
Link Emulation on the Data Link Layer in a
Linux-based Future Internet Testbed Environment

Martin Becke, Thomas Dreibholz, Erwin P. Rathgeb
University of Duisburg-Essen

Institute for Experimental Mathematics
Ellernstrasse 29, 45326 Essen, Germany

{martin.becke,dreibh,rathgeb}@iem.uni-due.de

Johannes Formann
University of Duisburg-Essen

Institute for Computer Science
Schützenbahn 70, 45117 Essen, Germany

jformann@dc.uni-due.de

Abstract—Protocol design and development is not a straight-
forward process. Each approach must be validated for inter-
actions and side-effects in the existing network environments.
But the Internet itself is not a good test environment, since its
components are not controllable and certain problem situations
(like congestion or error conditions) are difficult to reproduce.
Various testbeds have been built up to fill this gap. Most of these
testbeds also support link emulation, i.e. using software to mimic
the characteristic behaviour of certain kinds of network links
(like bandwidth bottlenecks or error-prone radio transmissions).
The most popular link emulation systems are the Linux-based
NETEM and DUMMYNET, which are e.g. applied on the IP layer
of Planet-Lab and various other testbeds. However, the restriction
to the OSI Network Layer (here: IP) is insufficient to test new
non-IP Future Internet protocols.

In this paper, we first introduce DUMMYNET and NETEM.
After that, we will present our approach of adapting DUMMYNET
for Linux to support link emulation on the Data Link Layer.
Finally, we evaluate the applicability and performance of DUM-
MYNET and NETEM for link emulation on the Data Link Layer,
in a Planet-Lab-based testbed environment. Our goal is to outline
the performance and limitations of both approaches in the context
of Planet-Lab-based testbeds, in order to make them applicable
for the evaluation of non-IP Future Internet protocols.1

Keywords: Link Emulation, Data Link Layer, Future Internet
Testbed, NETEM, DUMMYNET

I. INTRODUCTION

The protocol development for the current Internet bases on a
strictly hierarchical structure, which has been standardized as
the OSI reference model [1]. This model covers classic Internet
applications like e-mail and file transfer quite well. However,
the rapid technological developments driven by the needs of
new applications (e.g. mobility, e-commerce, VoIP) show the
conceptual limitations of this approach. Solutions like cross-
layer optimization weaken the hierarchical structure and make
the resulting protocol implementations difficult to develop and
maintain. This makes the realization and deployment of new
features and protocols, e.g. multipath TCP [2], difficult. On
the other hand, clean-slate service-oriented frameworks try
to solve such conceptual issues by completely getting rid of
the hierarchical structure. Multiple large research projects like
FIRE and G-Lab in Europe, GENI and FIND in the U.S.A.
and AKARI in Asia examine such approaches.

1Parts of this work have been funded by the German Federal Ministry of
Education and Research (Bundesministerium für Bildung und Forschung) and
the German Research Foundation (Deutsche Forschungsgemeinschaft)

In every case, protocol design and development is more
than a theoretical procedure. Over the years, protocol and net-
work developers strike new paths to validate their approaches
and concepts. Long-term experience shows that protocol de-
velopment involves several more steps besides requirement
formulation, specification, verification and documentation. In
particular, it also includes the test of implementation and con-
formance as well as analysing and optimizing the performance
for special applications and architectures. This requires the
integration of the new ideas and approaches into real hardware,
emulation and also into simulation testbed environments. That
is, each new approach and proof of concept needs an adequate
testbed. But each research community has its own specific
requirements on its testbeds, resulting in many different vari-
ants. Examples of such testbeds are Emulab [3], VINI [4],
One-Lab [5], G-Lab [6] and Planet-Lab [7].

