals and problem
settings are available. Anyhow, there are not many papers
focusing on IPFIX flow data classification. Furthermore, the
use of K-Nearest-Neighbor Classification algorithm is rare in
the area of IPFIX flow data classification. Based on the work
of other researchers, and by our previous experience on IP
traffic analysis, we decided to present our framework for IP
traffic classification purposes.

III. THE DATA
The analyzed dataset was generated from a three-day

trace taken in April 2011. The tracing was executed over a
period of three weekdays from Tuesday to Thursday. The
monitored network can be considered as a Wide Area
Network (WAN) or a large-scale local area network. We use
the latter term in this paper. The target network is ideal for
capturing IP traffic for analysis purposes, because the
information security policy of the administrating
organization allows the use of any service as long as it is not
illegal, does not violate the user privacy or disturb other
users of the network.

The IPFIX format was used for the flow data. The IPFIX
format was selected because it is the leading flow standard at
the moment in terms of the level of standardization. IPFIX is
based on Netflow [9], a trademark of Cisco Company. The
IPFIX flow data was generated with the Maji program,
provided by the WAND research team from the University
of Waikato in New Zealand [10]. Maji relies heavily on the
libtrace data capture library [11], which clearly also played a
very important role during the data capture phase. Libtrace
was also provided by the WAND -research team. Maji
supports a variety of IPFIX-compliant parameters. From
these parameters, we gathered a compact set of variables
suitable for our purposes in order to avoid unnecessary load
during the capture phase and in order to optimize the usage
of storage space. The IPFIX flow data was first stored to
hard disk in SQLite database format [12], from which we
were able to post-process the data to CSV format for the
analysis execution.

We further reduced the dataset to include only needed
parameters. The dataset ended up holding in a 123 million
rows, i.e., IPFIX flow records. For each flow record there is
a set of parameters as follows:

1. Feature identifier (WWW-type or Other)
2. Source Transport Port
3. Destination Transport Port
4. Number of transmitted packets within the flow
5. Number of transmitted octets within the flow
6. Maximum Time To Live value within the flow

Parameters one, two, and three are related to the class

definition. We separated the traffic that looks WWW-related
from the rest of the data. We call this phase the basic
profiling phase. The purpose of basic profiling is to highlight
the desired feature or traffic class. After basic profiling we
should be able to trust that the profiled traffic is what it looks
like with acceptable probability. Parameters four, five and
six were chosen as input parameters for the actual
classification phase. They were selected after some
preliminary testing and visual data mining of the flow
parameters. As a guideline for parameter selection, we used
the characteristics of the KNN Classifier, meaning that we
tried to find parameters whose value distribution was
somehow clustered or packed into clear groups within the
value range. The better these conditions are met, the better is
the probability of finding the correct class for a test

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

observation. The parameter selection also involved a
behavioral factor. We went through the flow parameters and
wrote down characteristics typical for traffic that looks like
WWW traffic and then used those facts in the selection.

IV. THE THEORY
KNN classification belongs to the supervised learning

methods in the field of machine learning techniques.
Furthermore, KNN classification is a non-parametric
learning method, meaning that it does not assume any known
prior distribution. Naïve-Bayes for example assumes that the
data follows normal distribution. Non-parametric methods
are sometimes referred to as instance-based or memory-
based methods.

KNN-Classifier is a simple, yet computationally
expensive classification method. It is based on the distance
metric of the classification features. The classifier algorithm
is given a feature vector as an input and it places it in the
feature space of the training dataset for comparison. Based
on the constant ‘K’ and the selected distance metric, the
algorithm computes the class for the new data point based on
which class exists the most within the K nearest neighbors
of the test feature vector.

KNN requires the whole training dataset to be available
whenever a new test data point is set under classification.
The classifier computes the distance of each test data point to
each and every data point in the training dataset. This limits
the use of KNN Classifier to being suitable mainly for
passive data analysis rather than real-time applications.

