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Abstract—With the advance of Peer-to-Peer solutions, research
and commercial players have shown interest in enhancing local
client and overall swarm performance in order to improve
content distribution and user satisfaction. Protocol measurements
and careful client and swarm behavior analysis are required
to provide valuable information on improving performance. In
this paper, we present a Peer-to-Peer testing infrastructure that
enables easy deployment of complete and controlled BitTorrent
swarms. The infrastructure allows a variety of realistic scenarios
to be run with the ability to configure characteristics such as
client type, bandwidth management, churn rate and number of
connections.

Index Terms—Peer-to-Peer, BitTorrent, infrastructure,
automation

I. INTRODUCTION

The last 20 years have seen the birth and expansion of the
Internet from a small network of academic and government
institutions to a global network spanning borders, cultures and
homes. With the ever increasing network bandwidth, file and
data transfer is the Internet service that is responsible for the
largest chunk in the Internet backbone. HTTP and Peer-to-
Peer systems are nowadays the main bandwidth consumers in
the Internet, with video content as the most common type of
traffic going through the Internet links [1].

Peer-to-Peer systems have emerged as the most suitable
solution to capitalize on the huge unexploited network
bandwidth available on the Internet. Since the inception of
Napster in the late ’90s, Peer-to-Peer systems have evolved to
a variety of solutions and applications that continuously stir
the interest of institutions (be them academic or commercial)
across the world.

The most eloquent example of Peer-to-Peer systems’
success story is the BitTorrent protocol, currently responsible
for the larges chunk in Internet Peer-to-Peer traffic [1].
With simple, yet highly effective features such as optimistic
unchoking, tit-for-tat and rarest-piece first, the BitTorrent
protocol is one of the best suited solutions for large data
distribution. Recent research focus has been in integrating
features such as social networking, reputation management,
video streaming as core features or overlays on top of the
protocol.

In this paper we present a Peer-to-Peer software testing
infrastructure that provides flexibility, control and automation.
The infrastructure allows deployment of realistic P2P
scenarios, gives full control to the experimenter and automates

the interaction with Peer-to-Peer clients. Our solution provides
the means to define an array of input variables for scenarios:
number of peers, leechers, seeders, bandwidth limitation, client
type, number of connections, intervals of activity (churn rate).
Client output information is automatically retrieved as log files
and rendered through statistical processing.

The testing infrastructure uses shell scripts and
configuration files to setup and manage BitTorrent client
swarms. The use of shell scripts allows easy integration with
BitTorrent clients, takes advantage of the SSH (Secure Shell)
protocol for remote system control and provides interaction
with tools for parsing and processing output information.

We have successfully deployed and used the testing
infrastructure both on a physical environment (consisting of 10
hardware nodes) and on a virtualized environment (consisting
of 100 OpenVZ [4] containers) running on top of the physical
environment. We have been able to run scenarios containing
100 hosts, each running a BitTorrent client instance. The use of
OpenVZ allows lightweight virtualization and easy simulation
of complete systems on top of a small number of hardware
nodes.

II. RELATED WORK

Current research focus regarding Peer-to-Peer systems and
protocols uses carefully crafted experiments and network
simulators.

A survey of the use of Peer-to-Peer simulations has been
undertaken by Naicken et al. [13]. The authors surveyed papers
and collected information regarding the use of simulators for
Peer-to-Peer systems. Five criteria had been used to evaluate
the simulators: simulation architecture, usability, scalability,
statistics and underlying network simulation. A large number
of custom simulators were detected to have been deployed, the
main cause for that being assumed to be the lack of proper
statistics output. The authors criticize the use of NS-2 as a
simulator for Peer-to-Peer systems and provoke discussion to
help build a consensus on the common platform for Peer-to-
Peer research.

One of the best places to look for deploying network
experiments, also heavily used by Peer-to-Peer researchers,
is Planet Lab [6]. With more than 1000 nodes and 500
sites spread all over the world and healthy documentation,
PlanetLab offers a suitable environment for Peer-to-Peer
experiments. As user nodes are virtualized through the use
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of Linux-Vserver, experimenters have complete control over
their system and its resources. The user may deploy a given set
of tests or use PlanetLab as an underlying layer for a testing
infrastructure (such as the one presented in this article) and be
able to deploy a realistic environment for various scenarios.

NS-2 [7] is one of the most popular network simulators.
Thorough documentation, continuous development over the
past two decades and a rich set of features have ensured NS-2
as a prime candidate for network experiments. However, as
Naicken et al. [13] conclude, NS-2 is particularly useful for
detailed modelling of the lower network layer, a characteristic
that is of little interest to Peer-to-Peer researchers, though it
has been often used in Peer-to-Peer experiments.