Link emulation (i.e. using software to e.g. apply delay
or bandwidth limitations of a satellite link to certain packet
flows) is a widely used feature in such testbeds. Currently, the
testbeds apply this link emulation feature on IP flows (i.e. on
the Network Layer). While this is sufficient within IP networks
– i.e. the current Internet protocols – it prevents the usage
for new non-IP Future Internet approaches. But if projects
are investigate on clean clean-slate service-oriented framework
below IP – like German Lab project – emulation on a layer
below is needed. Therefore, a link emulation solution on the
Data Link Layer is desirable within testbeds. DUMMYNET [8],
[9] (e.g. used by Planet-Lab, G-Lab and Emulab, see [10]) and
NETEM [11] are popular tools for link emulation on Linux,
which is the operating system used by the majority of the
testbeds. NETEM already supports Data Link Layer usage,
while DUMMYNET under Linux had lacked of this feature. In
this paper, we first introduce our approach of extending the
Linux version of DUMMYNET by Data Link Layer support.
Then, we evaluate the performance of both approaches in a
Planet-Lab-based testbed environment – used in the German
Lab project – which we have extended by the support of link
emulation on the Data Link Layer. The challenge here is to
compare at first time link emulation an data link layer on one
operation system.

92

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

II. LINK EMULATION

The intention of testbeds is to examine concepts and archi-
tectures under different conditions, e.g. nearly optimal condi-
tions for a first proof of concept or more realistic conditions
to analyse specific scenarios like communication over modem,
satellite or other wireless links.

A. Constituting Physical Constraints in a Testbed
Clearly, the physical model (e.g. the underlying transmission

technology) is an important part of such tests, because it
realizes the constraints set by physics and hardware imple-
mentations. The most realistic results on testing a system
with certain hardware constraints is to actually run it on real
hardware. This approach is e.g. used by the G-Lab testbed [6].
However, real network behaviour – like the effects caused
by background traffic or BGP routing in the Internet – are
not easily reproducible in such hardware-centric systems. Ap-
proaches like the Planet-Lab [7] interconnect a large number of
virtualized systems over the real Internet, allowing for overlay
network tests. However, in this case, the hardware itself is not
under the control of the researcher.

For many upper-layer test cases, an emulation model of
the physical constraints is already sufficient, e.g. a satellite
link with its typical delay and bit errors may be emulated
in software. Such an emulation is also easily adaptable to
special cases and allows for easy reproduction of the results,
e.g. to examine the communications protocol performance
over a satellite link during solar wind. Particularly, software
emulation is inexpensive, since special hardware (e.g. a real
satellite link) are not needed. The most well-established em-
ulation systems in the context of testbeds emulation systems
are DUMMYNET [9] and NETEM [11]. These tools emulate
links with variable delay, bandwidth, packet loss and jitter, i.e.
they can be used to model the link characteristics of different
network access technologies. We will introduce DUMMYNET
and NETEM in the following subsections.

B. NETEM

The Linux Advanced Traffic Control Framework [12],
which is part of the Linux kernel, uses filtering rules to map
packets or frames – i.e. data on Data Link as well as Network
Layers – to queuing disciplines (QDisc) of an egress network
interface. QDiscs may be classful, i.e. contain a hierarchy
of subclasses. Filtering rules (denoted as classifier) of the
QDisc itself map packets or frames to the subclasses. Each
subclass may have its own QDisc, which again may be classful
or classless (i.e. no subclasses). NETEM [11] is a classful
QDisc for Linux. This QDisc itself provides packet delay, loss,
duplication and re-ordering.

If bandwidth limitations are required, a secondary queuing
discipline – like the classless Token Bucket Filter (TBF) QDisc
– has to be applied as sub-QDisc of NETEM to control the data
rate. Bandwidth limitations are always based on the Data Link
Layer frame sizes of the egress interface on which NETEM
and subservient QDiscs are configured on. That is, using e.g.
NETEM and TBF on an Ethernet interface, all bandwidth
calculations for packets include the Ethernet headers and
trailers.

C. DUMMYNET

DUMMYNET [9] provides link emulator functionality in
the FreeBSD kernel. The packet filtering architecture of the
kernel is used to pass packets through one or more queues.
A hierarchy of the queues is realized by so-called pipes. A
pipe represents a fixed-bandwidth channel; queues actually
store the packets. Each queue is associated with a weight.
Proportionally to its weight, it shares the bandwidth of the
pipe it is connected to.

