
DCPortalsNg: Efficient Isolation of Tenant
Networks in Virtualized Datacenters

Heitor M. B. Moraes, Rogério V. Nunes, and Dorgival Guedes
Department of Computer Science

Universidade Federal de Minas Gerais
Belo Horizonte, MG – Brazil

Email: {motta,rogervn,dorgival}@dcc.ufmg.br

Abstract—Multi-tenant datacenters have become an important
scenario in this age of Cloud Computing. One important element
for their effective deployment is the isolation of traffic from
each tenant within the datacenter. In this work, we present
DCPortalsNg, a solution based on the Software-Defined Network
(SDN) approach, which provide effective and scalable isolation for
virtualized datacenters. By adopting a per-tenant virtual network
description, we can use an SDN controller to rewrite packets
that flow through the physical network. That way, we can easily
control which virtual machines they can reach. In our implemen-
tation, we leverage OpenStack Neutron’s network representation
to achieve a simple and extensible solution. Experiments show
good results with little overhead, even preventing DoS attacks
between tenants.

Keywords—Software Defined Networks; virtual networks;
OpenFlow.

I. INTRODUCTION

With the large adoption of Cloud-based solutions, multi-
tenant, virtualized datacenters have become an important
deployment scenario. In them, each user (the tenant) uses
the datacenter hardware to host a set of virtual machines,
configured to provide a specific service to his clients. One
important element in that architecture is the proper isolation
of traffic between tenants. That is necessary to guarantee the
privacy and safety of each tenant’s data, as well as to avoid
unexpected traffic (malicious or not) to hurt the performance of
any application in the datacenter. While machine virtualization
provides good CPU, memory and storage isolation, there is
still a need for better network virtualization solutions, specially
when scalability and easy management are also expected [1].

Some datacenters rely on the use of VLANs to isolate
each tenant’s traffic. Although relatively simple, VLANs are
limited by the protocol, and in some cases that may hinder
scalability [2]. On such solutions, there is still the problem
of handling the addresses of the large number of VMs in
a single datacenter network. In some cases, each physical
machine can host on the order of hundreds of VMs, each with
its own layer 2 (MAC) address. Forwarding tables in most
Ethernet switches have limited space, and performance can
drop significantly if they cannot hold all addresses observed.
Solutions based on protocol layering (tunneling) can reduce
the need for switches in the network to learn all addresses, but
they have performance and management limitations. A good
review of these techniques is the work of Cabuk et al. [2].

With the advent of Software Defined Networks (SDN), it
has become possible to program the network, so that new
functionalities and behaviors can be added to switches in
the network. Some new protocols and network architectures
are being proposed to address those issues, but they require
new hardware to operate [3], [4]. In most cases, upgrading
all the network hardware is not an option, and scalable,
cost-effective, easy-to-manage solutions are still missing. In
a previous work [5], we proposed a software-only solution
using an SDN controller and the virtual switches at the edge
of the (virtualized) datacenter network. Although effective,
that solution had some major limitations, primarily in the
way tenants could represent their virtual networks and in the
way it achieved isolation, which limited the tenants hability to
use any IP addresses they chose for their networks (specially
restricted addresses).

In this paper, we describe DCPortalsNg, which addresses
those issues without requiring new hardware. We make
use of the new OpenStack Neutron component (http://www.
openstack.org/) to handle the tenant networks and therefore
create a more detailed and flexible (yet simpler) representation.
With that representation, a better packet rewriting scheme
can be applied that, at the same time, gives tenants more
flexibility to define their address schemes, and simplifies the
processing of packets as they cross the network. By doing that,
we hide real traffic origins and destinations from the core of
the network (hardware), also hiding traffic from each virtual
network from any VMs not belonging to the same tenant.

The abstraction of the SDN network hypervisor provides
a logically centralized location where network configuration
and control can be performed easily, while maintaining the
scalability of the solution. There are important benefits to
this approach, like (i) a reduced demand for the conventional
switches’ forwarding memory, since VM addresses are hidden
from core switches, (ii) the creation of isolated virtual net-
works for each tenant, guaranteeing that one tenant’s traffic
will never reach VMs of others, (iii) integration of VM and
virtual network configuration and management, by integrating
the network hypervisor with OpenStack, (iv) it leaves VLAN
tags free to be used for other purposes, such as implementing
VLAN-based multi-path routing, for example [6].