We consider PlanetLab [6] and NS-2 [7] to be located at
separate poles when discussing about the purpose of Peer-
to-Peer experiments. PlanetLab and virtualized environments
allow deployment of realistic scenarios, and collected valuable
realistic information, but lack scalability. On the other hand,
NS-2 and network/P2P simulators allow simulation of large
number of nodes (even to the degree of millions) while failing
to provide accurate data about client behavior and detailed
statistics. We consider that, given the nature of the BitTorrent
protocol as a solution for content distribution, realistic (or even
real) environments are appropriate for experiments regarding
BitTorrent swarms.

Dinh et al. [11] have used a custom network simulator
(dSim) for large scale distributed simulations of P2P systems.
The authors have been able to simulate approximately 2
million nodes for Chord and 1 million nodes for Pastry.
Similar work has been presented by Sioutas et al. [16]. Video
streaming in Peer-to-Peer networks has been simulated as
described by Bracciale et al. [9] using a custom simulator
dubbed OPSS.

With respect to BitTorrent simulators and closer to the
purpose of this article, Pouwelse et al. [14] have undertaken
a large BitTorrent measurement study spanning over several
months on real BitTorrent swarms (provided by the Suprnova
tracker). Data was collected through HTML and BitTorrent,
(ab)using scripts, from the central tracker and BitTorrent
clients. A similar approach has been employed by Iosup et al.
[12]. The authors have designed and implemented MultiProbe,
a framework for large-scale P2P file sharing measurements on
the BitTorrent protocol. MultiProbe has been deployed in real
swarms/environments and collected status information from
BitTorrent peers and subject it to analysis and dissemination.

Our testing infrastructure is deployed on a hardware
experimental setup (similar to a local PlanetLab) presented
in an earlier paper [10]. Instrumented BitTorrent clients,
logging facilities and an OpenVZ lightweight virtualization
solution are basic block on top of which the software testing
infrastructure was developped and used.

III. DESIGN AND ARCHITECTURE

A. Design goals

The use of network simulators for creating controlled
environments has been an easy solution for achieving

BitTorrent measurements. However, real BitTorrent clients
behave differently from simulators and the network protocol
stack has an important influence on the outcome of a scenario.

Considering the decreasing cost of hardware and the
improvements in virtualization solutions, running network
emulations with hundreds of nodes, each having a dedicated
instance of an operating system, is an achievable objective. In
this sense, Rao et al. [15] concluded that results gathered from
BitTorrent experiments performed on clusters are realistic and
reproductable.

The proposed infrastructure for controlling peer-to-peer
clients aims at providing an extensible and adaptable tool for
experiment setup, execution and analysis. It has four primary
goals, allowing it to be used in a large variety of scenarios.

The first goal is to provide an extensive tool for managing
both clients and log files during experiments. Running
scenarios that include a large number of clients (up to a few
hundred) requires a control mechanism for starting, monitoring
and stopping clients in a short time-frame. Most of the
scenarios result in a collection of log files, at least one log
file per client or per machine. Collecting and analysing these
log files, considering the large number of remote machines,
has to be automated.

The second goal is to use a common interface for
accessing remote systems. The nodes on which clients run
must consist of various Linux or Unix distributions, and, most
likely, the machines are not administrated by the user running
the scenarios. Also, the nodes could be hardware or virtual
machines. A common access interface to this heterogeneous
node infrastructure is needed, and the interface must not
require administrative privileges for accessing the remote
nodes.

The third goal is to offer support for bandwidth control.
Cluster computers are generally connected with 1Gbit/s or
faster network connections. These types of connections are
not common for end-users. In order to provide realism
to the experiments, the infrastructure needs to offer a
mechanism for controlling the amount of bandwidth each
client can use. Having the bandwidth control integrated in the
infrastructure offers the advantages of fine-tuning the scenarios
and recreating a wide range of network environments.

The last goal is to allow the user to introduce churn in
the environment. Starting and interconnecting P2P clients is
only the first step towards reproducing a real-life scenario.
Two of the elements that characterize real swarms are churn
and population turnover. Both translate into clients joining and
leaving the network at different time intervals. Controlling the
periods when each client is connected to the network gives
the user the freedom of creating a variety of scenarios, from
a controlled flash-crowd to a swarm close to extinction.