Originally, DUMMYNET had been realized on the Network
Layer to control bandwidth, delay and jitter as well as packet
loss rate, duplication and reordering of IP packet flows. A
recent patch [13] for FreeBSD has added support for the Data
Link Layer, i.e. the patched DUMMYNET implementation is
able to handle frames on the Data Link Layer containing
arbitrary Network Layer traffic. This allows for applying
DUMMYNET to handle non-IP Future Internet protocols. [8]
introduces a port of DUMMYNET to Linux, in order to apply it
for Planet-Lab-based G-Lab Experimental Facility. However,
this port does not support Data Link Layer traffic, due to the
significantly different handling procedures of Data Link Layer
frames in Linux. It is in the end an adaptation of a new packet
filter mechanism on the Data Link Layer.

Bandwidth limitations realized by DUMMYNET always base
on the Network Layer packet size only, even if DUMMYNET
is used to restrict Data Link Layer traffic. That is, using
DUMMYNET e.g. to shape IP traffic over an IEEE 802.11
WLAN does not include the WLAN headers and trailers.

III. DUMMYNET ON LINUX

The link emulation infrastructure of Planet-Lab-based G-
Lab – as well as of its derived testbeds – is based on the
Linux port of DUMMYNET [8]. In order to extend the G-Lab
infrastructure by DUMMYNET-based Data Link Layer support,
we had to extend DUMMYNET for Linux.

Figure 1 presents our concept for extending DUMMYNET
on Linux by the support of link emulation on the Data Link
Layer. The existing DUMMYNET hooks into the Network
Layer packet chains of the Routing Subsystem. Chains are
used by the packet filtering architecture of Linux and provide
mechanisms to intercept and manipulate packets. Before a
packet is routed, it traverses the PREROUTING chain. Packets
to be forwarded to another system then pass through the
FORWARD chain while packets destined for the system itself
are handled by the INPUT chain. Packets sent from the
system itself come from the OUTPUT chain. After routing,
a packet passes through the POSTROUTING chain. The two
hooks used by DUMMYNET are on the PREROUTING and
POSTROUTING chains. DUMMYNET can intercept a packet,
and eventually return it some time later into its original chain.

This Network Layer concept for DUMMYNET can be ex-
tended to the Data Link Layer in the Bridging Subsystem.
Note, that Linux uses the same chain naming (i.e. PREROUT-
ING, FORWARD, INPUT, OUTPUT, POSTROUTING) as for
the Routing Subsystem. Nevertheless, the Routing and Bridg-
ing Subsystems are completely independent. DUMMYNET has
to be extended by the support for hooking also into the

93

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

!

"#$%&'%#()&*+% "#$%&'%#()&*+%

,-./0123

).-45-6

./07/0127/0

89:*;(
7&9:%<<

).-45-6 7.=0-./0123

./07/0

2

127/0

89:*;(
7&9:%<<

6>++?'%#

,&@AB%(=>C<?<#%+(D
6*#*(8@'E(8*?%&

-9>#@'B(=>C<?<#%+(D
2%#F9&E(8*?%&

!

2((((((

).-45-6

7.=0-./0123
!

2((((((

).-45-6

7-"-./0123

7-"-./0123
,-163"

Figure 1. Our Concept of Extending DUMMYNET on Linux

Figure 2. Testbed Setup

chains of the Bridging Subsystem to intercept frames on the
Data Link Layer. Furthermore, the internal data handling of
DUMMYNET has to be adapted to handle the frame structures.

The implementation of our approach has been realized as a
patch for the Linux kernel, supporting all functionalities being
necessary for our performance evaluation. After extending
additional filtering features being necessary for real G-Lab
deployment, we will contribute our patch to the G-Lab kernel
development process. In this context it should be noticed,
that this changes are independet from the infrastructure of
planetlab, so that there should no drawbacks for this approach.

IV. TESTBED ENVIRONMENT

In order to evaluate the performance of DUMMYNET and
NETEM, we have set up a G-Lab-based Linux test environment
as shown in figure 2: the sender node “Alpha” is connected via
router “Delta” to the receiver node “Beta” over 100 Mbit/s full-
duplex Ethernet links. Table I provides the technical details
of the systems; their hardware has been intentionally chosen
to be “low performance”, in order to illustrate the effects
of high CPU load on the DUMMYNET/NETEM performance
(which is a likely situation for G-Lab nodes hosting a large
number of active slices). Router “Delta” is configured with

both, DUMMYNET (including our Data Link Layer support
extension as described in section III) and NETEM. The Planet-
Lab-based test infrastructure has been extended to support link
emulation on the Data Link Layer in addition to the already
existing link emulation on the Network Layer. A configuration
option decides whether to apply DUMMYNET or NETEM.