The mathematics behind KNN Classifier is very simple.
We have to compute each feature vector in the test data in
order to define its location in the test feature space. Then
each feature vector in the training data space is computed to
define its location. Only after theses operations can we
compare the locations of the test feature vector against the
feature vectors inside the K neighbors in the training feature
space. On the basis of that comparison we obtain the class
for the test feature vector. Details about the mathematics are
available in references [13] and [14].

There are four major questions one must ask
himself/herself when designing a KNN-Classifier:

1. What is the characteristic in our dataset that defines

the class distribution, and how should it be obtained,
if not natively present?

2. What is the optimal value for the neighbor constant
‘K’, and how should it be obtained?

3. What distance metric should we use with this
particular dataset?

4. What are the features in our dataset we need in order
to be able to classify each test sample with the best
possible accuracy and without redundancy?

Once these questions are answered, the rest is a

straightforward matter of executing of the classification. Our
framework binds together the workflow from the data
capture and pre-processing to the result analysis.

V. THE EXECUTION
The execution stage defines the analysis framework and

the workflow of the analysis process. The framework
consists of six phases.

First, the data is captured from the target network. We
are focusing mainly on the analysis methods, so this phase is
not described in detail here.

The second phase involves parameter reduction, which
means the removal of unnecessary flow parameters from the
data. Parameters such as IP-addresses (anonymized) and
timestamps are not needed in the classification phase, but are
essential when the flow record is generated in the capture
phase.

In third phase, the desired class distribution for the
dataset is generated, if not natively present in the data. This
phase is called the basic profiling phase. The purpose of this
step is to ensure that each flow record belongs explicitly to
one and only one class. We generated two classes: ‘WWW-
type’ and ‘Other’ by using the known transport port numbers
80, 8000 and 8080.

The fourth phase deals with the classifier training, i.e.,
configuring the classifier. The first step of the classifier
training consists of selecting the classification features. In
the second step of training the distance metric for the
classification was selected. We decided to use the Euclidean
distance metric as it is by far the most common metric
method used in data analysis in general. As the third step of
the training, the KNN algorithm requires the neighbor
constant ‘K’. To determine the best value for ‘K’ we
executed KNN Classifier with K-values 1-10 in a 10-fold
cross-validation setup. We took a sample data of IPFIX flow
data and divided it into 10 subsets of equal size. Each subset
in turn acts as a test data and the other 9 subsets are
combined to act as training data. All in all 100 separate
classification executions are obtained, one for each
combination of tested values of ‘K’ versus each possible
cross-validation setup. The K-value with the best average
classification success ratio should be selected for the actual
analysis phase.

 The fifth phase is the execution of the actual
classification with the full dataset, and the final phase of the
analysis is to analyze the results and make observations and
conclusions. The analysis framework and workflow is
described in Figure 1.

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

Figure 1: Analysis framework & workflow

In the actual classification phase, the three-day dataset
was split into three separate datasets, as presented in Figure
2.

As we knew the week-day of each sample, we decided to
split the dataset day-wise (N=3) instead of splitting the
dataset into subsets of equal size. This meant that we could
compare possible similarities and differences in the
classification ratio between the days. A test data to Training
data ratio of 1 to 9 (n=10) was used in each execution.

Figure 2: Test Data vs. Training Data setup

The arrangement in Figure 2 was used for two major
reasons: the dataset size and to minimize the possible
behavioral factor related to a certain day in the dataset. The
total average classification ratio over the three-day daytime

datasets was calculated in order to lighten the load and
resource consumption of the classification execution. The
behavioral-based division of the data derives from the fact
that the amount of traffic and variety of services used in the
network might be dependent on the day of the week.

KNN Classification was executed using the Euclidean
distance metric. It is a straightforward and fair method for
ranking observations. Moreover, the data in hand does not
have any special characteristics that would require the use of
more complex distance metrics. Distance-based weighting
was not applied in this paper as a classifier training method.