As mentioned, the proposed infrastructure provides a tool
for experiment setup, execution and analysis. It is the
experimenter’s task to design the experiment parameters and
to validate the used models against simulated results or other
real-life measurements.
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B. Design elements

From a design point of view, the infrastructure uses four
concepts: campaign, scenario, node and client.

A campaign consists of a series of experiments, each
experiment being independent of others and having associated
a specific type of data processing. The difference between a
campaign and an experiment resides in the fact that results
from an experiment may be plotted on a single graph, while
results from a campaign need a deeper analysis. Multiple
experiments may be included in a campaign. If an experiment
needs to be run multiple times (to retrieve significant results),
it can be included multiple times in the same campaign.

A scenario coresponds to a single experiment. It is
associated with a specific type of data processing and its results
are generally presented on a single graph.

A node is one of the infrastructure machines. It can
be a virtual or a hardware machine. The user running the
experiments needs to have access to the nodes both for
experiment deployment and execution and for bandwidth
control.

A client is a single instance of a peer. The infrastructure
is designed to run a single client on each node, in order to
reproduce the real-life execution context for P2P clients.

Campaigns and scenarios each use configuration files that
include a complete specification of the experiments. The
campaign configuration file specifies the scenarios included
in the campaign. The scenario configuration file includes all
nodes that are part of the infrastructure used to execute the
experiment; for each node, the configuration file defines access
parameters, client types, churn and the bandwidth limitations.

C. Architecture overview

The local machine is used to control the infrastructure.
It stores the infrastructure scripts, configuration files, and
campaign output. It may also store code or executable files
for P2P clients. The infrastructure scripts copy required files
from the local machine to remote nodes, set up the enviroments
and start the clients. After the experiment ends, the results
(log files) are brought back from the remote node to the local
machine.

The testing infrastructure uses a modular architecture. Some
of the modules are generic (such as the module that parses the
configuration files); other modules are node or client specific
(for example the module that parses the log files obtained from
a client). From a different point of view, part of the modules
are executed on the local machine, others on the remote host.

The infrastructure architecture is depicted in Figure 1. The
run campaign component reads the campaign configuration
file and executes each of the specified scenarios. After a
scenario is executed, its results are processed, and the next
scenario is run. At the end of the campaign, campaign results
may be published as a web-page for preliminary analysis.

run scenario, the central point of the intrastructure, is
responsible for managing all activities related to the execution
of an experiment. Its specific components will be detailed in
the following section.

Figure 1. Infrastructure design overview. The components use “ ” between
the component names. The actions, that are not directly included in a
component, are placed between [ ]

D. Architecture details

Figure 1 presents the architecture overview. The central
point of the infrastructure is run scenario, the component
responsible for executing a scenario. This section details its
components and explains the mechanisms it uses to deploy
and execute scenarios.

After the scenario configuration file is parsed, each of the
nodes will be prepared for the experiment by scenario setup.
This component is detailed in Figure 2. The first step is to
synchronize the local infrastructure scripts with the remote
host. The synchronization phase cleans up the remote host
and ensures that consecutive scenarios do not influence each
other.

A local node-specific configuration file, including
parameters related to that node, is created for each of the
nodes specified in the scenario configuration file. The node-
specific configuration file is then copied to the remote host.
This file is used for inter-component communication between
the local-executed and the remote-executed components.

The pre-run component prepares remote host environments
for the experiment. This component parses the node-specific
configuration file and applies settings required for the scenario.
The pre-run component also handles bandwidth limitations.

The schedule client component schedules client executions
on the remote host. Based on the node-specific configuration
files stored on the remote host, schedule client starts and stops
the client to simulate the specified churn. The client lives
until the scenario wait component detects completion of the
experiment, after which it may be stopped. The client will not
be immediatelly stopped, as the infrastructure waits for all the
clients to complete the experiment before stopping them.

After all clients complete the experiment, each node will
be cleaned up by the scenario clean component, as presented
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Figure 2. Detailed scenario setup components. The components use “ ”
between the component names. The actions, that are not directly included in
a component, are placed between [ ]

in Figure 3. This component stops the client and retrieves
the remote log files. A post-run component is then executed
reverting all settings applied by pre-run to ensure that
consecutive scenarios do not influente each other. In the end,
the remote node-specific configuration file is deleted and local
infrastructure scripts are synchronized to the remote host to
clean any temporary file.

Figure 3. Detailed scenario clean components. The components use “ ”
between the component names. The actions, that are not directly included in
a component, are placed between [ ]

Information from clients is stored in log files. The last stage
of the scenario execution, scenario parse, translates the client-
specific log format to an unified format used by the processing
stage.

