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Abstract—Wireless sensor networks are a popular choice in a
vast number of applications, despite their energy constraints, due
to their distributed nature, low cost infrastructure deployment
and administration. One of the main approaches for addressing
the energy consumption and network congestion issues is to
organise the sensors in clusters. The number of clusters and
also distribution of Cluster Heads are essential for energy
efficiency and adaptability of clustering approaches. ANCH is
a new energy-efficient clustering algorithm proposed recently
for wireless sensor networks to prolong network lifetime by
uniformly distributing of Cluster Heads across the network.
In this paper, we propose an analytical method to model the
energy consumption of the ANCH algorithm. The results of our
extensive simulation study show a reasonable accuracy of the
proposed analytical model to predict the energy consumption
under different operational conditions. The proposed analytical
model reveals a number of implications regarding the effects of
different parameters on the energy consumption pattern of the
ANCH clustering algorithm.

Index Terms—Wireless Sensor Networks, Clustering, Energy
Efficiency, ANCH, Analytical Model.

I. INTRODUCTION

Wireless Sensor Network (WSN) is a network of tiny
and on-board battery operated sensors with limited power of
processing and radio transferring data. They can collect and
send their sensed data to a base station for monitoring a remote
area and perhaps to send the collected data to a remote centre.
WSNs can be employed in different applications, because
of their low-cost and adaptable nature, including health-care,
emergency response, business, and weather forecasting [1]–
[3]. Moreover, WSNs can be used in an ad-hoc manner and in
harsh environments in which the attendance of human being
is hard or impossible [4], [5].

Energy efficiency is essential for wireless sensor networks
lifetime because there is usually no opportunity for a bat-
tery replacement or recharging. Therefore, developing energy-
efficient algorithms is of higher importance in wireless sensor
networks. A large amount of research has been conducted over
the past few years to optimise the energy consumption in this
area [6]–[8].

Clustering is a widely accepted approach for organising
high number of sensors spread over a large area in an ad-hoc
manner [9]. This is more useful when we consider that in most
cases, neighbouring sensors sense similar data. If each sensor
directly sends its data to the base station using long-distance

transmission, its energy drains quickly. Moreover, this might
also lead to some other issues, such as traffic congestion and
data collision.

Appropriate number and size of the clusters is essential for
increasing the network lifetime. For a low number of clusters,
a large amount of the energy is consumed to send data from
Cluster Members (CMs) to Cluster Heads (CHs). On the other
hand, if the number of clusters is high, a large number of the
CHs will be elected and consequently a large number of nodes
will operate using long-distance transmission to communicate
with the base station. Therefore, a trade-off should be made
between these two factors to optimise energy consumption
across the network [10].

Over the past few years, a number of clustering algorithms
have been proposed. Hence, it is critical that when propos-
ing a new algorithm, we specify its scope and evaluate it
with accurate modelling of the underlying organisation and
communication mechanisms. Clearly, after using such models,
a comprehensive understanding of the factors that affect the
potential performance of a network emerges and this makes it
easier to evaluate different algorithms and select the best one
for practical implementation. Employing physical experiments
is impractical for a large number of configurations and running
a network simulator for a large number of configurations needs
an unacceptable amount of time. Analytical modelling, in
contrast, offers a cost-effective and versatile tool that can help
to assess the performance merits of an algorithm [11], [12].

Avoid Near Cluster Head (ANCH) is a new energy efficient
clustering algorithm proposed recently for wireless sensor
networks to prolong network lifetime by uniformly distributing
the CHs [8]. In this paper, an analytical model for predicting
the energy consumption of ANCH is proposed. The model
details the affecting factors and analyses the energy consump-
tions under various operational conditions. The accuracy of
the proposed model is evaluated using simulation.

The remainder of this paper is organised as follows. In
Section II, related work is discussed. The ANCH clustering
algorithm is briefly presented in Section III. The proposed
analytical model of ANCH and its validation are presented in
Section IV and Section V, respectively. Finally, Section VI
contains our concluding remarks.
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II. RELATED WORK

Over the past few years, a number of clustering algorithms
for WSNs have been proposed such as Low Energy Adaptive
Clustering Hierarchy (LEACH) [6], Hybrid Energy-Efficient
Distributed (HEED) [13], and ANCH [8]. One of the most
popular clustering algorithms for wireless sensor networks is
LEACH. Popularity of LEACH is not only because of its
simplicity, but also for the idea of rotating CHs to efficiently
balance energy consumption among nodes [6].