With that in mind, the remainder of this paper is organized
as follows: Section II describes the architecture and operation

230Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks



of the system, while its behavior is evaluated in Section III.
After that, Section IV puts DCPortalsNg in context, describ-
ing related work, and Section V provides some concluding
remarks, as well as some observations about future work.

II. IMPLEMENTATION

DCPortalsNg was implemented as a network hypervisor
module built on top of the POX SDN controller (http://www.
noxrepo.org/pox/about-pox/). It interfaces with OpenStack
through a Neutron plugin, which provides the information
it needs about virtual machines and their virtual networks,
such as tenant identification, other VMs in a given network
and, specially, VM location. With that information, it builds
OpenFlow messages to tell the Open vSwitches how to handle
packet flows from/to a given VM. OpenStack controls the
hypervisor in each host, which configures its Open vSwitch
accordingly. Figure 1 illustrates relations between the modules.

Virtualization
Server

Virtualization
Server

VM1

N
e
t
1

VM2

N
e
t
2

VM3

VM6

VM5

N
e
t
3

VM4

Virtual 
Switches

Physical
Network

POX
ControllerControl and

configuration

OpenStack
Controller

Configuration and
Control

DCPortals
Plugin DCPortals

App

Virtual network
topology

information

Fig. 1. Architecture of the DCPortalsNg.

The system administrator uses the OpenStack API to de-
scribe the virtual network for each tenant and to start each
virtual machine which belongs to it. OpenStack selects the
physical machine that will host the VM and sends the in-
formation it needs to run. Through the Neutron plugin, it
informs DCPortalsNg about the network topology and the
VM connections. The hypervisor connects that VM to the
Open vSwitch of that physical host. POX can, then, assign a
unique ID for each VM located in a certain host (VM IDs are
unique for the whole network, but are kept organized by host
machine). That information is cached in memory for quick
access, when needed.

When the new VM sends its first packet through the
network, the Open vSwitch identifies a new flow and uses the
OpenFlow protocol to inform POX. It then notifies DCPortal-
sNg, which handles the packet, accessing its data structures
to recover the information about the source and destination
VMs. If the two machines are not in the same network the
flow is not allowed and the packet is dropped. Otherwise, the
system commands POX to send another OpenFlow message
back to the appropriate Open vSwitch, telling it how to handle
all future packets between those two VMs. In DCPortalsNg, a
flow is identified by origin/destination MAC addresses only, so
it will apply to all traffic between the same VMs. The sections
that follow provide more details about this process and each
of the main aspects of the system.

A. The virtual network abstraction

DCPortalsNg takes advantage of OpenStack Neutron to
derive its information about each tenant’s virtual network
topology. Neutron manages three kinds of entities for each
tenant: the network, which can be seen as a switch connecting
all the VMs from that tenant, the subnet, which defines the
address range for the network, and the ports, that represent
the connection of each VM to the network. With that repre-
sentation, each tenant determines which machines are allowed
to communicate to each other (those connected to the same
networks) or not. That abstraction guarantees at least the
security of a local network, without forcing the tenant to worry
about the physical, shared, infrastructure.

Our system builds a set of directories to hold that in-
formation: one mapping networks to tenants and vice-versa,
one to hold the info about ports (VMs) associated with each
network, and finally one to map VMs to physical hosts. In
all cases, VMs are represented by unique identifiers created
by the system as addresses in a 10.0.0.0/8 address space (the
same principle could be used with IPv6, which is supported by
OpenFlow since version 1.3). Although represented as an IP
address, that identifier has no direct relation to the VMs’ real
IP addresses. With that representation, given a VM identifier,
DCPortalsNg can recover its network, MAC and IP addresses,
physical host and even the Open vSwitch port to which it is
connected. That information will be used during the decision
process needed to route packets.