Log files are used to analyse the evolution of various client
parameters during each scenario by storing periodic status
information, such as download speed, number of connections
or ratio. Specialized log files could also be created, if
the clients are instrumented, and gather detailed periodic
information (for example information consisting of instant per-
peer download speed and upload speeds).

Specially designed R scripts are invoked in the post-
processing phase. Using information stored in the unified
log files format as input, the R scripts output graphical
representation of the evolution of client parameters such as
download speed.

IV. INFRASTRUCTURE IMPLEMENTATION

A. Node and client specific components

Part of the components presented in Section III are node or
client specific and will be detailed in this section.

The first client- and node-specific component is pre-run.
One of its main tasks is to configure the bandwidth limitations
on the remote host. Three solutions have been tested to enforce
the limitations (the solutions will be detailed in IV-D):

• controlling bandwidth at the operating system level
• controlling bandwidth at the process level
• controlling bandwidth within the P2P client

pre-run is both client and node-specific. Some clients do
no offer bandwidth control, while bandwidth used by some
virtualization solutions can not be limited at the operating
system level.

The interface between the infrastructure and the BitTorrent
clients is composed of three client-specific components:
scenario schedule, scenario wait and scenario clean. The
only infrastructure requirements for BitTorrent clients are to
provide a CLI (Command-Line Interface) interface to run on
top of a Linux system and to offer runtime-generated log
messages..

scenario schedule is responsable for starting the clients on
the remote nodes. The start client script is client-specific. This
script also prepares the running environment prior to starting
the client.

After a client starts, the scenario wait component monitors
it to detect the experiment completion. The detection phase is
dependant on both the goal of the experiment, and on the type
of client used. A remote client is considered completed either
by reaching a run-time state defined by the scenario or when
the churn configuration implies a final stop action (see Section
IV-C). The runtime-based completion detection requires the
infrastructure to detect the completion of the experiment
based on the messages the client logs while it runs. As each
client has a different log format and specific experiments
require special log messages, scenario wait is adapted to
user needs. Given the generic architecture, the infrastructure
may be used for multiple types of experiments, targeting
download performance, epidemic protocol measurements, user
behavioral patterns, etc.

The scenario wait component causes the command station
to wait for all remote clients to complete the experiment.
Subsequently, log files from remote clients are retrieved to
the command station and parsed. The parsing process results
in an unified generic format (consisting of table and matrix
structured files) that is used as input for statistical analysis.

After all clients have completed the experiment, the
scenario clean component stops them and cleans up the
remote host. The script used to stop the client is paired with
the script used to start it, and is client-specific. The post-run
component is used for the clean-up phase. Similar to pre-run,
it has to revert the settings prior to stopping the experiment;
this stage includes deleting the bandwidth limitations. post-run
is node specific.
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The last client-specific component is scenario parse. Each
client uses a particular log format that should be transparent to
the results processing stage. As mentioned before, a translation
is required, from the client-specific log format to an unified
format used by the processing stage.

B. Employed technologies

The testing infrastructure implementation is based on
shell (Bash) scripts. With support in any Linux operating
system, and no requirements for additional software, shell
scripts provide an ideal environment for easy deployment and
exploitation. Shell scripting offers access to a flexible set of
tools for parsing client output logs and automating tasks.

The common interface used to access remote systems
is based on the SSH protocol. Although file transfers are
available via SCP (Secure Copy), the rsync protocol was
preferred for folder synchronization between different hosts,
transferring only the information that was updated.

Statistical analysis in the testing infrastructure is achieved
through the use of automated R language scripts. A powerful
tool for processing large amounts of data, R can also do
graphical post-processing.

With the exception of scripts used to run a campaign or
a scenario or for post-processing, all other scripts are run
on the remote systems. The scripts running a campaign or a
scenario parse the configuration files on the command station
and use SSH to command the scripts on the remote systems.
The remote system scripts prepare the node for the experiment
and manage the P2P clients (start, monitor, stop).

C. Churn simulation

One of the main goals of the proposed infrastructure is
to allow the user to introduce churn in the environment
by controlling the periods when each client is connected to
the network. An array of intervals included in the scenario
configuration file specifies the on-off behaviour for each of
the clients. The schedule client control script uses the UNIX
signals SIGTOP and SIGCONT to suspend and resume the
client processes at the specified moments of time. The churn
model (specified the array of time intervals) has to be provided
by the user.

D. Bandwidth limitation

As mentioned in IV-D, three solutions regarding bandwidth
limitation have been tested.

