ICN 2014 : The Thirteenth International Conference on Networks

Comparing Network Traffic Probes based on CommodityHardware

Luis Zabal&®, Alberto Pined¥, Armando Ferr®, Daniel Fernandé?

WDepartment of Communications Engineering, Univgrsftthe Basque Country (UPV/EHU), Bilbao, Spain
@stochastic and Operations Research — Networks (NEASque Center for Applied Mathematics (BCAM) Hib, Spain

Emails: {luis.zabala, alberto.pineda, armando.fe@ehu.es

Emails: {Izabala, dfernandez}@bcamath.org

Abstract—Due to the fact that, nowadays, it is possible to
capture traffic in 1-10 Gigabit Ethernet networks using
commodity hardware, many traffic monitoring systems and
especially capturing tools, have been proposed irecent years.
This paper presents a comparison between two softwea
probes named Adviser and Ksensor. Both of them arenulti-
processor systems and are built over conventionalahdware.
However, while Adviser is designed in user space, sknsor
runs in kernel space. This work compares the perfanance
results of the two probes considering several capte engines
(NAPI, PF_RING with DNA, PFQ) and, at the same time
different application or analysis loads. The evalugons of the
probes with the different settings have been perfoned on the
same hardware multi-core configuration. The resultsof the
evaluations let conclude which solution is better ni each
situation and which solution must be discarded.

Ksensor; Adviser;

Keywords-packet capturing; NAPI,

PF_RING; PFQ

. INTRODUCTION

Nowadays, network traffic capturing and analyzing
systems are becoming increasingly relevant. Differe
applications can be related to these traffic mainitp
systems, for example, network antiviruses, Quality
Service monitoring, intrusion detection systemsffit
classification and balancing. They can also
administrators in network troubleshooting. As tipeed of
the network links increases, the performance requents
on the monitoring systems are more severe. Inqudati, in
multi-Gigabit environments, overload situations ¢eppen,
reaching the system
occupation, CPU usage, system bus throughput, awvithdh
negative impact on the accuracy of the monitorin
application. Therefore, as far as possible, unrsscgs
consumption of available resources must be avoided.

The packet capturing stage is an essential comparien
the traffic monitoring system. The evolution of coodity
hardware has made possible the capture of netwaifictto
be a feasible task over high-speed networks, witlhiging
any neither specific nor expensive hardware [1]is My,
several research works [2][3][4] have arisen foduse the
development of analysis systems that are abledoegs all
the information carried by actual networks. Amotngrh,
our research group of the UPV/EHU, called Network,
Quality and Security (NQaS), is working on software

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

limitations in terms of memory

solution proposals for traffic analysis systems ronmulti-
processor architectures.

Two traffic probes have been developed by NQaSyThe
are generic and flexible, and they allow doing &pe of
analysis on the captured traffic. Due to the fdwit tthe
monitoring application is over a multi-processoatfarm,
the analysis can be done concurrently, obtaininbig
performance. This paper presents a comparison batwe
those two probes which have different view of design
the one hand, Adviser is a generic multi-processor
architecture which has been built in user spads,pbrtable
and it can make use of different capturing systedrs.the
other hand, Ksensor is a kernel-space framewonkhith
the processing modules have been migrated fromleselr
to the kernel of the operating system.

Many capturing tools and comparisons have made
available in the literature. However, most of them not
asses how the packet capture is affected undeereliff
analysis or application loads. This work comparés t
performance results of the probes Adviser and Ksens
considering different capture engines and, at #mestime,
different analysis loads as will be seen below.

The rest of the paper is organized as follows. datiSn
Il, a brief explanation about related work is inlnged. In
Section Ill, we describe the network traffic prolikat will
be compared later. Section IV presents the testpstdr

heIpevaluating the performance of the traffic analysjistems.

Section V shows the results of our measurementallf
Section VI remarks the conclusions.
II. RELATED WORK

The improvement of packet capturing capabilitieshwi
commodity hardware has been an extensively covered

Yesearch topic. Hardware and software solutions Hseen

proposed.