VI. THE RESULTS
The results are handled in four parts. First we discuss the

pre-processing of the dataset and the results obtained from
the basic profiling phase. Then we handle the classification
input parameter selection process. Subsequently, we go
through the results of the actual classification. Finally, we
discuss the functionality of the framework as a whole. In
conclusion, we should have a view of how the applied
classification mechanism and the framework in general suit
the classifying of IPFIX flow data and distinguishing the
feature vs. parameter relations in IPFIX flow data.

The basic profiling phase gave us a dataset with a class
distribution of two classes: WWW-type and Other. We have
not used the class name WWW, because we believe we can
never achieve 100% success ratio in the basic profiling
phase. There is always a room for error, such as
measurement errors for example. However, in the case of
behavior like WWW type behavior, we can be sure with an
acceptable probability that the majority of the traffic
traversing through ports 80, 8000 and 8080 is WWW-
related. For comparison we could take DNS traffic for
example. DNS is a service, which is tightly associated with
port number 53. Furthermore the DNS query is static in
terms of packet and flow record structure. These types of
services are easier to identify in basic profiling and also
easier to classify with the aid of flow features because the
basis for class distribution is sufficiently solid. In this paper,
the data to be classified was distributed to the
aforementioned classes as follows:

TABLE I. DAILY FLOW COUNT AND CLASS DISTRIBUTION DETAILS

 Day 1 Day 2 Day 3
Flow count 41 751 116 40 350 846 40 946 094
WWW-type 12.01 % 12.27 % 11.39 %

Other 88.99 % 87.73 % 88.61 %

The data distribution was surprisingly even between the
daily datasets. The traffic profile of the monitored network is
very constant, at least where WWW-type traffic is
concerned. The amount of WWW-type traffic was around
12% over the whole three-day dataset.

Classification input parameter selection was done by
executing the classifier under several different setups and
within several iterations. The goal was to train the

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

framework to be as generally applicable as possible for the
analysis of IPFIX flow data.

In the selection of classification features, we aimed to
find flow parameters that were descriptive from the client-
server type of services aspect such as WWW. Another aim
was to restrict the number of parameters. Our goal was to
have 2 or 3 parameters to continue with. It is a clear benefit
if the classification feature space has no more than three
dimensions. For example, illustrating the feature space and
the classification results is much easier that way. The third
objective is a general goal for the classification parameter
selection. The parameters should have as little redundancy as
possible. Redundant parameters do not bring any
distinguishable or useful information to the feature space. It
is not sensible to use for example three redundant parameters
if one parameter provides the same information for the
classification execution. We observed that the data profiled
as WWW-type consisted either of flows with a very small
amount of transmitted packets or flows with a large amount
of sent packets. It seemed to be a typical behavioral pattern
for this type of traffic, so we decided to select the count of
sent packets in the flow as one parameter. One would assume
that the amount of sent packets within a flow would follow
the same pattern, but in this case it did not. We decided to
add it to our classification feature space as another parameter
characterizing the flow without redundancy. The maximum
TTL parameter was selected because it seemed to have a
clear distribution into separate groups within its value range
and because it was not redundant regarding the other two
selected parameters.

The distance metric selection did not involve any data
mining or any other characteristic examination of the data.
No weighting algorithms were used either when determining
the distances of the data points. The eEclidean distance
metric is a clear and simple method for calculating distances
between data points. Furthermore, it adds extra value to the
illustration of the data since the data points can be presented
and compared as a vector in a three-dimensional space.