The first solution is using the tc [2] (traffic control) Linux
tool, allowing a variety of limitation algorithms implemented
at the kernel level. Due to particularities of the OpenVZ
implementation, tc cannot be currently used as a bandwidth
limiter between containers.

In order to bypass this issue, client level limitation (also
known as rate limiter) was also tested. hrktorrent and
transmission clients offer implicit limitation functionality. This
approach does have its downsides, as it is less flexible and is
process-centric – one cannot limit the total amount of traffic
sent by a client (e.g. a combination of P2P and HTTP traffic).

If the client offers no implicit rate limiter, bandwidth control
may still be enabled through the use of the trickle [8] tool.
trickle uses a form of library interposition to hook network
related API (Application Programming Interface) calls and
limit per-process traffic. It has two drawbacks: it is not actively
maintained and issues arise when using the poll library call;
in case of Linux, epoll support is absent.

V. RUNNING EXPERIMENTS

One of the main goals of the testing infrastructure is
to relieve the experimenter of the burden of experiment
management and monitoring, providing an extensive tool for
managing both clients and log files. As much of the experiment
as possible should be run in “background” with little input
from the user.

By use of the proposed testing infrastructure, the activity
of managing clients, sending commands and collecting
information is completely automated, leaving the experimenter
with only three tasks to accomplish, sequentially:

1) create the client-specific scripts
2) create the campaign configuration and the scenario

configuration files
3) run the campaign startup script
After filling the required information in configuration files,

the user running the experiment starts the campaign through
the use of a control script that receives, as argument, the
name of the campaign configuration file. The script parses
the configuration file and creates and manages a swarm for
each scenario accordingly. In order to limit the possibility of
the user accidentally stopping the campaign control script, it is
recommanded to detach the running terminal using tools such
as screen, nohup or dtach.

After completion of campaign experiments, all output
information and R processed graphic files are stored locally,
in a campaign-specific folder. This folder contains a sub-set
of folders, one for each scenario, that store log and graphics
files.

In terms of scalability, we have successfully deployed
and used the testing infrastructure on a 100-node virtualized
infrastructure [10] running on top of the physical environment.
Thus, we were been able to run scenarios containing 100 hosts,
each running a BitTorrent client instance.

Figure 4 presents the outcome of such a scenario, comparing
the evolution of peer download speed with respect to download
percentage in a 90 peer swarm consisting of 50 seeders and
40 leechers. All peers were limited to 8Mbit/s upload and
download speed and shared a 700MB file. As the figure
depicts, the clients reached the maximum allowed transfer rate.

VI. CONCLUSION AND FURTHER WORK

This article presented a new approach to building an
automated infrastructure that allows easy deployment of
experimental scenarios involving Peer-to-Peer clients. Main
design goals for the infrastructure were providing an extensive
tool for managing both clients and log files, using a common
interface for accessing remote systems, offering support for
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Figure 4. Scenario output: download speed evolution

bandwidth control and allowing the user to introduce churn in
the environment. The infrastructure uses a hierarchical set of
configuration files and run scripts and has been deployed for
a variety of Peer-to-Peer experiments.

The main advantage of the proposed infrastructure when
compared to other solutions is automation coupled with easy
deployment. The use of a single commanding station, shell
scripts, SSH and rsync allows the user to rapidly deploy
a given scenario. The possible use for deployment of an
OpenVZ virtualization allows consolidation – a small number
of hardware nodes are used to create a complete virtualized
framework capable of running sandboxed BitTorrent clients.
With the use of Linux specific networking tools, the user
may define bandwidth limitation and network topology
characteristics in order to simulate realistic scenarios.

Given the flexibility of the client-interface and the provided
churn and bandwidth-control features, any given Peer-to-Peer
scenario can be deployed using the proposed infrastructure.
The definition of the scenario and the validation of the Peer-to-
Peer models used to design it are however the experimenter’s
task.

As of this writing the infrastructure has been up and
running for one year. Tracker interaction scripts have been
added to allow deployment of experiments consisting of
multiple trackers. Various BitTorrent clients (hrktorrent,
nextshare, swift) have been configured and deployed to
provide valuable information regarding performance. Since the
initial implementation new scripts have been added for client
monitoring and data processing, proving the flexibility of the
infrastructure.

Future plans include heavy usage of the infrastructure
in various BitTorrent experiments. Bandwidth limitation is
currently limited to client features; we aim to identify how
this can be migrated to container level – how can one
configure upload/download speed limitation for each container.
A medium-time goal is “porting” the proposed infrastructure
to run on top of Linux Containers (LXC [3]).
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