NUTTCP [14] has been used for throughput and packet
loss measurements using the UDP protocol. Due to the
different traffic measurement bases of NETEM (Data Link
Layer frame size, see subsection II-B) and DUMMYNET
(Network Layer packet size, see subsection II-C), we have
configured the packet output rate Rnuttcp of NUTTCP appro-
priately to achieve a desired on-network Data Link Layer
rate RNetwork for a given payload message size M and
IP header size HIP, UDP header size HUDP and Ethernet
header/trailer size HEthernet:

Rnuttcp
NetEm =

M ∗RNetwork

M +HIP +HUDP
(1)

Rnuttcp
Dummynet =

M ∗RNetwork

M +HIP +HUDP +HEthernet
(2)

Our bandwidth results always show the achieved Data Link
Layer throughput at the receiver side.

For measuring delay, we have utilised the standard PING
tool (which uses ICMP Echo Requests and Replies).

V. PERFORMANCE ANALYSIS

In the following analysis, we examine the performance
of DUMMYNET and NETEM based on the studies in [8],
[11], [15]. But unlike former studies, our interest is in the
performance of link emulation on the Data Link Layer, which
has not been examined before – but which becomes crucial
when examining Future Internet protocols on top of it. In the
following subsections, we evaluate Planet-Lab-based setups

94

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

Node Name Processor Memory Role
Alpha 700 MHz AMD Duron 512 MiB Sender
Beta 700 MHz AMD Duron 512 MiB Receiver
Delta 1666 MHz AMD Athlon 1024 MiB Router

Table I
TECHNICAL DETAILS OF OUR G-LAB-BASED TESTBED

!"#$%%$&

'$()$*&

&+,

-./

001

&,22

&1.,

3,40 3,41 3,45 3,4- 3,4& , ,4& ,4- ,45 ,41 ,40

6$)78*9-

6$)78*95

:;88<=$)*9-

:;88<=$)*95

>
"
?
@
$
)*
'
(A
$
*B
C
<
)$
D
E

:$F(")(G=*HIG8*JG=H(K;I$L*C"=LM(L)N*BOE

Figure 3. Derivation from Configured Bandwidth

with the link emulation varying the basic QoS measures: error
rate, bandwidth limitation, delay and jitter.

A. Bandwidth

Bandwidth is probably the most crucial QoS measure.
Therefore, the accurate adherence of configured bandwidth
limitations – for any kind of traffic pattern – is a highly im-
portant feature of a link emulation system. Figure 3 shows the
deviations from the desired bandwidth of 8389 Kbit/s (setting
based on a DSL media streaming scenario) for DUMMYNET
and NETEM on Data Link (L2 – Layer 2) and Network (L3 –
Layer 3) Layers when varying the packet size. Small packets
particularly occur in multimedia scenarios, leading to a high
per-byte routing/bridging overhead. DUMMYNET and NETEM
handle different packet sizes on both layers quite well, with
an increased deviation for NETEM when using small packets
(about -0.4% for 170 byte packets). However, this deviation
still remains small and should be uncritical for most use cases.

In this context, it has to be mentioned that tests configured
with relatively short traffic duration time and large buffers
– over particularly low-bandwidth emulated links – can lead
to distortions of the measurements by the time necessary to
fully transmit the buffered packets. Furthermore, due to the
bandwidth-delay product, packets with larger size require a

!"#$%%$&

'$()$*&

+, &-. -/+ /&- &0-, -0,. ,01+ .&1- &+2.,
030&

03&

&

&0

&00

&000
456678$)*&90*:7)$

456678$)*&/00*:7)$

;$)<6*&90*:7)$

;$)<6*&/00*:7)$

<=>$?)$@*4$%"7*&90*:7)$

<=>$?)$@*4$%"7*&/00*:7)$

AB8C(D5E$@*:"8@F(@)G*HI#()JKL

4
$
%"
7
*H
6
K
L

Figure 4. Expected and Measured Delays for Different Packet Sizes

proportionally longer transmission time on the link. This delay
– depending on the configured bandwidth and used packet
sizes – is not being emulated by DUMMYNET or NETEM. An
example is provided in figure 4, which shows the expected
and measured delays for varying bandwidth using packets of
146 bytes and 1494 bytes. The user should be aware of this
fact if packet sizes differ significantly.