B. Packet rewriting for network isolation

As previously discussed, using packet rewriting to imple-
ment network isolation has two major benefits: it guarantees
that traffic from a tenant will be out of reach for others, and
it reduces the pressure on physical network devices to handle
MAC addresses for all virtual machines in the datacenter. To
achieve that, we rewrite the MAC addresses in all packets that
traverse an Open vSwitch at the edge of the network to remove
the VM information.

For now, we can assume that DCPortalsNg has already iden-
tified the associated flow and programmed the edge switches
accordingly to rewrite the packet before forwarding it. The
process described next is illustrated by Figure 2. In it, virtual

231Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks



machine vm1, operating in physical host machine host1, sends
a packet to another virtual machine vm3 in the same virtual
network, but physically located in physical host machine host2.
The original packet sent by vm1 that will reach the virtual
switch at host1 will contain the MAC addresses of vm1 and
vm3, and the IP addresses of both.

Fig. 2. Address rewriting in DCPortalsNg

The Open vSwitch at host1, then, will replace vm1’s and
vm3’s MAC addresses in the Ethernet packet header with
the MAC addresses of host1 and host2. At the same time, it
will replace their IP addresses by their DCPortalsNg internal
identifiers. Routing at the core Ethernet network will be done
in terms of the physical machines’ MAC addresses. When
the packet reaches host2, it will traverse its virtual switch;
at that moment, an OpenFlow rule already set in place by
DCPortalsNg, based on the IDs of the two VMs, will write
back the appropriate MAC and IP addresses corresponding to
vm1 and vm3 in the header. That is the packet that will be
delivered to vm3 at that point. Notice that the MAC addresses
of vm1 and vm3 never crossed the network; nevertheless, they
will only reach their destinations if the system can verify their
connectivity to a same virtual network.

C. ARP messages

The MAC rewrite technique just discussed replaces the
Ethernet addresses of virtual machines in packets that were
already built with those addresses. However, for the VMs to
build those packets in the first place, they must learn the
MAC address of the destination. In a traditional network,
that would be achieved by a broadcast message using the
Address Resolution Protocol (ARP). The protocol is composed
basically by two kinds of messages: ARP Request and ARP
Reply. The first one is sent to the network broadcast address
when we need to learn the MAC address associated with a
certain IP address. The second is the response, sent by the
target machine, to inform the sender of the query about its
MAC address.

For the virtual network isolation to work, it is not acceptable
that broadcast messages travel the network carrying virtual ma-
chine MAC addresses. DCPortalsNg fixes this by intercepting
all ARP communication and handling it directly. Since it has
access to the OpenStack database, it knows how to answer to
any ARP query in the network. All it has to do in this case
is to build an ARP Reply message with the right information
and send it directly back to the appropriate host. Since queries

are intercepted at the virtual switch close to the sender, ARP
messages never cross the core network.

D. Inter-networking

In modern datacenters, there are cases where two tenants
may allow their applications to communicate with one another
(based on some mutual agreement). There are also many cases
where a tenant’s machines must be accessible by clients from
the Internet. To achieve that, networks described by the tenants
may include mentions to special routers.

The details of how this connection is defined depend heavily
on each datacenter structure and service policy. It might be
offered only through the definition of a second interface in
one of the virtual machines, which would be the only one
visible externally, while that host would be responsible to route
messages between the internal, virtual network and the outside
network.

Although these might be implemented as actual multi-
homed VMs, the SDN approach allows us to simplify that,
avoiding the need for extra virtual machines: DCPortalsNg can
simply add rules to directly rewrite packets from the origin
network to the destination network, by using special MAC
addresses to identify the (abstract) routers.

E. Broadcasts

Although most broadcasts in local networks are ARP-related
and, therefore, eliminated by DCPortalsNg, we must still
consider how other broadcasts are to be handled. When a group
of VMs is configured in a virtual network, we expect packets
sent to that network’s broadcast address to be delivered to all
machines in that virtual network, and only to them. However,
in a complex, shared environment like current datacenters,
that is not the case, since packets would be delivered to all
machines connected to the physical Ethernet network.