Among the most recent software solutions, it
remarkable Luca Deri’'s numerous contributions witkte
project ntop [2]. In this project, an open sourtatfprm has
been developed to monitor traffic in high speedwets and
it has given rise to interesting works such as {Bhich
presents the network socket PF_RING, [6], in whi€lap, a
proposal based on commercial network cards wasopes)
and [7], which deals with aspects related to thekeia
parallel processing in multi-core platforms, asIves with

is

the driver called Threaded New API (TNAPI), whickes a

multiqueue structure. The same research group lsas a

261

ICN 2014 : The Thirteenth International Conference on Networks

presented the framework VPFRING for capturing ptcke
virtual machines running on commaodity hardware [8].

The project Ringmap [3] has certain similaritiesthwi
ntop, since it also proposes to improve the perémee of
packet capture removing some packet copy operatods
mapping the Direct Memory Access (DMA) buffer intwe
user space. Ringmap works with FreeBSD operatisteny,
while ntop works with Linux. Another approach prspd to
speed up the packet capturing capability is Netfdaprhis
is a BSD based project which integrates in the saiteeface
a number of modified drivers mapping the NIC traitsand
receive buffers directly into user space. [9] prsgma packet
capturing engine with multi-core commodity hardware
named PFQ, which allows parallel packet capturimghe
kernel and, at the same time, to split and balathee
captured packets across a user-defined set of raaptu
sockets. Even, there have been various works [[[J1Pin
recent years looking at evaluating existing paatagiture
techniques. In particular, [11] evaluates and coepa
different capture solutions for Linux and FreeBSiz@ting
systems. The evaluation shows that FreeBSD outpesfo
standard Linux PF_PACKET, Linux with PF_RING

Configuration

Offline
proccesing
module

— " | Testresultfiles

Adviser

[~ Memory Functions |

Periodic Periodic action manager <— !
| "l actions | —
Parser M Decision —

‘\.ﬂ agica/ —
| Analysis engine =
, Variable —

User 1 e
level ‘ — I—

Kernel
level

Kernel with SMP

Network traffic

Figure 1. Adviser framework.

The traffic capturing system is in the kernel with
Symmetric Multi-Processing (SMP). As Adviser can be
configured with different capturing systems, in ardo
obtain Adviser's performance results with different

performs better than PF_PACKET and even better thafionfigurations, we have integrated three captusystems

FreeBSD if multiple capturing processes are runtlom
system. Another option analyzed is TNAPI, whichiachs
the best performance when it is combined with PRGRI

[ll. DESCRIPTION OF THESOFTWAREPROBES

As mentioned before, the performance of two soféwar
probes will be compared in this paper. The first,amamed
Adviser, is a user-level traffic probe, i.e., itshgot the
common structure with the analysis or monitoring
application in user space and the capturing stageesinel
space. Adviser admits different configurations ftire
capturing as will be explained later. The seconoberis
called Ksensor and it is an entirely kernel-levedbe. Both
of them capture and analyze traffic in Gigabit Etie¢
networks.

A. Adviser. The User-Level Framework

Adviser [12] is a multi-processor architecture alde
capture network traffic and analyze it applying ioal
complex algorithm. Since the architecture is bailttop of
the operating system, it is portable to severatesys. Fig. 1
shows the block diagram of Adviser framework. Itrke
essentially as follows.

First, the system parser interprets the configonafiles
and stores system logic in memory. Then, analysgne
processes captured packet from the network acaptdithe
logic stored in memory. After applying the ruldse tengine
stores the results of the analysis. Finally, offliprocessing
module takes these results from memory and harttlies
information to provide traffic statistics or repsrt

There is also a module called periodic action manag
which supports dynamic activation or deactivatidrrides,
modification of period time, etc.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

into Adviser, as follows.

1) Adviser’s capturing system with NAPI and LibPcap

This first setting uses the network subsystem arficsrd
GNU/Linux. It is New API (NAPI) [13] from kernel ysions
higher than 2.4. The link between the Linux netvirmgk
subsystem and the user-space application Adviser
established by using the library LibPcap [14]. Asn dbe
observed in Fig. 2a, the application Adviser repdskets
from the socket queue through Libpcap. Once Adigser
analysis engine receives the packet, it is decadat the
analysis logic is applied to it.