In case of bandwidth limitation, it is important to figure
out the limitation of the testbed hardware. Depending on the
needs of the applications, the traffic pattern could differ in
the size of the messages, e.g. small messages in a multimedia
setup or full MTUs in a download scenario. The resulting loss
rate for enforcing a maximum bandwidth of 100 Mbit/s using
packet sizes of 146 bytes and 1494 bytes is shown in figure 5;
the left-hand plot presents the DUMMYNET results, the right-
hand plot the NETEM results. Since the data rate generated
by NUTTCP is less or equal to the enforced data rate, no
loss should occur. But obviously, small packet sizes result in
packet losses [16], since the hardware (CPU, but also network
interface cards and buffers) are incapable of handling the high
number of packets per second. This side effect – which is
caused by interrupt frequency, timer resolution, the latency
of context-switch operations by the operating system and also
limited queue sizes [17] – has to be considered carefully when
planning experiments in the testbed. These limitations apply
for both, Data Link as well as Network Layer link emulation.
But in comparison to NETEM, DUMMYNET shows these side
effects earlier: at a rate of about 30 Mbit/s and a packet rate

95

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

!"##$%&'

(&)'&*+

,-. /.-, .,-, 0.-, +,,-,
,-,,1

+,-,,1

/,-,,1

2,-,,1

3,-,,1

.,-,,1

4,-,,1

!"##$%&'

!5'5*6)%7*65$&8*+34*9$'&:

!5'5*6)%7*65$&8*+3;3*9$'&:

<&'=>87*65$&8*+34*9$'&:

<&'=>87*65$&8*+3;3*9$'&:

?85%:#)::)>%*@5%A=)A'B*CD9)'E:F

G
5
H
7
&
'*
6
>
:
:
**
C1
F

!"#$%

&"'#"()

+, -,+ ,*+* .,+*)**+*
*+**/

)*+**/

-*+**/

0*+**/

1*+**/

,*+**/

2*+**/

!"#$%

34#4(5'67(548"9()12(:8#";

34#4(5'67(548"9()1<1(:8#";

!"#=>97(548"9()12(:8#";

!"#=>97(548"9()1<1(:8#";

?946;%';;'>6(@46A='A#B(CD:'#E;F

G
4
H
7
"
#(
5
>
;
;
((
C/
F

Figure 5. Hardware Limitations of DUMMYNET and NETEM for Different Packet Sizes

of 146 bytes, DUMMYNET starts losing packets while NETEM
is capable of handling more than 60 Mbit/s without losses.

B. Error Rate

The loss rate is another important QoS measure for link em-
ulation, e.g. to emulate lossy wireless or satellite connections.
Therefore, it is useful to examine the accuracy of DUMMYNET
and NETEM to adhere to a configured loss rate. For our
measurement, NUTTCP has generated the configured data rate,
while the link emulation has applied a configured loss rate.
Figure 6 shows the absolute deviation from the configured loss
rates for DUMMYNET and NETEM, using Data Link Layer
(Layer 2) as well as Network Layer (Layer 3) link emulation.
Since small packets are the most performance-critical (due to
the high rate of packets/s), we only present the results for a
packet size of 146 bytes here.

While the deviations for a NUTTCP bandwidth of 1 Mbit/s
remain small for both, DUMMYNET and NETEM, a significant
deviation is observable already for DUMMYNET at 40 Mbit/s.
Even higher deviations can be found at a bandwidth of
70 Mbit/s. In this case, also NETEM shows an increased loss
rate deviation, but this is still significantly smaller than for
DUMMYNET. The reason of this deviation for DUMMYNET
is again the limitation of the system resources, as already
observed for the bandwidth limitation in subsection V-A.
Again, NETEM can cope significantly better with these limited
resources and still achieve a reasonable performance in param-
eter ranges where DUMMYNET is unable to work properly any
more. This property applies for Data Link as well as Network
Layer link emulation.