Fig. 1: An example of CHs and CMs arrangement in the
LEACH algorithm.

HEED [13] is a distributed clustering algorithm for WSNs
which takes into account a mixture of sensors residual energy
and communication cost during CH election. In HEED, the
transmission power of every node is set to a constant value
and each sensor considers other nodes as its neighbouring
nodes if they are within its transmission range. Moreover, two
neighbouring sensors, which are within the transmission range
of each other, are not elected as CH simultaneously, trying to
uniformly distribute CHs across the network.

ANCH also, similar to HEED, takes the advantage of
uniformly distribution of CHs in order to achieve optimised,
or close to, network energy consumption. Nevertheless, it
has a few key advantages over HEED. Firstly, the set-up
phase overhead of ANCH is much less than that of HEED
because HEED executes a procedure to find neighbouring
sensors. Also, in this phase, each sensor in HEED executes
a complicated iteration including some message passing to
select its CH. Secondly, by the end of each iteration in HEED,
a node elects itself as a CH if no other CH advertisement has
been received. Thus, in many rounds, the number of formed
clusters is much more than that of ANCH algorithm where
all sensors receive CH advertisement if there exists at least
one CH in the network. Finally, ANCH and LEACH are two
scalable algorithms both with processing time and message
exchange complexity of O(1) and O(N), respectively [14].
Whereas, HEED has O(N) complexity for both processing time
and message exchange complexity [15], [16].

In order to design an energy efficient algorithm for wireless
sensor networks, it is important to make a trade-off between
different parameters involved in a specific application to ensure
that the optimum configuration has been applied to maximise
network lifetime. In particular, it is quite critical to balance
the energy costs of individual nodes in order to obtain the
best overall network energy cost. Simulation study of the
effects of different parameters on the performance of a network
under various network circumstances is difficult because of
the time consuming feature of these kinds of tools. Analytical
modelling, in contrast, is beneficial as it offers a cost-effective
tool to estimate the network energy consumption accurately
within an acceptable amount of time. Therefore, in addition
to the research on proposing efficient algorithms for wireless
sensor networks, a number of studies have also been conducted
to develop analytical models [10]–[12], [17], [18].

The first analytical model for the LEACH algorithm has
been proposed by Heinzelman et al. [17]. In this study, it
has been shown that the energy consumption in a network is
proportional to the square of transmission distance in clusters.
This can be obtained for each sensor using the following
expression:

E[d2toCH ] = ρ

∫ 2π

θ=0

∫ M√
πk

r=0

r3drdθ =
M2

2kπ
(1)

where E[d2toCH ] is expected square distance of sensors from
their CH, ρ = k

M2 and is called sensors’density, k is the
number of clusters, and M is one side of network area.

However, some non-realistic assumptions have been made
when developing the model; the area of all clusters are disc-
shaped with radius r, all clusters are assumed to be formed
equally, and also the area of the network is covered by these
k non-overlapping clusters.

In [19], Bandyopadhyay and Coyle have proposed a mathe-
matical model for hierarchical clustering algorithms for WSNs.
They assumed that the sensors are very simple and all sensors
transmit at a fixed power level. Their model analytically
suggests the number of CHs at each level of clustering. They
conducted a set of experiments to show the optimum number
of CHs in different levels of hierarchy in dense networks, with
up to 25,000 nodes. Nevertheless, their proposed model is not
general enough due to a number of unrealistic assumptions on
the fixed power level transmitting ability of nodes.

III. THE ANCH CLUSTERING ALGORITHM

The proper position of CHs is essential in energy efficiency
of clustering algorithms. This has been neglected in the
LEACH algorithm and consequently there might be some CHs
which are located too close or too far from each other. In
either case, some waste of energy might be occurred for data
transferring from sensors to the base station.