Fig. 3. Difference of treatment of a broadcast

Figure 3 shows the difference between what happens in
that case with and without DCPortalsNg in the network. In
the figure, virtual machines are separated in different virtual
networks according to their colors and vm2 sends a broadcast
message. Ideally, that message should be delivered only to
the other virtual machines in the same network, vm1, vm4,
and vm8. Without DCPortalsNg, however, in the conventional
system, all machines, no matter to what virtual network they
belong, would receive the packet.

232Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks



To achieve the desired effect, first the broadcast packet is
inspected by the virtual switch at the physical machine where
the sender VM runs. It is then delivered to the ports of the local
switch that are connected to other VMs in the same network,
and then DCPortalsNg must make sure it is received by all
other VMs of that tenant located in other hosts.

The transmission to reach other hosts may be done either by
an Ethernet broadcast or by packets addressed to the physical
interface of each host holding VMs from that network. One so-
lution has lower latency, while the other will avoid broadcasts
flooding a large network.

In any case, when the packet leaves the host machine of
the sender, the process of MAC rewriting works as before, to
remove the MAC address of the sender, but keeps the Ethernet
broadcast address as destination (in the first approach). When
the broadcast message reaches the virtual switches at the
destination physical machines, in both cases, the controller
restores the original headers and also searches for all local
virtual machines that belong to the network of the sender,
delivering the message to each of them, and only to them. In
our example, the controller would program the switch OvS2
to deliver the packet only through the port connected to vm8.
By doing that, the message continues to have the effect of a
broadcast, but it will only be delivered to machines in the same
virtual network of the sender, guaranteeing no other machine
will have access to the packet.

For the evaluation tests described later, DCPortalsNg main-
tained the message as a broadcast in the physical network,
since that would stress the network further.

III. EVALUATION

To perform the validation experiments to confirm the proper
operation of the system, we used three machines, each with
two network interfaces, connected to two different switches.
One of the resulting networks was used for management
traffic (OpenStack commands, OpenFlow), and the other was
used for the communication between the VMs (operational
network). Such configuration is very common in commercial
datacenters [1].

The management network uses IP addresses in the range
10.0.254/24. Virtual machines were configured in two separate
virtual networks, each spanning two physical hosts. (A single
address range was used for all VMs, to stress the need for
traffic isolation: being configured with IP addresses in the
same range, unless some external isolation is active, traffic
from a host can reach all the other hosts.) Two virtual networks
were created and machines were distributed according to the
configuration described in Table I.

Host machines were configured with the Ubuntu Operating
System, version 11.10, and packages OpenStack, Xen, and
Open vSwitch from official repositories. The virtual machines
were configured with one of OpenStack’s standard images,
running Ubuntu 10.10.

The first experiment was a simple isolation test using ping
to the network broadcast address and the network latency.
The second one evaluated the interference of the system on

TABLE I
DISTRIBUTION OF VIRTUAL MACHINES AND THEIR NETWORKS AMONG

THE PHYSICAL MACHINES FOR THE EVALUATION TESTS.

Virtual Machine IP Virtual Net Host
vm2 10.0.20.2 lan1 host1
vm3 10.0.20.3
vm4 10.0.20.4 host2
vm5 10.0.20.5 lan2
vm6 10.0.20.6

communication latency, also using ping. Finally, the last one
tested the system under a denial-of-service condition.

A. Isolation and latency overhead

The confirmation of isolation consisted in using ping to
send an ICMP Request messages from one of the virtual
machines to the network broadcast address (the operating
system of the VMs was configured to enable ICMP replies
to broadcast requests). The expected behavior for this use of
ping is that all machines in the same network as the sender
should reply to the sender. When using DCPortalsNg, even
with all machines using the same IP address range, with the
same broadcast address, and sharing the same infrastructure,
only virtual machines in the same virtual network as the sender
should receive the request and, therefore, reply to it. That
was the observed behavior in each case, confirming the proper
isolation (program output removed due to space limitations).

We also collected packet traces at the interfaces of the
virtual machines (therefore, inside their virtual networks) and
at the network interface of the physical hosts (at the point
where a packet enters the network core, past the virtual edge
switches). By inspecting those traces, we confirmed that packet
rewriting occurred as expected.