C. Delay

In order to examine the accuracy of the link emulation to
adhere to a configured packet delay, we have varied the desired
delay in a 100 Mbit/s setup for packet sizes of 170 bytes and
1500 bytes (i.e. full MTU on the Network Layer). The results
are presented in table II for DUMMYNET and NETEM on Data
Link (L2 – Layer 2) and Network (L3 – Layer 3) Layers. For
both layers, the differences between the two packet sizes (i.e.

small packets vs. full MTU) are quite small. However, it is
observable that the delay results achieved by NETEM more
accurately reach the configured target delay. For example, the
difference to a target delay of 100 ms is almost 2 ms for
DUMMYNET, but only 0.01 ms for NETEM. Also, the delay
achieved by DUMMYNET is a little bit smaller than the actual
target delay in most cases. This may distort measurements
expecting a hard lower bound on the packet latency.

D. Jitter

While NETEM provides a configuration option to apply
certain jitter distributions to the traffic, jitter is not directly
supported by DUMMYNET. In DUMMYNET, jitter can be
mimicked by configuring a set of pipes with different delays.
Traffic is mapped to these pipes appropriately to reach a
certain delay distribution. Due to these differences, it is not
possible to directly compare the jitter performance of both
approaches. We therefore show the Data Link and Network
Layer performances of both systems separately.

For our jitter examination, we have configured a 100 Mbit/s
setup using 1500 byte packets (i.e. full MTU). NETEM has
been configured with a normal delay distribution of 100 ms
average, while DUMMYNET has been set up with 11 pipes
to mimic a similar distribution. The delay distributions are
presented in figure 7; the left-hand plot shows the DUMMYNET
results, the right-hand plot the distribution for NETEM. The
Network Layer (Layer 3) values are displayed by the bars,
the line depicts the Data Link Layer (Layer 2) values. As
expected, the behaviour for Data Link and Network Layers
is quite similar. Due to the different capabilities of NETEM,
the distribution for NETEM is quite smooth while for DUM-
MYNET the 11 pipes are clearly observable as large peaks. To
achieve a smoother distribution, DUMMYNET could be set up
with a larger number of pipes. However, the complexity and
resource consumption of such a kind of configuration would
be extraordinarily high.

96

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

!

"#$%#&!

'(!

'()

!

)

!'

*! *'() ' '() !

!&+,$%-.

/#%01&234#5&6

/#%01&234#5&7

89114:#%&234#5&6

89114:#%&234#5&7

;,.<=9%#&8#>$3%$<:&?5<1&@<:?$A95#B&2<..&C3%#&DEF

@
<
:
?$
A
9
5#
B
&2
<
.
.
&C
3
%#
&D
E
F

!"

#$%&$'(

")(

")*

(

*

("

+(* +,)* " ,)* (*

!"'-.%&/0

1$&23'456$7'8

1$&23'456$7'9

:;336<$&'456$7'8

:;336<$&'456$7'9

=.0>?;&$':$@%5&%><'A7>3'B><A%C;7$D'4>00'E5&$'FGH
B
>
<
A%
C
;
7$
D
'4
>
0
0
'E
5
&$
'F
G
H

!"

#$%&$'(

)*(

)*"

(

"

()

+,) +-)) -) ,)

!"'./%&01

2$&34'567$8'9

2$&34'567$8'-

:;447<$&'567$8'9

:;447<$&'567$8'-

=/1>?;&$':$@%6&%><'A8>4'B><A%C;8$D'5>11'E6&$'FGH

B
>
<
A%
C
;
8$
D
'5
>
1
1
'E
6
&$
'F
G
H

Figure 6. Derivation from Configured Error Rate for using DUMMYNET and NETEM

Delay in ms for packet size of 1500 Byte
Emulation\Parameter 5 10 20 50 100 200 500 1000

Dummynet L2 5.9 10.5 18.3 50 98.3 198.1 498.1 998.1
Dummynet L3 5.9 10.5 18.3 50.2 98.4 198.2 498,1 998.2

NetEm L2 5 10 20 50 100 200,1 500 1000
NetEm L3 5 10 20 50 100 200.2 500.1 1000.1

Delay in ms for packet size of 170 Byte
Emulation\Parameter 5 10 20 50 100 200 500 1000