The cross validation for examining the best value for the
’K’ gave us surprisingly good results with all the tested K-
values. The average classification success ratio was over 97
% and within 0.5 percent with K-values of 3-10. As a
guideline, low odd values should be preferred. The best
classification success ratio was achieved with a K-value of 9,
both in scaled and unscaled feature space. As the difference
in success ratio was very small we faced the problem of
whether to go on with value 9 or to select a smaller odd
value like 3 or 5 for the actual classification, which had also
had a very good classification ratio throughout the cross-
validation execution. Higher K-values lead to a more noise-
tolerant system, but on the other hand it makes the class
distribution less distinct within the k data points. Figure 3
illustrates the average classification success ratio both in un-
scaled and logarithmic-scaled feature space with K-values
from 1 to 10. The effect of scaling on the classification
success ratio was very low. On average the success ratio
increased by only about 0.2 % compared to the unscaled
feature space. Our interpretation of this phenomena is that
although the value ranges of Packet Count and Byte Count

features are higher compared to the Maximum TTL feature,
most of their data is located in the lower part of the value
range, as are the values of Maximum TTL values. Therefore
the effect of the logarithmic scaling has only a minor effect
on the classification results.

Figure 3: Average classification ratio values from the Cross-Validation,
Logarithmic scaling versus unscaled feature space, K = [1,10]

We decided to use the K-value 5 for the actual
classification. None of the tested K-values in the cross-
validation provided significantly better results than the
others, and low odd values are typically recommended.

Several interesting pieces of information were obtained
from the actual classification phase:

1. The average classification success ratio over the
three classifications executed for the daily subsets.

2. The classification success ratio from each of the
daily classification executions

3. The ratio of unsuccessful classifications per
original class, i.e., how many ‘WWW-type’ flows
were classified as ‘Other’ and vice versa.

The average classification ratio tells us the overall

performance of the classification framework. The average
classification ratio was 93,02 %, as shown in Table 2. This
result is very good and the daily classification ratios are also
very close to each other. This means that the similarity level
of the daily subsets is high and the level of activity and
WWW-type traffic behavior in this particular network is
close to the same on different days of the week. Here we
have one example of how this framework can be utilized, as
a method for finding out the overall behavior of the dataset.

TABLE II. DAILY AND AVERAGE CLASSIFICATION SUCCES RATIOS

 Success ratio
Day 1 92.91 %
Day 2 91.76 %
Day 3 94.39 %

Average 93.02 %

The characteristics of the unsuccessfully classified flows
were examined. The unsuccessfully classified flows are

96.80

97.00

97.20

97.40

97.60

97.80

98.00

98.20

1 2 3 4 5 6 7 8 9 10

Un-Scaled Log-Scaled

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

interesting because they somehow differ from the typical
behavior of the root class. We back-traced the unsuccessfully
classified flow records back to the original data. The results
were once again surprising. A clear majority of the
unsuccessfully classified flows belonged to the WWW-type
traffic profile.

TABLE III. COUNT AND DISTRIBUTION OF UNSUCCESSFULLY
CLASSIFED FLOW RECORDS

 Day 1 Day 2 Day 3
Flow count 295884 332649 229839

Original Class WWW 90.86 % 80.16 % 90.33 %
Original Class Other 9.14 % 19.84 % 9.67 %

This might mean that these flows belong to some WWW-

based service, which is clearly different from the mass, or
even more interestingly, they might be somehow malicious.
A clear benefit is also the fact that the amount of data for
further analysis is significantly smaller than the amount we
started with. It has come down from over 40 million flows to
a few hundred thousand rows of interesting data. Clearly, the
successfully classified data cannot be totally ignored in the
belief that it does not hold in any false positives. However,
the first step is to try to identify the true negatives or false
negatives from the unsuccessfully classified data. Table 3
illustrates the total number of unsuccessfully classified rows
per daily datasets, together with the proportions of the class
in the original data.

As a whole the framework performed very well, and
therefore can be recommended for feature identification and
characteristics examination purposes of IPFIX flow data.
The main benefit of the framework in general is that it
provides a solid and defined workflow for classification
analysis. In many cases the actual workflow is lost behind
the results, and the repeatability of the results is therefore
compromised. We designed the framework to be solid, yet
flexible enough so it wouldn’t cause too many restrictions to
the analysis work. The framework does not restrict the
classification algorithm selection in any way. If some other
classifier is used, the top-level framework is applicable as it
is. The classification algorithm selection affects to training
and classification execution phases. The cornerstones of the
framework are the basic profiling phase and the classification
training phase. These are clearly also the places for fine-
tuning the framework.

