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Abstract—An efficient design of equiripple half-band FIR
filters for signal compression is presented. Solution of the
approximation problem in terms of generating function and zero
phase transfer function for the equiripple half-band FIR fil ter is
shown. The equiripple half-band FIR filters are optimal in the
Chebyshev sense. The closed form solution provides an efficient
computation of the impulse response of the filter. One example
is included.
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I. I NTRODUCTION

Half-band (HB) filters are basic building blocks in wavelet
analysis [1], signal compression and in multirate signal pro-
cessing [2]. The only available method for designing equirip-
ple (ER) HB finite impulse response (FIR) filters is based on
the numerical McClellan - Parks program [3]. It is usually
combined with a clever ”Trick” [4]. Besides this, some design
methods are available for almost ER HB FIR filters, e.g.
[5],[6]. No general non-numerical design of an ER HB FIR
filter was found in references. In our paper we are primarily
concerned with the ER approximation of HB FIR filters and
with the related non-numerical design procedure suitable for
practical design of ER HB FIR filters. We present the gener-
ating function and the zero phase transfer function of the ER
HB FIR filter. These functions give an insight into the nature
of this approximation problem. Our design procedure is based
on the Chebyshev polynomials of the second kind. Based on
the differential equation for the Chebyshev polynomials of
the second kind, we have derived formulas for an effective
evaluation of the coefficients of the impulse response. We
present an approximating degree equation which is useful in
practical filter design. The advantage of the proposed approach
over the numerical design procedures relies on the fact thatthe
coefficients of the impulse response are evaluated by formulas.
Hence the speed of the design is deterministic.

II. I MPULSE RESPONSE, TRANSFERFUNCTION AND ZERO

PHASE TRANSFERFUNCTION

A HB filter is specified by the minimal passband frequency
ωpT (or maximal stopband frequencyωsT ) and by the mini-
mal attenuation in the stopbandas [dB] (or maximal attenua-
tion in the passbandap [dB]). The antisymmetric behavior of
its frequency response implies the relationsωsT = π − ωpT
and 100.05ap + 100.05as = 1. The goal in the filter design

is to get the minimum filter lengthN satisfying the filter
specification and to evaluate the coefficients of the impulse
response of the filter. We assume the impulse responseh(k)
with odd lengthN = 2(2n+1)+1 coefficients and with even
symmetryh(k) = h(N − 1− k). The impulse response of the
HB FIR filter with the lengthN = 2(2n+1)+ 1 contains2n
zero coefficients as follows

h(2n+ 1) = a(0) = 0.5 (1)

2h(2n+ 1± 2k) = a(2k) = 0 , k = 1 . . . n

2h(2n+ 1± (2k + 1)) = a(2k + 1) , k = 0 . . . n .

The transfer function of the HB FIR filter is

H(z) = z−(2n+1)

[

1

2
+

n
∑

k=0

a(2k + 1)T2k+1(w)

]

(2)

whereTm(w) is Chebyshev polynomials of the first kind. The
frequency responseH(ejωT ) of the HB FIR filter is

H(ejωT ) = e−j(2n+ 1)ωT Q(cosωT ) (3)

whereQ(w) is a polynomial in the variablew = (z+ z−1)/2
which on the unit circle reduces to a real valued zero phase
transfer functionQ(w) of the real argumentw = cos(ω T ).
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Fig. 1. Generating polynomialG(w) for n = 20, κ′ = 0.03922835,
A = 1.08532371 andB = 0.95360863.
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Fig. 2. Zero phase transfer functionQ(w) for n = 20, κ′ = 0.03922835,
A = 1.08532371, B = 0.95360863 andN= 0.55091994.

III. G ENERATING POLYNOMIAL AND ZERO PHASE

TRANSFERFUNCTION OF AN ER HB FIR FILTER

A straightforward theory for the generating polynomial of
an ER HB FIR filter is currently unavailable. The generating
polynomial of an ER HB FIR filter is related to the generating
polynomial of the almost ER HB FIR filter presented in [5].
Based on our experiments conducted in [5], we have found
that the generating polynomialG(w) (Fig. 1) of the ER HB
FIR filter is obtained by weighting of Chebyshev polynomials
in the generating polynomial of the almost ER HB FIR filter,
namely

G(w) = AUn

(

2w2 − 1− κ′2

1− κ′2

)

+BUn−1

(

2w2 − 1− κ′2

1− κ′2

)

(4)
whereUn(x) andUn−1(x) are Chebyshev polynomials of the
second kind andA, B, κ′ are real numbers. The zero phase
transfer functionQ(w) (Fig. 2) is related to the generating
polynomial

Q(w) =
1

2
+

1

N

∫

G(w)dw (5)

where the norming factorN is given by (17). The generating
polynomialG(w) and the zero phase transfer functionQ(w)
show the nature of the approximation of an ER HB FIR filter.