To overcome this, the ANCH algorithm tries to uniformly
distribute CHs across the network as much as possible. To
do so, a parameter d is defined as the closeness depending
on the region size and also network density. If two CHs are
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found too close to each other in a particular round, closer
than d, one of them should stand as the CH. Thus once the
first CH is selected following normal LEACH procedure, the
next potential CH checks its distance from the first CH before
advertising itself to other sensors as a CH. If the distance is
less than d, it cancels its decision to be a new CH in the current
round and remains a CH candidate for the future rounds.

Further improvement in ANCH is also obtained by con-
sidering the optimum number of CHs through the network.
This is because a number of potential CHs might cancel their
decision of being a CH due to their close position to other
CHs. Therefore, the number of clusters would be less than the
optimum number suggested in the LEACH algorithm. This
leads to the bigger cluster size and more energy consumption
over the intra-cluster transmission.

This issue is addressed in the ANCH algorithm by in-
creasing the threshold T (n) and consequently increasing the
number of potential CHs in each round. As a result, in every
round more than p percent of sensors will be nominated as
CHs, on average, to become closer to the optimum value, p,
after dropping a number of them because of closeness issue.
After setting the new threshold, close to p percent of sensors
are eventually selected as the CHs in every round which are
more uniformly distributed compared with LEACH. The new
threshold, T ′(n), in ANCH is defined as follows:

T ′(n) = T (n) + (1− T (n))× a. (2)

T (n) is the threshold value of the LEACH algorithm [6] and
a, the add-on coefficient, is a constant, whose value depends on
network configuration and also on the closeness value, d. This
value plays an essential role in the ANCH algorithm efficiency.

The ANCH algorithm significantly improves network en-
ergy consumption and, consequently, prolongs the network
lifetime compared with the LEACH algorithm. An example
of the positions of CHs and CMs in ANCH is shown in
Figure 2. Comparing this arrangement with the one presented
in Figure 1 reveals more uniformly distribution of CHs in the
ANCH algorithm.

IV. ANCH ANALYTICAL MODELLING

In this section, our proposed analytical model for the energy
consumption in the ANCH clustering algorithm is presented.
Using the model, a comprehensive understanding of the factors
affecting the performance of a network emerges. Since a
clustering approach is employed in the ANCH algorithm, the
total network energy consumption can be derived when the
energy consumed by one cluster is calculated.

Let us assume that N sensor nodes are randomly distributed
in a M×M area and the number of clusters, on average, is k
during the lifetime of the network. As a result, there are N

k
sensors, on average, per cluster with (Nk )− 1 sensors as CMs
and also one node as the CH.

The energy required for a CM to send its data to a CH can
be calculated using the following expression [6]:

ECM = lEelec + lεampd
2
toCH (3)

Fig. 2: An example of CHs and CMs arrangement in the
ANCH algorithm.

Also, for all nodes in a cluster, this energy can be calculated
as follows:

ECluster = lEelec(k−1)+ lεampE[
∑

nodes∈Cluster

d2toCH ] (4)

where l is the length of messages, Eelec is the transmit
electronics, εamp is transmit amplifier, dtoCH is the distance
between a CM and its CH, and E[

∑
d2toCH ] is the expected

summation for square distance of CMs from their CH. Except
for E[

∑
d2toCH ], all other parameters in (4) are known with

constant values. Therefore, by calculating E[
∑
d2toCH ] we are

able to calculate all the energy spent in the network.
E[
∑
d2toCH ] can be calculated using the following expres-

sion for LEACH [20]:

E

 ∑
node∈cluster(j)

d2toCH

 = 2πλCM×∫ ∞
0

r3.P {(r, j) ∈ cluster(j)} dr

(5)

In (5) and (6), λCH and λCM represent density of the CHs
and CMs in the network and are given by k

M2 and N−k
M2 ,

respectively. P {(r, j) ∈ cluster(j)} is the probability of a
sensor node to become member of cluster j. The distance be-
tween the node and the head of cluster j is also represented by
r. According to [21], P {(r, j) ∈ cluster(j)} can be derived
from the palm distribution as follows:

P {(r, j) ∈ cluster(j)} = exp
{
−λCHπr2

}
(6)

In ANCH, the distance between any two CHs is not less
than d. Each cluster area is divided into two different parts,
which are treated separately in our model. The first part is
the circular area with the radius of d/2 from the CH. All
sensors in this area securely belong to that cluster. The second
area covers those sensors whose distance from the current CH
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is more than d/2. For the first part, (5) with the probability
P {(r, j) ∈ cluster(j)} = 1 can be used. Thus, the expected
summation for square distance of CMs, located in the first part
of the cluster area, from their CH can be obtained using the
following expression:

E

 ∑
node∈cluster(j)

d2toCH

 = 2πλCM

∫ d/2

0

r3dr (7)

On the other hand, all sensors whose distance from
other CHs is less than d/2 are secure members of other
CHs and are not members of the current CH. Thus,
P {(r, j) ∈ cluster(j)} = 0 for those nodes. Consequently,
the value of (5) for those nodes is 0. To calculate the second
part of the cluster area, we must subtract the cluster areas
whose nodes’ distance from a CH is less than d/2.

The second part of each cluster area can be calculated by

E

 ∑
node∈cluster(j)

d2toCH

 =

2πλCM

∫ ∞
R1

r3.P {(r, j) ∈ cluster(j)} dr

(8)

In the above expression, R1 can be calculated as follows

πR2
1 = kπ(

d

2
)2 ⇒ R1 = (

d

2
)
√
k (9)

Using (7) and (8), the first and second parts of each cluster
area can be merged. Thus, the expected summation of square
of each CM from its CH can be obtained from following
expression:

E

 ∑
node∈cluster(j)

d2toCH

 = 2πλCM .[∫ d/2

0

r3dr +

∫ ∞
( d2 )∗

√
k

r3.exp
{
−λCHπr2

}
dr

] (10)

In Figure 3, the inner circle shows the first part of each
cluster in which P {(r, j) ∈ cluster(j)} = 1. The area be-
tween inner and outer circles, demonstrates the first part of
other clusters in which P {(r, j) ∈ cluster(j)} = 0. The area
beyond the outer circle, shows the second part of current
cluster in which P {(r, j) ∈ cluster(j)} = exp

{
−λCHπr2

}
.

The accuracy of the proposed analytical model for ANCH
is evaluated in the next section.

V. MODEL VALIDATION

The accuracy of the described analytical model has been
verified by comparing it with simulation results. Extensive
validation experiments have been performed for several com-
binations of cluster size, network dimension, different values
of closeness, density of sensors in the network, and the number
of messages which are sent from CMs to their CHs during the

Fig. 3: An example of the first and second parts of cluster
areas defined in the analytical model for ANCH.

steady phase, called MNumbers. In order to select parameter a,
different values including a = 0.02, 0.05, 0.15, 0.25, ..., 0.75
have been considered and the most effective value has been
selected. Each simulation scenario is run for 100 different
randomly generated topologies and the average results are pre-
sented. In our experiments, the sensors’ inner computational
procedures do not consume energy: all of their energy used
for message passing only. The energy model in all of our
experiments is precisely the same as the one employed in [6].

As the first experiment, the effects of varying the number of
clusters on the accuracy of our proposed model is compared
against the results obtained from simulation. The network area
is considered to be 50×50 square metres when base station
is 100 metres away from the network’s edge. Moreover, d =
15 metres and the initial energy of each node is 10 J. Finally,
the number of clusters in this experiment varies from 4 to 15
clusters. The result is presented in Figure 4. In this figure,
the horizontal axis shows the number of clusters where the
vertical axis represents the total consumed energy. Figure 4
shows the accuracy of our model for three different networks
with different number of nodes, N = 50, 100, and 200, when
MNumber is considered to be 25. 96.3% accuracy in Figure 4
shows that the simulation results closely match those predicted
by the analytical model.

In the second experiment, we aim at observing the impact
of network size on our analytical model. Different network
dimensions from 10 to 100 metres are examined while the
value of d is 30% of one dimension. Moreover, the initial
energy of each node is 10 J and the number of clusters, k, is 5.
These are depicted in Figure 5, highlighting that the proposed
model on average presents an accuracy of 95.4%. Figure 5
shows the accuracy of our model for three different networks
with different number of nodes, N = 50, 100, and 200, when
MNumber is considered to be 25.