VII. CONCLUSION AND THE FUTURE
The goal was to define a framework for classifying

IPFIX flow data with KNN Classifier and prove its
functionality. The overall classification success ratios were at
a very good and promising level throughout the research.
Over 90% classification accuracy with a considerably large
amount of flow data is an indication of a very good
performance. We used cross-validation in the classifier
training phase and a three-way classification setup in the
actual classification phase in order to prove the classification
framework to be solid and robust. In conclusion, we can state

that the framework performed well and the results were very
promising. They have certainly given us a boost to continue
our research.

There are several interesting starting points for the further
analysis. Our research is related to information security and
the analysis of the WWW-type traffic has many interesting
information security aspects, as it is a commonly used and
therefore misused service. It utilizes mainly standard port
numbering, which means that those ports are typically left
open in firewall configurations, thus leaving some space in
which the misusers and attackers can operate. In future
research we aim to detect the misuse inside WWW-type
traffic by trying to point out what is normal and what is not.
We aim to do this with total anonymity so that misuse
identification and the results analysis is not illegal or harmful
to anyone.

Our intention is also to examine the limits of the KNN
classifier by further training the classifier. Utilizing the
framework with other types of classification methods is also
in the scope of interest in the future research. There are
public datasets available that can be used as reference
datasets and for further validation of the framework.

REFERENCES
[1] IPFIX Working Group, http://datatracker.ietf.org/wg/ipfix/charter/,

retrieved: January, 2012
[2] IPFIX Specifications, http://datatracker.ietf.org/wg/ipfix/, retrieved:

January, 2012
[3] R. Bendrath. “Global technology trends and national regulation:

Explaining Variation in the Governance of Deep Packet Inspection”,
ISA's 50th Annual Convention “Exploring The Past, Anticipating The
Future”, New Ypork city, NY, USA, Feb 15, 2009

[4] T. Karagiannis, K. Papagiannaki and M. Faloustos. “BLINC:
Multilevel Traf c Classi cation in the Dark”, SIGCOMM’05,
Philadelphia, Pennsylvania, USA, August, 2005, pp. 22–26

[5] P. Kumpulainen, K. Hätönen, O. Knuuti and T. Alapaholuoma,
“Internet Traffic Clustering Using Packet header Information”, Joint
International IMEKO Symposium Jena, 2011

[6] A. W. Moore and D. Zuev. ”Internet Traffic Classification Using
Bayesian Analysis Techniques”. SIGMETRICS’05, Banff, Alberta,
Canada, June 6-10. 2005

[7] A. A. Yarifard and M. H. Yaghmaee. “The Monitoring System Based
on Traffic Classification”, World Applied Sciences Journal 5:, 2008,
pp. 150-160

[8] Thuy T.T. Nguyen and G. Armitage. “A Survey of Techniques for
Internet Traf c Classi cation using Machine Learning”, 2008, ISSN:
1553-877X, pp. 56-76

[9] RFC3954 – Cisco Netflow 9, http://www.ietf.org/rfc/rfc3954.txt,
retrieved: January, 2012

[10] MAJI, http://research.wand.net.nz/software/maji.php, retrieved:
January, 2012

[11] Libtrace, http://research.wand.net.nz/software/libtrace.php, retrieved:
January, 2012

[12] SQLite, http://www.sqlite.org/, retrieved: January, 2012
[13] R. Herbrich. “Learning Kernel Classifiers. Theory And Algorithms”.

The MIT Press. Cambridge, Massachussets, London, England. ISBN
0-262-08306-X, 2002

[14] X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
Mclachlan, A. Ng, B. Liu, P. S. Yu, Z-H. Zhou, M. Steinbach, D. J.
Hand and D Steingerg. “Top 10 Algorithms in Data Mining”, Survey
Paper, DOI 10.1007/s10115-007-0114-2, pp. 14:1–37

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