2) Adviser’s capturing system with PF_RING

In order to reduce the number of copies from theneat
that the packet arrives to the capture system untis
delivered to the application, we set out the usPBfRING
[3] as capturing system in Adviser. In this poititere are
different options for doing the integration. Onetloém is the
use of PF_RING with LibPcap and a PF_RING aware NIC
driver. However, there is another one which prosiddetter
performance and, for this reason, we select it for
implementing. It is the integration of PF_RING withe
driver Direct NIC Access (DNA) [2] into Adviser, wdh
allows to map NIC memory and registers to the ggace.
This way, packet copy from the NIC to the DMA riig
done by the NIC Network Process Unit and not by NAP
resulting in better line-rate captures. Fig. 2bvehddviser
with PF_RING DNA.

Some adaptation modules are needed to integrate
PF_RING into Adviser. First, a new module is resgpbie
for managing the operations of PF_RING, such as the
creation of the capturing ring and the interactioith the
network interface to set filtering rules or workingpdes.

is

262

ICN 2014 : The Thirteenth International Conference on Networks

[Adviser J Adviser [Adviser J
Lﬂﬁﬁ“ﬁ_l_] [~PFQ add-on]

|
(¥ ILibpfg
User [{} Libpfring } User

level level Socket Socket Socket
—geue — —guete | —queue —

Kernel Kernel
"> -7
level level == —— !

u NIC Memory "
Packet steering block

Batching
Fetcher gueles

* * ¥

(A NP |]
e
2N [NIC driver }

NIC - ‘ @ NIC - ‘ (@ @ HW Multiqueue NIC . @

@) (b) (c)

Figure 2. Adviser capturing packets (a) with NAPI and LibP¢hpwith PF_RING (c) with PFQ.

Once the capturing ring is created, a socket ibleda tools provided by Libpfg [16], a PFQ add-on is teeain
the packet capturing starts and the applicatiomsxto the Adviser. This access from Adviser to PFQ is based o
ring through the socket. When the packet is cagture threads.

PF_RING places its contain in a data structure wHosmat
is different from the one used by LibPcap. For,thisnew
module fits the format and the sizes of those datactures B KSensor. The Kernel-Level Framework

so that Adviser receives the data properly to lweded. Ksensor [17] is a kernel-level multi-processor nong

The last adaptation is related to the concurregstesn. ~ System for high speed networks which uses commodity
Due to the design of PF_RING, the integration ofviadr hardware. Its design (see Fig. 3) is based on theation of
and PF_RING has to be based on threads, instead @fe processing modules from user-level to the keshehe
processes. For this reason, a new module is regperier ~ operating system. Only system configuration (Paraed
creating and managing threads to set an accesektmthe result management (Offline Processing Module) mesiul
critical sections. The library Libpfring provides aontrol ~ remain at user-level.

mechanism called spinlock, which allows one thréad First, the system parser interprets the configomafiles
access to the protected code, while the rest othilemds are and stores system logic in memory. Then, analysgine
blocked in an active-standby process. processes captured packet from the network acapidithe

3) Adviser's capturing system with PFQ logic stored in memory. After applying the ruldse tengine

PFQ [15] is a network-capture engine designed Hier t Stores the results of the analysis. Finally, offlprocessing
Linux kernel 3.x and modern 64-bit architectures.is Module takes these results from memory and harttles
optimized for multi-core processors, as well asrfetwork information to provide traffic statistics or repart
devices supporting multiple hardware queues.

Adviser with PFQ is depicted in Fig. 2¢c. PFQ cotsstf 3 ot)) N
the following components: the fetcher, the packetrng § %W ﬁ
g _

block and socket queues [9]. The fetcher dequédngepacket

directly from the driver, which can be a standariget or a -— —{ Driver - —

\
patched “aware” driver, and inserts it into the cbaig T } T T : i |
gueue. The next stage is represented by the patdeing 2| [— <= | |
block, which is in charge of selecting which sockeeds to g } O anatien) Processing| <= |Capturing| }
receive the packet. The final component is the asbgkeue, € (ég <j> engine | | engine | |
which represents the interface between user spat&eanel | & | |
space. Every kernel processing (from the receptibthe K L
packet up to its copy into the socket queue) isigzhrout Lotz fos b e e ——[-!
within the NAPI context; the last processing staige @M
performed by Adviser at user space. ‘ I
As in the case of PF_RING, an adaptation is necgssa Nefwork fraffic

for the integration of Adviser with PFQ. To do thising the

Figure 3. Ksensor framework.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6 263

ICN 2014 : The Thirteenth International Conference on Networks

Packet queue ‘[

Processing — P Processing
Nl

(ksensord#1) o (ksensord#2) :

I

Capturing * |

softirqd#1) A |

ksensor

(k
T, s]
K

ernel networking subsystem]

Management
hetwdt .
1
H

=

=

Manager Injector Sensor Receiver

Driver NIC 1 Driver NIC n ;@i

(Network traffic 0 X X
\ Figure 5. Network infrastructure to test the probes.

Figure 4. Execution instances in Ksensor with two procesaatsone o L i .
NIC. The injector is in charge of generating synthegtwork

traffic in order to simulate traffic load in the tn@rk. In

There are defined as many analyzing kernel threadsrder to do that, this machine has an Endace DAGHE.
(ksensord#n in Fig. 4) as the number of processorthe card that allows injecting traffic rates up to 1pSbThe
hardware. Each thread belongs to an executionniostaf machine has got two processors Intel Xeon 51106ét GHz
the system (capture and analysis). All threads esharand 2 GB of RAM memory. It runs a Debian GNU/Linux.
information through the kernel memory. In the machine called Sensor run all the probes Th

Regarding the capture, it is based on the kernedifferent implementations of Adviser are made usiag
networking subsystem, i.e., NAPI. There are as manyebian 7 with a kernel Linux 2.6.35. On the othendh
capturing instances (ksoftirqd#n in Fig. 4) as gdpg NICs Ksensor is a modification of the kernel Linux 25Rith a
(IRQ affinity). A single packet queue is shared djythe kernel module that implements the analysis taskse T
analyzing instances (see Fig. 4). machine has got two processors Intel Quad Xeon 542%

In order to prevent livelock situations at high ketc GHz with 4 GB of RAM memory. Each processor has got
arrival rates, there is a congestion avoidance emsm. It four cores.
also prevents Ksensor from wasting resources ircdipeure The receiver machine is the one that should rectige
of packets that the system will not be able to essclater. traffic. It is only used for extracting statistics.
When the packet queue reaches a maximum number of These three machines, in order to configure thdiéahp
packets, this mechanism forces NAPI to stop capguri software and to collect the statistics, run an aiged several
packets. This means that all the resources of @l t daemons of the testing architecture.
processors are dedicated to analyzing instancegn\te
number of packets in the packet queue reaches el fix

B. Test Parameters

threshold value the system starts capturing again. In order to test each probe, some tests have hefared.
Each test has got different configuration paranseiteiorder
IV. TESTSETUP FORCOMPARING THEPROBES to test the probes in different situations.

The tests done in order to compare the probesame v . The parameters t_hat can be configured are packet si
important. Firstly, in order to automate the testsoftware INiection rate, analysis load, number of CPU cared test
architecture has been designed and implemented QSN duration. , o _ _ ,
research group. This architecture configures tisésteuns The analysis load is simulated implementing difiére

them and gathers the results automatically. Itistsisf four ~100PS that take different number of loops. In taper, the
types of logical elements: manager, agents, daemen results shown are made with 1000 processing looms a

formatters. 25000 processing loops of analysis load.
_ Each test takes four minutes and it is made wighsdme
A. Software and Hardware Details traffic rate, packet size (54 bytes), analysis laad number

The real environment where the different probesehavOf cores. A battery of tests is a group of testh whe same
been tested can be seen in Fig. 5. There are tvoories. ~ configuration parameters but the traffic rate thateases for
One is called management network and it is usedending ~ €ach test from 50.000 packets per second up td.DG0
the configuration commands from the manager toatients Packets per second (1 Gbps with the fixed packe) si

and the statistics of the test from the agentfi¢omanager. There are tests for one, two, and four CPU corée T
The other one is called capturing network and itsed for ~machine used for running the probes in the testgbatwo
testing the probes. quad core processors. In the tests with two ctinese is one
The machine called manager is the interface betieen Core running in each processor. On the other hanthe
testing architecture and the administrator. tests with four cores, there are two cores runnimgach
processor.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6 264

ICN 2014 : The Thirteenth International Conference on Networks

V. TESTRESULTS ANDDISCUSSION

In order to test the probes, three test battere® fbeen
done for each analysis load and for each probe veitid
different number of CPU cores. Each battery is cosep of
21 tests of four minutes. Each test is done affardnt rate.

Each graph in Fig. 6 shows the analysis througliqut
the three probes with 1000 loops of analysis loadiafixed
number of CPU cores. In Fig. 7, it can be seeneadnh

Analysis throughput with 1000 loops
a0

500,000

400000

Analysis throughput with 1000 loops

graph, the results for the three probes testedis gaper
with 25000 loops of analysis and a fixed humberCeftU
cores. The graphs in both figures show the analysis
throughput, that is, the throughput of the probpaokets per
second. They have three series of data, one for@abe.

On the other hand, Fig. 8 and Fig. 9 show the captu
throughput for the three probes with 1000 and 25000Qs
of analysis load and a fixed number of CPU cores.

Analisys throughput with 1000 loops

I o
2 : — _
S &
£ 200000 - J—
100000 / \ 10000 100000
100.000 300.00 000 700,000 00000 L0000 1300.000 1"‘7”‘7“7 0 100,000 300,000 500,000 700,000 900.000 1100000 1300000 1500.000 ¢ nDJm 330000 500.000 700,000 900,000 1.100.000 nmmo 1smam
00000 60000 8000 X000 1300060 140003 0 200000 400000 600000 800000 1000.000 1200000 140,000 o 40000 600000 BODOCD 100000 1200.000
Network data rate (pps) Network data rate (pps) Network data rate (pps)
@ ®) (©
Figure 6. Comparison of analysis throughput with 1000 looparalysis load. (a) With 1 CPU core. (b) With 2WC€ores. (c) With 4 CPU cores.
Analysis throughput with 25000 loops Analysis throughput with 25000 loops Analysis throughput with 25000 loops
- - wow
- o -
- - o
- £ \«_ H i
£ oo E ao VA £ a0
¥
10.000 N 10.000 10.000
o ,
100.000 300,000 sm)am nbam 930000 nJDam nJDwD 1530000 100,000 300,000 500.000 700.000 900.000 1.300.000 1.500.000 100.000 300,000 500,000 700.000 0000 L1000 & 1300000 & 1800.000
o 200000 400.000 800. 1000. o 200.000 400,000 600,000 800,000 mmﬂm mm)ﬂm 1.400.000 o 200,000 400.000 600,000 800000 1000000 1200000 1400000
Network data rate (pps) Network data rate (pps) Network data rate (pps)
(@ ®) ©
Figure 7. Comparison of analysis throughput with 25000 loopanalysis load. (a) With 1 CPU core. (b) With R\Ccores. (c) With 4 CPU cores.
Capture throughput with 1000 loops Capture throughput with 1000 loops Capture throughput with 1000 loops
1500000 1500000
1400000 1400000 1400000
1300000 1300000
o - oo
- -
o oo o
7 oo 7 owoo H
E won £ oo [
£ om0 Z oo i
2 oo S oo B oo
£ so0 E sooo0 £
oo o oo
o om0
0w om0 a0
——— w0
.
100000 300000 500000 700000 900000 L0000 1300000 1500000 100000 300000 500000 700000 900000 1100000 1300000 1500000 100000 300000 500000 700000 900000 1100000 1300000 1500000
200000 400000 600000 800000 1000000 1200000 1400000 200000 400000 600000 800000 1000000 1200000 1400000 o 200000 400000 600000 800000 1000000 1200000 1400000
Network data rate (pps) Network data rate (pps) Network data rate (pps)
(@ o) ©
Figure 8. Comparison of capture throughput with 1000 looparadlysis load. (a) With 1 CPU core. (b) With 2 C&ddes. (c) With 4 CPU cores.
Capture throughput with 25000 loops Capture throughput with 25000 loops Capture throughput with 25000 loops
—-— — —-—
oo o owon
oo swon owon
owon - oo
owen won oo
omen awon oo
& o g 5000 swom
£ oo £ s 2 so0000
2 oo 2 oo Ao 3. o000
g vl
3 sown 5 oo 5 wowo
£ somoo £ sooo0 £ s
o wwoo o
s oo -
o w0 -
oo o an
100000 300000 500000 700000 900000 1100000 1300000 1500000 o 100000 300000 500000 700000 900000 1100000 1300000 1500000 ¢ 100000 300000 500000 700000 900000 1100000 1300000 1500000
B T T T T L T T T T o ™ ™ ™ ™ e S Sk

Network data rate (pps)
(@

Network data rate (pps)
(0)

Network data rate (pps)
©

Figure 9. Comparison capture throughput with 25000 loopsnafyesis load. (a) With 1 CPU core. (b) With 2 CRies. (c) With 4 CPU cores.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

265

ICN 2014 : The Thirteenth International Conference on Networks

It is remarkable that all these tests are done Bdtlbyte
packets, the minimum sized ones that work in Ettern
networks. This means that, with a data rate of pGine
probes receive the maximum number of packets asiljjes
The system allocates its buffers taking into accotline
number of received packets and not the size of them

This paper shows results of two prototypes with idex
One of them uses Libpcap as interface to captuokeats,
while the other prototype uses PF_RING_DNA. It isrtlv
mentioning that the prototype with PF_RING DNA uses
threads in order to implement the analysis tasklenttie
prototype with Libpcap uses processes. We also sheults
from Ksensor, the kernel-level probe presentedrkefo

As we can see in Fig. 6-9, the prototype that Imas t
worst performance is Adviser with Libpcap. With oGeU
core it has a stable behavior. The analysis throuigls the
lowest one although the capture throughput is petmd
same as with PF_RING DNA, the highest one. Thiphap
because the capture processes have higher pribatythe
analysis ones. Besides, the packets are captutbdaWithe
infrastructure of the operating system. The paclats
disassembled and treated as normal packets. Beoaudle
this, the capture takes a lot of time.

capture terms. Moreover, the prototype with PF_RIDIGA
does not use CPU resources in order to captureefsasé all
the resources can be used to analyze them.

The comparison of the analysis throughput is natasy.
There is only one packet queue in both cases. Both
prototypes have implemented threads for the arsaly3o,
with more than one core there are many consumetheof
packet queue. There are many threads competimréss to
the queue.

The higher the analysis load is the fewer accesaest
be made to the packet queue. With high analysidsidhe
system analyzes fewer packets than with a lowetysisa
load. This means that, with a higher analysis ot
analysis threads make fewer accesses to the qoethere
are fewer concurrency problems.

If we compare the analysis throughput we can sat th
with 1000 loops of analysis, the performance of ri¢sg
with 2 cores is lower than the performance of thatqiype
with PF_RING DNA. On the other hand, with 4 cort®
performance of Ksensor is higher. With 25000 loabs
analysis, the performance of the prototype with RING
DNA is higher in both cases, with 2 and with 4 CBies.
One of the differences between 1000 and 25000 lsojhsit,

When the system is capturing packets the analysiwith 1000, there are more accesses to the queutheso

processes are slept and are not analyzing packetuse
there is only one CPU. Because the system takes time

analysis threads have to wait more time in ordetate a
packet. Both prototypes work with as many analjisisads

capturing packets and the capture processes have mas CPU cores.

priority than the analysis ones, there are moretucag
packets than analyzed ones. This means that thensyms
to drop packets without analyzing them so the amly
throughput is lower than the capture one. Thera lst of
CPU usage lost capturing packets that the systemtiable
to analyze. With more than one CPU core the behafio
Adviser with PCAP has the same problems that haenb
explained in the previous paragraph. Moreovergdtegn of
this prototype has not resolved well the multipssoe
execution. It has two problems. The first one iattthe
design is done with processes. The system can &xeoly
one process at a time so the system cannot execuethan
one analysis task at the same time although théysima
processes have affinity with one CPU core. The rco
problem is that there is only one packet queue tued
processes have to compete in order to take a paoketthe
gueue. Because of all this, the behavior of théderis not
very stable and the performance is not good.

Obviously, the performance of the analysis withhkig
analysis load is lower. The system takes more time
analysis per packet so it analyzes fewer packetsqoend.

Regarding Ksensor, its congestion avoidance meshmani
guarantees that all the packets that are captuecanalyzed.
Because of this, the capture throughput (see F&).éhd the
analysis throughput (see Fig. 6-7) are the same.

Ksensor has a better design for the multiple aesets
the packet queue with more than one thread ataime sime
but PF_RING DNA has a better performance in packet
capture. With 1000 loops there are many accessedketo
queue but the performance in analysis of Adviseth wi
PF_RING DNA is higher with one and two CPU corest B
with four cores the performance of Ksensor is high¥ith
one and two cores the performance of the captufalviser
with PF_RING DNA makes the analysis performancééig
but with four cores the low performance in multipkress of
the prototype Adviser makes the analysis performalne
low. With 25000 loops there are fewer accessebdatieue
so there are not as many problems as before with th
multiple accesses to the queue.

Obviously, with more CPU cores the performancehef t
probes is higher.

VI.

This work sets out to evaluate two software prdizesed
on commodity hardware under different configuragio®n
the one hand, Adviser, a user-level framework vilieated
with several current capturing systems (NAPI withRcap,
PF_RING with DNA, PFQ) and several analysis loads
(1000, 25000 processing loops). On the other hidsensor,
a kernel-level framework, uses NAPI in the capiyritage

CONCLUSIONS

On the other hand, we can observe in Fig. 8-9 thaind it is tested for different analysis loads (1@®@ 25000

PF_RING DNA captures all the packets that are darthis
case, the CPU does not execute anything becaudRIRG _
DNA works with memory mapping.

If we compare the capture throughput of Adviserhwit
PF_RING DNA and the capture throughput of Ksenaar,

processing loops too). It is worth mentioning tladit the
evaluations have been performed on the same hadwar
platform. It has got two quad core processors. Wihdgs
configured with one or two cores it uses one coee p
processor, but with more than two cores it hass® more

can see that PF_RING DNA has a better performamce than one core per processor. It is also remarkablese of a

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

266

ICN 2014 : The Thirteenth International Conference on Networks

testing architecture which configures the testssthem and
gathers the results automatically.

The results indicate that Adviser with NAPI-Pcamad a
good solution. Its behavior is not predictable aitsl
performance is lower than the performance of theerot
probes. With low analysis load, the performancédv¥iser
with PF_RING-DNA with four cores is lower than the
performance of Ksensor and, even, the performarfce
Adviser with PF_RING and DNA and two cores. Witlgthi
analysis load, the performance of Adviser with PRN®&
DNA is higher than the performance of Ksensor.

All these results have their corresponding expianat [2]
The numerous copies in the capturing process aed th3]
absence of a congestion control mechanism betwken t
capturing and the analysis stage are the main measothe
unstable behavior of Adviser with NAPI-Pcap. Howeve [4]
Adviser with PF_RING-DNA provides a higher perfomma
due to the improvement that it offers in the captstage,
although there could be concurrency problems. We ar
referring to the problems between the capturing amalysis
instances when both of them try to access the gmuket
queue. Finally, Ksensor does not provide a capuriné]
performance as good as PF_RING-DNA, but it incoapes
elements of control to solve concurrency probleasswell
as a congestion control mechanism. For this reasoder
certain circumstances (for instance, the case ©PY cores
with 1000 loops analysis load), Ksensor can offdretter
performance than PF_RING-DNA. 8]

As a future work we plan to migrate the prototype
Ksensor to a recent Linux version in order to talleantage
of the improvements that this recent kernel offéms

el

[5]

capturing performance. In this way, the adaptatiérthe [°
probe to the Generic Receive Offload (GRO) and Rece
Packet Steering (RPS) techniques, which are indlude
recent kernel versions, can bring benefits for system [1q
performance. On the one hand, GRO implies to chamge
processing of the packets in the capturing stageytuping
packets which belong to the same flow. On the otfaerd, [11]
RPS proposes to increase the number of packet subye
having one packet queue for each processor ancehyirgy a
NAPI virtual interface for each processor. Thislilply to [12]
reduce the concurrency problems between the cagtand
the analysis instances.

As explained in Section IIl, PFQ has been integkatéo
Adviser. This has been validated by using a corneeat
NIC (in particular, the model Intel 82574L) and tlesults [13]
obtained have been similar to native PF_RING (witho
DNA). But PFQ needs a multiqueue NIC in order teaob 4!
an optimal performance. As the test scenario desdrin [15]
Section IV does not have any NIC of this type, Adviwith
PFQ has not been tested under the optimal conditiar [16]
this reason, there is not any result of PFQ inctiraparison [17]

of Section V. In the future, we plan to obtain altiqueue
NIC to test Adviser with PFQ properly.

Finally, we want to mention that, once the mignataf
Ksensor is completed, we also plan to make a neyusg]
comparison among the new Ksensor, Adviser with
PF_RING-DNA and Adviser with PFQ

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ACKNOWLEDGMENT

We gratefully acknowledge support from the Basque
Government funding
SAIOTEK 2012 initiative in the scope of which thiesearch
work has been conducted.

the VMAT project within the

REFERENCES

F. Schneider, “Packet capturing with contemporasydivare

in 10 Gigabit Ethernet environments," Proc. Passiwel
Active Measurement Conference (PAM 2007), Springer-
Verlag Berlin Heidelberg, Apr. 2007, pp. 207-217.

ntop project, http://www.ntop.org, 14.10.2013.

A. Fiveg, “Ringmap capturing stack for high perfeamse
packet capturing”, http://wiki.freebsd.org/Alexap#iveg,
Sept. 2010.

L. Rizzo, “Netmap: a novel framework for fast pack®,”
Proc. 2012 USENIX Annual Technical Conference, UBEN
Association, Jun. 2012, pp. 9-20.

L. Deri, “Improving passive packet capture: beyahelice
polling,” Proc. 4th International System Adminisiom and
Network Engineering Conference (SANE), vol. 2004:t.0
2004, pp. 85-93.

L. Deri, “nCap: Wire-speed packet capture and trassion,”
IEEE/IFIP Workshop on End-to-End Monitoring Techunég
and Services (E2EMON), IEEE, May. 2005, pp. 47-55.

F. Fusco and L. Deri, “High speed network trafficabysis
with commodity multi-core systems,” Proc. Internet
Measurement Conference (IMC 2010), ACM, Nov. 204,
218-224.

A. Cardigliano, L. Deri, J. Gasparakis, and F. Busc
“vPF_RING: Towards wire-speed network monitoringngs
virtual machines,” Proc. Internet Measurement Crarfee
(IMC 2011), ACM, Nov. 2011, pp. 533-548.

N. Bonelli, A. Di Pietro, S. Giordano, and G. Ps®ij “On
multi-Gigabit packet capturing with multi-core corodity
hardware,” Proc. 13th Passive and Active Measurémen
Conference (PAM), Springer, Mar. 2012, pp. 64—73.

T. Mrazek and J. Vykopal, “Packet capture benchnuarkl
GE”, CESNET technical report 22/2008,
http://www.cesnet.cz, Dec. 2008.

L. Braun, A. Didebulidze, A. Kammenhuber, and Grl€a
“Comparing and improving current packet capturinugons
based on commodity hardware,” Proc. Internet Mesament
Conference (IMC 2010), ACM, Nov. 2010, pp. 206-217.

A. Ferro, F. Liberal, A. Mufioz, I. Delgado, and Beaumont,
“Software architecture based on multiprocessorfqiat to
apply complex intrusion detection techniques”, Pra605
IEEE International Carnahan Conference on Security
Technology (CCST'05), IEEE, Oct. 2005, pp. 287-290.

C. Benvenuti, Understanding Linux Network Internals
O'Reilly Media, 2005.

LibPcap, http://www.tcpdump.org, 14.10.2013.

PFQ Homepage, http:// netserv.iet.unipi.it/softwsiicg
14.10.2013.

PFQ: Accelerated packet capture engine for multco
architectures, http://pfq.github.com/PFQ, 14.10201

A. Munoz, A. Ferro, F. Liberal, and J. Lopez, “Arkel-level
monitor over multiprocessor architectures for high-
performance network analysis with commodity hardwar
Proc. SensorComm 2007, IEEE, Oct. 2007, pp. 457-462

A. Pineda, L. Zabala, and A. Ferro, “Network arebitire to
automatically test traffic monitoring systems,” Pro
Mosharaka Int. Conference on Communications anahabig
Processing (MIC-CSP2012), Academy, Apr. 2012, 8923.

267