In the third experiment, we aim at observing the impact
of closeness parameter, d, on our analytical model. Different
closeness values from 5 to 25 metres are examined where
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Fig. 4: Accuracy of the model comparing against simulation
results varying number of clusters for three networks with
different number of nodes, N=50, 100, and 200.

Fig. 5: Accuracy of the model comparing against simulation
results varying network dimension for three networks with
different number of nodes, N=50, 100, and 200.

the network area is considered to be 50×50 square metres
and base station is 100 metres away from the network’s
edge. Moreover, the initial energy of each node is 10 J and
the number of clusters is 5. This is depicted in Figure 6,
highlighting very close agreement between the model and
simulation in this figure, 95.8 similarities on average. Figure 6
demonstrates the accuracy of the proposed model for three
different networks with different number of nodes, N = 50,
100, and 200, when MNumber is considered to be 25.

In the fourth experiment, we aim at observing the impact of
network density on our analytical model. In this experiment,
different number of sensors, from 40 to 500, are examined.
Moreover, the network area is 50×50 square metres when base
station is 100 metres away from the network’s edge, d=15
metres, the initial energy of each node is 10 J, and the number
of clusters is 5. The results are presented in Figure 7 for three
different configurations, MNumber = 25, 50, and 100.

Fig. 6: Accuracy of the model comparing against simulation
results varying parameter d for three networks with different
number of nodes, N=50, 100, and 200.

Fig. 7: Accuracy of the model comparing against simulation
results for three values of MNumber, MNumber = 25, 50, and
100 messages per round.

These results show a close agreement, an accuracy of
95.4% on average, between the proposed model and simulation
results.

Finally, in the last experiment, we aim at observing the
impact of steady phase duration on our analytical model by
varying the number of MNumber from 5 to 1000 messages
per round. The network area is 50×50 square metres when
base station is 100 metres away from the network’s edge, d=15
metres, the initial energy of each node is 10 J, and the number
of clusters is 5. In Figure 8, the comparison of the model and
simulation results for three different networks with N = 50,
100, and 200 nodes are presented, approving 95.6% accuracy
on average.

Overall, our extensive validation study show the credible
accuracy of our proposed analytical model to predict the total
energy spent by the ANCH algorithm.

Using the proposed model, a number of implications have
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Fig. 8: Accuracy of the model comparing against simulation
results for three networks with different number of nodes,
N=50, 100, and 200.

been revealed. First, the energy consumed by the ANCH
algorithm is almost insensitive to the optimum number of
clusters, k, proposed by the LEACH algorithm. This is due
to the important role of add-on coefficient, a, to balance the
energy consumption of each cluster. By increasing the value
of k, the optimum value of a is also increased to protect the
network from forming a large number of clusters with smaller
number of nodes in each cluster and hence to avoid wasting
energy. Respectively, the optimum value of a is also decreased
to block the negative effects of smaller number of clusters.

In the same way, the energy consumed by the ANCH
algorithm is almost insensitive to closeness parameter. This
is again due to the balancing role of add-on coefficient, a. By
increasing the value of closeness parameter, the optimum value
of a is also increased to increase the number of potential CHs
to avoid smaller number of clusters. It also prevents forming
large number of clusters when the closeness value is decreased.

VI. CONCLUSION

ANCH is a distributed energy-efficient clustering algorithm
proposed for wireless sensor networks. ANCH prolongs the
network lifetime by uniformly distributing of CHs across the
network. In this paper, we have presented an analytical model
for ANCH to show the effects of different parameters and
to predict overall energy consumption under various network
conditions. Our extensive validation study has demonstrated
a reasonable degree of accuracy achieved by our analytical
model compared with the results of a simulation software.
The proposed analytical model has also revealed that energy
consumption of the ANCH algorithm is almost insensitive
to the number of clusters and closeness parameter due to
the balancing role of add-on coefficient to optimise the total
energy consumption of clusters.
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