To verify general latency overheads, we also used ping, now
between two VMs in a same virtual network. We discarded the
first packet, to discard the ARP and OpenFlow setup overheads
(discussed next). We repeated the pings 10,000 times for each
scenario and computed a 99% confidence interval for the
results, which showed that DCPortalsNg overhead in this case
was approximately 1% in the worst case.

B. Network setup overhead

It is important to quantify the impact DCPortalsNg may
have on network latency for a working flow, considering the
configuration setup activity. For this experiment, we again
used ping messages. We considered three scenarios: first, we
configured all Open vSwitch instances to operate as standard
Ethernet switches — the default setup, which is used in
traditional network configurations. That gives us our baseline
case. Next, we configured the Open vSwitches as OpenFlow
switches, but used a streamlined network hypervisor that just
emulated the operation of an Ethernet learning switch. That
would show us the overhead of just having OpenFlow active,
without adding the costs of our system. Finally, we considered
a complete DCPortalsNg installation, where all those costs
were included.

233Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks



First, we evaluated the overhead for the first packet of a
flow, when the sequence of actions differs the most between
a traditional network and an SDN. As discussed earlier, when
that happens in an SDN, the packet is forwarded to the network
hypervisor, which must decide what will be done with that flow
and send a command back to the switch. In DCPortalsNg,
that will include executing queries to OpenStack to retrieve
information for each VM involved. That may also include an
ARP query. We considered both the cases when that query is
necessary and when the ARP table at the machines already
contains the MAC addresses for the endpoints involved in the
communication. When measuring ARP overhead, we isolated
its processing by POX by pre-programming the switches for-
warding tables, so the network hypervisor would be contacted
only to process the ARP request, not for the actual flow. On
the other hand, when measuring the flow setup overhead, we
pre-programmed the ARP tables, so that no ARP queries were
issued. As a baseline, we also measured times for a standard
system, where Open vSwitches were configured as standard
Ethernet switches, with no OpenFlow. For each scenario, we
ran 30 pings and recorded the round-trip times observed. We
also computed the statistical difference between each pair of
scenarios. Table II shows the average results, with errors for
a confidence interval of 99%.

TABLE II
SETUP OVERHEAD FOR EACH SCENARIO, FOR BOTH ISSUING AN ARP

QUERY AND INSTALLING A FORWARDING RULE AT THE EDGE SWITCHES.
THE STANDARD SWITCH CASE IS SHOWN AS A BASELINE.

Scenario ARP overhead (ms) Flow setup (ms)
Standard switch 7.45 +/– 0.1 0.20 +/– 0.03
POX L2 switch 10.72 +/– 2.67 29.83 +/– 8.36
DCPortalsNg 15.31 +/– 3.57 47.05 +/– 8.96

We see that ARP costs vary less than those of flow setup.
That is due to the fact that in a standard scenario, ARP requires
a broadcast that will reach the destination and a message back;
for the POX L2 switch, there is still a network hypervisor
involved, but all it does is to return the packets to the switch
for delivery as it would be done in the standard switch; finally,
for DCPortalsNg, an ARP query is transformed into a message
to the network hypervisor, which searches an internal table for
proper info, and a reply is sent directly to the original sender
(there is no contact to the destination machine).

Flow setup costs, however, have a higher variance. There
is basically no setup cost for a standard switch; the time
shown, 0.20 ms, is just the ping round-trip time through
the network. The POX L2 switch must contact the network
hypervisor, which will reply by installing a flow based on
the addresses it learns during the process, so we can consider
that the OpenFlow processing overhead. DCPortalsNg adds
to that the cost of querying its dictionaries to identify the
endpoints and set up the forwarding table. Although there
is a significant setup overhead in this case, it is important
to remember that it only takes place at the beginning of the
communication between two VMs when a flow is set. Besides
that, the overhead is less than 50 ms, which would not trigger

retransmissions in a TCP connection.