IV. D IFFERENTIAL EQUATION AND IMPULSE RESPONSE

OF AN ER HB FIR FILTER

The Chebyshev polynomial of the second kindUx(w) fulfils
the differential equation

(1− x2)
d2Un(x)

dx2
− 3x

dUn(x)

dx
+ n(n+ 2)Un(x) = 0 . (6)

Using substitution

x =

(

2w2 − 1− κ′2

1− κ′2

)

(7)

we get the differential equation (6) in the form

w(w2 − κ′2)

[

(1 − w2)
d2Un(w)

dw2
− 3w

dUn(w)

dw

]

+
[

κ′2(1− w2) + 2w2(1− w2)
] dUn(w)

dw
+ 4w3n(n+ 2)Un(w) = 0 . (8)

Based on the differential equation (8), we have derived the
non-numerical procedure for the evaluation of the impulse
responsehn(k) corresponding to polynomialUn(w)

Un(w) =

∫

Un

(

2w2 − 1− κ′2

1− κ′2

)

dw . (9)

This procedure is summarized in Tab. I. The impulse response
h(k) of the ER HB FIR filter is

h(k) =
1

2
+

A

N
hn(k) +

B

N
hn−1(k) . (10)

The non-numerical evaluation of the impulse responseh(k) is
essential in the practical filter design.

V. DEGREE OF ANER HB FIR FILTER

The exact degree formula is not available. In the practical
filter design, the degreen can be obtained with excellent
accuracy from the specified minimal passband frequencyωpT
and from the minimal attenuation in the stopbandas [dB]
using the approximating degree formula

n
.
=

as[dB]− 18.18840664ωpT + 33.64775300

18.54155181ωpT − 29.13196871
. (11)

The exact relation between the minimal attenuation in the
stopbandas [dB], the minimal passband frequencyωpT and
the degreen were obtained experimentally.
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Fig. 3. Q(w) for oddn.
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TABLE I
ALGORITHM FOR THEEVALUATION OF THE COEFFICIENTShn(k).

given n (integer value), κ′ (real value)

initialization α(2n) =
1

(1 − κ′2)n

α(2n− 2) = −(2nκ′2 + 1)α(2n)

α(2n− 4) = −
4n+ 1 + (n− 1)(2n − 1)κ′2

2n
α(2n− 2)−

(2n+ 1)(n + 1)κ′2

2n
α(2n)

body
(for k = n down to 3)

α(2k − 6) =

{ −
[

3(n(n + 2)− k(k − 2)) + 2k − 3 + 2(k − 2)(2k − 3)κ′2
]

α(2k − 4)

−
[

3(n(n + 2) − (k − 1)(k + 1)) + 2(2k − 1) + 2k(2k − 1)κ′2
]

α(2k − 2)

− [n(n+ 2)− (k − 1)(k + 1)]α(2k) } / [n(n+ 2) − (k − 3)(k − 1)]
(end loop on k)

integration

(for k = 0 to n) a(2k + 1) =
α(2k)

2k + 1
(end loop on k)

impulse response hn(k)
hn(2n+ 1) = 0

(for k = 0 to n) hn(2n+ 1± (2k + 1)) =
a(2k + 1)

2
(end loop on k)
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Fig. 4. Q(w) for evenn.

VI. SECONDARY VALUES OF THEER HB FIR FILTER

The secondary real valuesκ′, A andB can be obtained from
the specified passband frequencyωpT and from the degreen
of the generating polynomial. In practical filter design, the
approximating formulas

κ′ =
nωpT − 1.57111377n+ 0.00665857

−1.01927560n+ 0.37221484
(12)

A =

(

0.01525753n+ 0.03682344+
9.24760314

n

)

κ′

+1.01701407+
0.73512298

n
(13)

and

B =

(

0.00233667n− 1.35418408+
5.75145813

n

)

κ′

+1.02999650−
0.72759508

n
(14)

obtained experimentally provide excellent accuracy. Further,
the exact valuesκ′, A and B can be obtained numerically
(e.g. using the Matlab functionfminsearch) by satisfying
the equality (see Fig. 3 - 4)

Q(wp) =

{

Q(1) if n is odd
Q(w01) if n is even .

(15)

The value

w01 =

√

κ′2 + (1 − κ′2) cos2
π

2n+ 1
(16)

was introduced in [6]. Relation (15) guarantees the equiriple
behaviour of the generating polynomialQ(w).

VII. D ESIGN OF THEER HB FIR FILTER

The design procedure is as follows:

• Specify the ER HB FIR filter by the minimal passband
frequencyωpT and by the minimal attenuation in the
stopbandas [dB].

• Calculate the integer degreen of the generating polyno-
mial (11).

• Calculate the real valuesκ′ (12),A (13) andB (14).
• Evaluate the partial impulse responseshn(k) and

hn−1(k) (Tab. I).
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• Evaluate the final impulse responseh(k) (10) where the
real norming factorN is

N =

{

2 [ AUn(1) + BUn−1(1) ] if n is even
2 [ AUn(w01) + BUn−1(w01) ] if n is odd .

(17)
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Fig. 5. Amplitude frequency response20 log |H(ejωT )| [dB].
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Fig. 6. Passband of the filter.

VIII. E XAMPLE

Design the ER HB FIR filter specified by the minimal pass-
band frequencyωpT = 0.45π and by the minimal attenuation
in the stopbandas = −120 dB.
We get n = 38.3856 → 39 (11), κ′ = 0.15571103 (12),
A = 1.17117396 (13), B = 0.83763199 (14) andN =
−2747.96038544 (17). The impulse responseh(k) (Tab. II)
with the lengthN = 159 coefficients is evaluated using
Tab. I and eq. (10). The actual valuesωp actT = 0.4502π

TABLE II
COEFFICIENTS OF THEIMPULSERESPONSE.

k h(k) k h(k)

0 , 158 -0.00000070 42 , 116 0.00231877
2 , 156 0.00000158 44 , 114 -0.00283354
4 , 154 -0.00000331 46 , 112 0.00344038
6 , 152 0.00000622 48 , 110 -0.00415347
8 , 150 -0.00001087 50 , 108 0.00498985

10 , 148 0.00001799 52 , 106 -0.00597048
12 , 146 -0.00002852 54 , 104 0.00712193
14 , 144 0.00004363 56 , 102 -0.00847897
16 , 142 -0.00006481 58 , 100 0.01008867
18 , 140 0.00009384 60 , 98 -0.01201717
20 , 138 -0.00013287 62 , 96 0.01436125
22 , 136 0.00018446 64 , 94 -0.01726924
24 , 134 -0.00025161 66 , 92 0.02098117
26 , 132 0.00033779 68 , 90 -0.02591284
28 , 130 -0.00044697 70 , 88 0.03285186
30 , 128 0.00058370 72 , 86 -0.04348979
32 , 126 -0.00075311 74 , 84 0.06223123
34 , 124 0.00096097 76 , 82 -0.10523903
36 , 122 -0.00121375 78 , 80 0.31802058
38 , 120 0.00151871 79 0.50000000
40 , 118 -0.00188398

and aact = −120.91 dB satisfy the filter specification. The
amplitude frequency response 20log|H(ejωT )| [dB] of the
filter is shown in Fig. 5. The detailed view of its passband
is shown in Fig. 6. For the specified valuesωpT = 0.45π
andN = 159, the comparative numerical design based on the
”Trick” [3] combined with the Remez algorithm using the Mat-
lab functionfirpm results in the slightly unsatisfactory min-
imal passband frequencyωp actT = 0.44922001π < 0.45π
and consequently in a slightly better minimal attenuation in
the stopbandas act = −123.29066608 [dB].

IX. CONCLUSION

This paper has presented the equiripple approximation of
halfband FIR filters. The generating polynomial and the zero
phase transfer function illustrate the nature of the approxi-
mation problem. The coefficients of the impulse response are
straightforwardly evaluated from the filter specification.
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