Dummynet L2 5,97 11.69 18.4 50.84 98.24 198.4 498.25 998.35
Dummynet L3 5,93 11.69 18.62 50.54 98.2 198.41 498.26 998.22

NetEm L2 5 10 20.01 50 100.01 200.01 500.01 1000.01
NetEm L3 5 10 20.01 50.01 100.01 200.01 500.01 1000.01

Table II
DELAY ON DATA LINK AND NETWORK LAYER

!"#$%%$&

'$()$*&

+ ,- -+ .- &++ &,- &-+ &.- ,++
+

-

&+

&-

,+
/01123$)

&-++*42)$*5"2$6*7

&-++*42)$*5"2$6*,

/$%"2*8"39$*:1;<

=
$
6>
$
3
)"
9
$
*?
@*
=
"
>
A$
);
*8
$
>
$
(B
$
C
*D
()
E
(3
*/
$
%"
2
*8
"
3
9
$
*:
F
<

!"#$%%$&

'$()$*&

+ ,- -+ .- &++ &,- &-+ &.- ,++
+

+/,

+/0

+/1

+/2

&

&/,
3$)45

&-++*67)$*8"7$9*:

&-++*67)$*8"7$9*,

;$%"7*<"=>$*?5@A

B
$
9C
$
=
)"
>
$
*D
E*
B
"
C
F
$
)@
*<
$
C
$
(G
$
H
*I
()
J
(=
*;
$
%"
7
*<
"
=
>
$
*?
K
A

Figure 7. Emulating Jitter with DUMMYNET and NETEM

97

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

146 Byte Packets 1500 Byte Packets
Bandwidth Baseline L2 NETEM L2 DMYNET L3 NETEM L3 DMYNET L2 DMYNET L3 DMYNET
1 Mbit/s 0.03% 0.04% 0.96% 0.04% 0.96% 0.10% 0.10%

15 Mbit/s 0.28% 0.39% 13.83% 0.50% 14.51% 1.56% 1.52%
30 Mbit/s 0.75% 0.88% 28.26% 1.01% 30.02% 2.93% 3.07%
45 Mbit/s 1.12% 1.71% 52.44% 1.58% 54.33% 4.46% 4.56%
60 Mbit/s 1.78% 2.15% 60.72% 2.18% 62.97% 5.18% 5.29%
75 Mbit/s 1.57% 2.15% 69.74% 2.19% 73.74% 5.71% 6.02%

Table III
CPU UTILIZATION FOR USING DUMMYNET AND NETEM WITH DIFFERENT PACKET SIZES

E. CPU Load

Beside the four network QoS measures, it is also important
to examine the CPU load caused by the link emulation. In
particular, Planet-Lab nodes are usually highly loaded by their
slices already. The link emulation should therefore save CPU
resources and – even more important – not exceed the CPU
capacity (which would cause undesired frame/packet loss).

Table III shows the CPU load caused by DUMMYNET and
NETEM for applying bandwidth limitation on Data Link (L2
– Layer 2) and Network (L3 – Layer 3) Layers for packet
sizes of 146 bytes and 1500 bytes (i.e. full MTU). The
link emulation is just used to enforce the configured band-
width by dropping out-of-profile packets. For comparison,
also a baseline measurement for 146 bytes packets (i.e. the
performance-critical case) without link emulation is shown.
Clearly, without link emulation, the CPU utilization remains
quite small: about 1.5% for a 75 Mbit/s bandwidth limitation
regardless of the packet size. Also, using NETEM on Data Link
or Network Layer only slightly increases the CPU utilization to
about 2.2% – regardless of the packet sizes. On the other hand,
the CPU load for DUMMYNET is significantly influenced by
the packet size: for 1500 byte packets, it requires 5.7% (Data
Link Layer) and 6.0% (Network Layer) of the CPU, while the
load rises to 69.74% (Data Link Layer) and 73.74% (Network
Layer) for the small 146 bytes packets. That is, DUMMYNET
requires significantly more CPU power for the same task.

VI. CONCLUSIONS

In this paper, we have evaluated our approach of extending
Planet-Lab-based network testbeds – with fokus on G-Lab –
by emulation on the Data Link Layer of the OSI model. Unlike
the already existing link emulation supported on the Network
Layer (i.e. for the IP protocol) only, our approach also allows
for testing new non-IP Future Internet protocols. Two popular
link emulation approaches have been considered: DUMMYNET
and NETEM. The DUMMYNET approach – which is currently
used by Planet-Lab for Network Layer link emulation – first
had to be extended by us to support link emulation on the
Data Link Layer of Linux-based Planet-Lab setups.

In our evaluation, we have shown that both Data Link
Layer link emulation approaches are usable for Planet-Lab.
The resulting performance of NETEM and DUMMYNET for the
Data Link Layer emulation is quite similar to the performance
of the Network Layer emulation. However, NETEM provides
a slightly better accuracy for delay emulation and requires
significantly less CPU power in comparison to DUMMYNET.

Also, NETEM is able to emulate jitter much more accurately.
As part of our future work, we are therefore going to contribute
a configurable link emulation solution to Planet-Lab, allowing
for switching between the currently used DUMMYNET for
backwards compatibility and NETEM – in order to let ex-
periments choose the best-suitable approach for their specific
requirements.

REFERENCES

[1] International Telecommunication Union, “Open Systems Interconnection
– Base Reference Model,” ITU-T, Recommentation X.200, Aug. 1994.

[2] C. Raiciu, M. Handley, and D. Wischik, “Practical Congestion Control
for Multipath Transport Protocols,” University College London, Lon-
don/United Kingdom, Tech. Rep., 2009.

[3] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” Boston, Mas-
sachusetts/U.S.A., Dec. 2002, pp. 255–270.

[4] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In
VINI Veritas: Realistic and Controlled Network Experimentation,” in
Proceedings of the ACM SIGCOMM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications,
Pisa/Italy, 2006, pp. 3–14.

[5] T. Friedman, S. Fdida, P. Duval, N. Lafon, and X. Cuvellie, “OneLab:
Home,” 2009.

[6] R. Steinmetz, J. Eberspächer, M. Zitterbart, P. Müller, H. Schotten, and
P. Tran-Gia, “G-Lab Phase 1 - Studien und Experimentalplattform für
das Internet der Zukunft,” White paper, www.german-lab.de, Jan. 2009,
available online (16 pages).

[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “PlanetLab: An Overlay Testbed for Broad-Coverage
Services,” SIGCOMM Computer Communication Review, vol. 33, no. 3,
pp. 3–12, 2003.

[8] M. Carbone and L. Rizzo, “Dummynet Revisited,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 2, 2010.

[9] L. Rizzo, “Dummynet: A Simple Approach to the Evaluation of Network
Protocols,” SIGCOMM Computer Communication Review, vol. 27, no. 1,
pp. 31–41, 1997.

[10] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau, “Large-scale Virtualization in the Emulab
Network Testbed,” in Proceedings of the USENIX Annual Technical Con-
ference on Annual Technical Conference, Boston, Massachusetts/U.S.A.,
2008, pp. 113–128.

[11] S. Hemminger, “Network Emulation with Netem,” in Proceedings of the
Linux Conference Australia (LCA), April 2005.

[12] B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout,
P. B. Schroeder, J. Spaans, and P. Larroy, “Linux Advanced Routing
and Traffic Control HOWTO,” 2010.

[13] G. Kurtsou, “Layer 2 FreeBSD Dummynet Patch,” 2009.
[14] B. Fink, “Manpage of NUTTCP,” 2007.
[15] M. Carbone and L. Rizzo, “Adding Emulation to Planetlab Nodes,”

in Proceedings of the ACM CoNEXT Workshop, Rome/Italy, December
2009.

[16] J. J. Dongarra and T. Dunigan, “Message-Passing Performance of
Various Computers,” Knoxville, Tennessee/U.S.A., Tech. Rep., 1995.

[17] L. Nussbaum and O. Richard, “A Comparative Study of Network Link
Emulators,” in Proceedings of the Spring Simulation Multiconference
(SpringSim), San Diego, California/U.S.A., 2009, pp. 1–8.

98

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

	Introduction
	Link Emulation
	Constituting Physical Constraints in a Testbed
	NetEm
	Dummynet

	Dummynet on Linux
	Testbed Environment
	Performance Analysis
	Bandwidth
	Error Rate
	Delay
	Jitter
	CPU Load

	Conclusions
	References