C. Denial of service attack protection

One common motivation for virtual network isolation is
the threat that a tenant may start a denial of service attack
targeted at another tenant’s machines. In a datacenter environ-
ment where there is no such isolation, a UDP flow created
from an attacking machine to the target network may drain
network bandwidth to a point were the attacked system cease
to function. One similar attack happened to the BitBucket
service, while using Amazon EC2 infrastructure [7] (although,
in that case, the UDP traffic came from outside the datacenter).

Such a problem should not happen if the tenants’ virtual
networks were properly isolated from each other and from
the outside. To verify that, we created a UDP flow attack to
another virtual network. To make things worse, the UDP flow
was created with the broadcast address of the target network
as destination. Figure 4 shows the experiment setup in this
case.

Fig. 4. Denial-of-service experiment. VM6 launches a UDP flood to the
network broadcast address, while VM2 and VM3 (in another virtual network)
set up a TCP flow.

Virtual machines vm2 and vm3, located at physical host
1, set up a TCP transfer between them. At the same time,
vm5, the attacker, initiated a UDP flow addressed to the
other virtual network’s broadcast address. The attack to the
broadcast address is a worst case scenario, since it would be
processed by both vm2 and vm3, if delivered. If the attack was
addressed to any machine’s IP address only, the effect with no
control might be slightly less damaging, but the behavior with
DCPortalsNg would be the same. We used iperf to create the
two flows, and measured the effective throughput of the TCP
connection between vm2 and vm3. We limited the bandwidth
of each virtual machine to 1 Gbps, a common value in practice.

Each test run lasted 1,000 seconds and the TCP throughput
was measured every 3 seconds. The first 3 seconds were
discarded to eliminate setup variations. Results are shown in
Table III.

TABLE III
AVERAGE TCP THROUGHPUT OBSERVED IN DIFFERENT CONDITIONS;

RANGES CONSIDER A 99% CONFIDENCE INTERVAL.

Scenario Bandwidth (Mbps)
No isolation, no attack 928.29 +/– 0.16
DCPortalsNg, no attack 928.21 +/– 0.22

No isolation, under attack 41.21 +/– 12.99
DCPortalsNg, under attack 910.11 +/– 0.28

234Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks



Clearly, we can see the difference in the two cases. The
system with no isolation suffers a loss of about 95% of
the observed throughput. DCPortalsNg suffers just about 5%
loss. With isolation, the UDP flow is blocked at the edge
switches, not being delivered to other networks. The loss in
this case is due to the overhead at the edge switch to drop
the incoming UDP packets. Considering the system with no
attacks, there is no statistical difference between DCPortalsNg
and the standard switch scenario. That should be expected,
considering the previous analysis of latency overheads.

IV. RELATED WORK

As we mentioned in the introduction, this work is a con-
tinuation of our previous work in the area [5]. Compared
to that work, DCPortalsNg provides a better integration with
OpenStack, a simpler API to define the tenant networks, and
an improved rewriting scheme.

Greenberg et al. [1] put together an interesting study about
costs in a cloud computing datacenter. Among other observa-
tions, the network is identified as one of the major challenges
in that context. Authors explicitly mention the dependence of
current solutions on VLANs, and the problems associated with
that practice.

One of the first initiatives towards a technique for vir-
tual networks isolation was developed by a group at HP
Labs [8], beginning with the definition of the concept of
Trusted Virtual Domains (TVDs). Those would be logically
isolated network sections, independent of the infrastructure
topology. To implement that isolation, the authors implement
a module internal to the virtual machines that is responsible
for all processing related to network isolation. Two techniques
for isolation, VLAN tagging and the EtherIP encapsulation,
are compared. That work has a similar goal to DCPortalsNg,
but the the solutions considered have scalability limitations
and require intrusive modifications to the hypervisor. A longer
comparative study by the same group mentions the MAC
rewriting technique [2].

DCPortalsNg uses the SDN paradigm to solve the isolation
problem. Pettit et al. [9] have already discussed the viability
of such approach to datacenter networks, but did not present
a concrete solution. Two applications of NOX (another SDN
controller) to the datacenter were published previously, but
they focused on implementing new network architectures and
traffic control [3], [4]. Different from those solutions, DCPor-
talsNg does not require hardware with OpenFlow capabilities
inside the network core, and focuses only on traffic isolation.

One work with very similar motivation to the one presented
here is certainly Netlord, developed by Mudigonda et. al. [10].
In their paper, the authors use a solution based on encapsu-
lation to achieve a similar traffic isolation without requiring
special hardware in the network. However, the way their
solution is implemented is quite different, using an extension
of the Xen hypervisor specially developed for that goal. We
believe that the use of Software Defined Networks is a more
elegant and flexible approach and a determinant characteristic
of our work. It simplifies implementation and offers a more

flexible solution. DCPortalsNg, for example, works directly
not only with Xen but with other hypervisors that use libvirt
and Open vSwitch, such as KVM.

V. CONCLUSION AND FUTURE WORK

This work presented DCPortalsNg, a system developed to
provide traffic isolation for virtual networks in a virtualized
datacenter environment. The system architecture and the im-
plementation details were described, along with results that
confirm the isolation provided. Evaluations also quantified
the overheads during flow setup, which are noticeable but
rare, and showed that during normal flow operational costs
are negligible. Finally, we showed that the system can be
effective at protecting tenants from denial-of-server attacks
inside the datacenter network. As future work, we continue
to improve the system. In particular, we are working on
integrating DCPortalsNg, which provides network isolation,
with Gatekeeper, a system designed to provide network traffic
guarantees in a datacenter environment [11].

ACKNOWLEDGMENTS

This work was partially sponsored by UOL, Fapemig,
CNPq, and the National Institute of Science and Technology
of the Web, InWeb (MCT/CNPq 573871/2008-6).

REFERENCES

[1] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: research problems in data center networks,” SIGCOMM Computer
Communication Review, vol. 39, no. 1, pp. 68–73, 2009.

[2] S. Cabuk, C. I. Dalton, A. Eduards, and A. Fischer, “A comparative
study on secure network virtualization,” HP Laboratories, Tech. Rep.
HPL-2008-57, 2008.

[3] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying NOX to
the datacenter,” in Proceedings of workshop on Hot Topics in Networks
(HotNets-VIII), 2009, pp. 1–6.

[4] B. Heller et al., “Ripcord: a modular platform for data center network-
ing,” SIGCOMM Comput. Commun. Rev., vol. 40, pp. 457–458, 2010.

[5] R. V. Nunes, R. L. Pontes, and D. Guedes, “Virtualized network isolation
using software defined networks,” in Proceedings of the 38th IEEE
Conference on Local Computer Networks (LCN). IEEE, 2013, pp.
700–703.

[6] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul, “Spain:
Cots data-center ethernet for multipathing over arbitrary topologies,”
in Proceedings of the 7th USENIX conference on Networked systems
design and implementation, ser. NSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 1–16.

[7] “Bitbucket amazon ddos attack,” http://blog.bitbucket.org/2009/10/
04/on-our-extended-downtime-amazon-and-whats-coming/ (retrieved:
Dec 2013), 2012.

[8] S. Cabuk, C. I. Dalton, H. Ramasamy, and M. Schunter, “Towards
automated provisioning of secure virtualized networks,” in Proceedings
of the 14th ACM conference on Computer and communications security,
ser. CCS ’07. New York, NY, USA: ACM, 2007, pp. 235–245.

[9] J. Pettit, J. Gross, B. Pfaff, M. Casado, and S. Crosby, “Virtual switching
in an era of advanced edges,” in Proceedings of the 2nd Workshop on
Data Center - Converged and Virtual Ethernet Switching (DC CAVES),
ser. DC CAVES. Amsterdam: ITC, september 2010, pp. 1–7.

[10] J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary,
“Netlord: a scalable multi-tenant network architecture for virtualized
datacenters,” in Proceedings of the ACM SIGCOMM 2011 conference,
ser. SIGCOMM ’11. New York, NY, USA: ACM, 2011, pp. 62–73.

[11] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes,
“Gatekeeper: supporting bandwidth guarantees for multi-tenant
datacenter networks,” in Proceedings of the 3rd conference on
I/O virtualization, ser. WIOV’11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 6–6.

235Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks


