
Scalability of Distributed Dynamic Load Balancing Mechanisms 

 

Alcides Calsavara and Luiz A. P. Lima Jr. 
Graduate Program on Computer Science (PPGIa) 
Pontifical Catholic University of Paraná - PUCPR 

Curitiba, Brazil 
{alcides, laplima}@ppgia.pucpr.br 

 
Abstract—A load balancing mechanism for large-scale systems 
should be distributed and dynamic in order to accomplish 
scalability and high availability. Also, it should be autonomic in 
order to ease network management. The recent development in 
utility computing architectures, such as the so-called cloud 
computing platforms, has increased the demand for such 
mechanisms. This paper investigates a novel approach, based on 
the concept of virtual magnetic fields, by which ready-to-start 
tasks launched on a network middleware are “attracted” to idle 
nodes. The key issue on such approach is that the update of 
workload information amongst the cooperating nodes of a 
network must be a low-cost and an autonomic operation. Two 
different update algorithms are presented, and their complexity 
is assessed through simulation. The results show that both 
algorithms fulfill the scalability requirement. 

Keywords - load balancing; scalability; distributed algorithm; 
autonomic systems 

I. INTRODUCTION 

The recent development in utility computing architectures, 
such as the so-called cloud computing platforms, has increased 
the demand for load balancing mechanisms, which provide for 
scalability, high availability and ease of management, amongst 
other requirements [6][7]. Typically, utility computing 
architectures are deployed as large-scale complex systems, 
where changes in resource availability happen very often and 
in an unpredictable way because, in principle, a task launched 
at some client node can be assigned to any server node, at any 
time.  Moreover, the geographically distributed nature of such 
systems makes centralized assignment of tasks to specific 
servers infeasible, as the corresponding scheduler would 
become a network bottleneck and a single point of failure. 
Therefore, a key issue in the development of utility computing 
architectures is the provision of a distributed load balancing 
mechanism which is able: firstly,  to respond within an 
approximately constant time regardless network size and 
topology, i.e., it should scale well; secondly, to proceed 
responding in the presence of failures such as node crash and 
network partition, i.e., it should be highly available; and, 
thirdly, to manage workload information change with a 
minimum of, preferably none, human intervention, i.e., it 
should be autonomic. 

Several distributed load balancing mechanisms have been 
previously reported in the literature, as discussed in Section II, 
and, to the best of our knowledge, their suitability for utility 

computing architectures are yet to be verified. This paper 
investigates a novel approach, based on the concept of virtual 
magnetic fields, by which ready-to-start tasks launched on a 
network middleware are “attracted” to idle nodes. 

The paper is organized as follows. Section II discusses 
some related work and their weaknesses and strengths. A 
generic formal model for Virtual Magnetic Fields is presented 
in Section III, and two workload update algorithms (namely, 
QuickPath and ShortPath) are described in Section IV, each 
taking a different approach to the problem. The algorithms are 
then evaluated and compared through simulation, and the 
corresponding results are presented in Section V. Finally, 
Section VI draws some conclusions and discusses future work. 

II.  RELATED WORK 

The problem of load balancing in an open environment, 
such as a P2P overlay network, is well discussed in [1],   
where many complex related issues are listed. Amongst them, 
the problem of resource discovery, which means to search for 
idle CPU cycles in this case, is considered as extremely 
difficult since such resource is perishable, cannot be shared, 
and is dynamic. Moreover, the set of participating hosts is 
potentially very large and highly dynamic. The authors 
compared several methods to solve that problem and they 
noticed that a hard problem to solve is that large jobs may 
dominate, resulting in delays for scheduling smaller jobs. 

The problem of load balancing is also well studied in the 
context of grid computing. However, differently from P2P 
computing, where cycles are obtained from ordinary users in a 
distributed open environment, in grid computing, cycles are 
normally obtained from a previously known set of users who 
agreed to share such resource according to well-defined rules. 
A corresponding scheduling algorithm enforces such rules 
and, as well, takes care of proper load balancing. Thus, it can 
be simpler than a scheduling algorithm for P2P computing. As 
an example, a dynamic tree-based model to represent a grid 
architecture in order to manage workload is proposed in [2]. 
Its main purpose is to improve response time of user's 
submitted applications by ensuring maximal utilization of 
available resources through a hierarchical load balancing 
strategy and associated algorithms based on neighborhood 
properties.   The authors claim to have achieved a reduced 
communication overhead induced by tasks transferring and 
flow information. Such solution is based on a group manager 
who receives, in a periodic way, workload information from 
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each network element. 
A discussion on various load balancing algorithms in the 

context of parallel computing can be found in [8]. The authors 
also present a list of parameters which can be useful to analyze 
those algorithms, including stability: the cost of workload 
information transfer versus the benefits of a better overall load 
balance. According to their research, static algorithms – like 
round-robin and randomized algorithms – are more stable than 
dynamic algorithms. However, dynamic algorithms show 
better overall results than static algorithms when all analysis 
parameters are considered, especially where fault tolerance is 
a key requirement. 

A comparative study of distributed load balancing 
algorithms is presented in [7]. The authors discuss the 
importance of such algorithms in the context of cloud 
computing, although no particular mapping of the algorithms 
to real computing platforms is presented. Three distinct 
algorithms, namely Honeybee Foraging, Biased Random 
Sampling and Active Clustering, are assessed through 
simulation in an ideal scenario for cloud computing where 
nodes are typed to accomplish for node heterogeneity, by 
using task throughput as the main evaluation parameter. 
According to their experiments, Honeybee Foraging has a 
much better throughput than Biased Random Walk and Active 
Clustering when the number of node types increases in a 
fixed-size number of nodes; the throughput is slightly better 
for Active Clustering than for Biased Random Walk. On the 
other hand, when the number of nodes increases for a fixed-
size number of node types, Biased Random Walk and Active 
Clustering present a much better throughput than Honeybee 
Foraging, with a small advantage for Biased Random Walk. 

III.   PROPOSED LOAD BALANCING MECHANISM 

Given any two linked nodes, say node S and node T, a 
relationship between them can be defined in which S attracts 
messages (which contain tasks) that were initially sent to T. 
Metaphorically speaking, a node S that can attract messages 
from a neighbor node T contains a virtual magnet and T is 
within the virtual magnetic field produced by such magnet. So, 
S and T have a magnetization relationship: a source of 
attraction S magnetizes a target T.  In other words, a 
magnetization relationship from S to T implies that S can help 
T to perform its tasks. In particular, any node that possesses a 
magnet will attract messages to itself. Moreover, the 
magnetization relationship is defined as transitive, so that, if 
node x (directly) magnetizes node y and node y (directly) 
magnetizes node z, then node x (indirectly) magnetizes node z. 
As a result, the set of all nodes and their magnetization 
relationships define an overlay network, named as 
magnetization network. For the sake of simplicity, a 
magnetization network is modeled as a directed graph where 
each vertex corresponds to a network node and each edge 
corresponds to a magnetization relationship. The set of nodes 
which are directly magnetized by a node x, denoted as T(x), is 
discovered by following the edges that leave x. Conversely, 
the set of nodes that directly magnetize a node x, denoted as 
S(x), is discovered by following the edges that enter x. By 

definition, each node is self-magnetized, i.e. any node x 
belongs to both S(x) and T(x). The set of nodes which are 
either directly or indirectly magnetized by a node x, denoted as 
T*(x), and, as well, the set of nodes which either directly or 
indirectly magnetizes a node x, denoted as S*(x), are 
determined simply by traversing magnetization relationships. 

Each node x attracts messages according to an associated 
strength or force, denoted as F(x), which is set according to 
local workload information, such as the locally available 
processing power. So, given a node x, the strength F(x) will be 
determined according to some criteria and, in the general case, 
it may change over time, as node and network properties 
change and, as well, as messages are delivered to nodes. For 
any node x, the strongest node in S*(x) is called the global 
pivot for node x, denoted as P*(x). So, according to the 
semantics of the magnetization relationship, any message sent 
to a node x must be delivered to P*(x). Also, for any node k in 
S(x), the partial pivot for x with respect to k, denoted as Pk(x), 
is the global pivot for node k, that is, Pk(x)=P*(k). Thus, given 
a node x, P*(x) is recursively computed as the node with 
greatest strength between all nodes Pk(x) where k belongs to 
S(x). Naturally, care must be taken to prevent infinite loops in 
such computation, since cycles are allowed in the 
magnetization network. Thus, supposing that tasks are 
independent from each other and they do not depend on 
remote data, in the proposed load balancing mechanism, an 
application message that contains a ready-to-run task is simply 
attracted, i.e., routed to the node corresponding to the global 
pivot with respect to the node where the message is originally 
created. From the implementation point of view, a 
magnetization network is a network middleware where the life 
cycle of any application message m accomplishes the 
following steps: 

1. m is created at the application level and sent to a node x; 
2. m is routed from node x to a node y, where y belongs to 

S*(x), such that F(y) is greater or equal to F(k), for any 
k that belongs to S*(x), that is, y=P*(x); 

3. m is delivered to the application level of node y; 
4. m is properly handled at node y and, depending on the 

application semantics, it is either eventually destroyed 
or kept at node y forever. 

Every time a change happens with respect to the strength 
of any node, the magnetic field of such node must be properly 
updated. Also, as a consequence, the global pivot for any node 
may change, thus requiring, proper update of its magnetic 
field, as well. In Section IV, two distinct update algorithms are 
described and analyzed. 

IV.  WORKLOAD UPDATE ALGORITHMS 

As discussed in Section III, a virtual magnetic field has to 
be updated when the strength of the corresponding magnet 
(i.e. its workload) changes significantly, since such magnet 
strength can be relevant to nodes which are either direct or 
indirectly magnetized by the node that hosts such magnet. 
Also, any node can change its global pivot at any time, 
primarily as a consequence of one or more events of magnet 
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strength change. A global pivot change for a node x, on the 
other hand, can be relevant to the nodes which are directly 
magnetized by x, since their own global pivot can change as a 
consequence. Hence, this section presents two completely 
distributed algorithms to keep track of magnetic field 
information in order to try to guarantee that any application 
message sent to a node x will be attracted to the node that 
either direct or indirectly magnetizes x with the strongest 
magnet. Naturally, there will always be a chance that an 
application message is not routed to the ideal (actual strongest) 
node because the latency of networks may delay the effect of 
update messages. 

Both algorithms work on the basis that there is no 
centralized component, so every node behaves autonomously 
and, at the same time, cooperatively with its neighbors with 
respect to the magnetization network, thus assuming that they 
can trust each other. That is achieved by defining a common 
data structure stored by each node in order to keep track of 
magnetic field information, and a common behavior to 
internally handle update messages, possibly issuing new ones. 
Each node is assumed to be uniquely identified and network 
messages take arbitrary finite time to be delivered, though they 
never get lost, duplicated or corrupted. In other words, the 
underlying network protocol does not need to guarantee order, 
but it has to be reliable. 

A. QuickPath 

QuickPath is the distributed self-stabilizing algorithm that 
propagates changes in magnetic fields by updating the strength 
perception of each node k in T*(x) using the first notification 
message that arrives at k. The consequence of doing so is that 
further application messages m containing some task that are 
sent to node x will be routed to P*(x) through the fastest path 
(in case there are more than one) determined at magnetic field 
update time. Once a node x receives a notification of magnetic 
field change, this notification is propagated to T(x)-{x} only if 
either P*(x) or F(P*(x)) have changed. In order to do so, 
QuickPath must avoid remagnetization of nodes. Therefore, if 
P*(y)=x, there must be only one path k1, k2, …, kn from y to x, 
in which P*( ki)=x (1 ≤ i ≤ n). All other nodes in T*(x) that do 
not belong to {k1, k2, …, kn} will be updated with alternative 
information (typically, second greatest strength and pivot) 
collected in the update notification path. 

This procedure produces two nice properties of QuickPath: 
(a) the algorithm always stabilizes within a finite amount of 
time for a finite number of nodes (in other words, the number 
of change notification messages of QuickPath is always finite 
regardless the network topology), and (b) the algorithm 
updates the perception each node x has of P*(x) generating 
acyclic (possibly non-deterministic) routing paths from x to 
P*(x).  The first property (a) is consequence of the fact that 
propagation of change notifications is only carried out if the 
perceived strength and/or pivot have changed. So, the same 
message arriving more than once at a node will not cause 
further propagations. Property (b) derives from the avoidance 
of remagnetization as explained above. 

The core of QuickPath can be described as follows. Let 
m={ rm,ra} be a change notification message where 

rm=<p,F(p)> and ra=<a,F(a)> are pairs with information 
about the known pivot (p) and alternative pivot and their 
respective strengths (rm.pivot = p and rm.strength=F(p)). Let 
lm and la be similar pairs with information about known pivot 
and pivot alternative before the receipt of m. QuickPath’s 
propagation algorithm is defined by: 

Node x upon receiving (rm, ra): 
begin 
 update local info about known pivot and alternativ e \ 
  using (rm,ra) 
 {lm’,la’} = information known after the update 
 if (lm’ ≠lm) or (la’ ≠la) then 
  {pm,pa} = {lm’,Max{la’,ra}} 
  if pm=pa then 
   pa = la’   // avoid sending repeated info 
  endif 
  if pm.strength=pa.strength and pm.pivot>pa.pivot then 
   swap(pm,pa) 
  endif 
  send {pm,pa} to T(x)-{x} 
 endif 
end 

The algorithm above always causes propagation of the best 
alternative pivot known along with de actual pivot information 
every time the local perception of the magnetic field changes. 
If the strengths of the main and alternative pivots are the same, 
always propagate consider pivot the one with smaller id, so to 
break symmetry and avoid propagation loops. Further details 
of QuickPath can be found in [4]. 

B. ShortPath 

In the ShortPath algorithm, an application message will 
traverse the shortest path in case there is more than one path 
between a node and its global pivot. A more detailed 
description of the algorithm can be found in [9], where the 
algorithm is applied for general message routing. The data 
structure stored by any node x consists of the following items: 

• F(x) : The strength of x. 
• S(x) : The set of nodes that directly magnetizes x. For 
each node s in S(x), the following fields are stored: (1) The 
identifier for s. (2) The identifier for the global pivot for s, 
that is, P*(s). (3) The distance from P*(s) to x with respect 
to the magnetization network. (4) A timestamp 
corresponding to the local time at s when P*(s) was set for 
the last time. Such timestamp is useful to discard related 
messages which arrive out of order. (5) A flag to indicate 
whether the global pivot information is either up-to-date or 
obsolete. 
• T(x) : The set of nodes directly magnetized by x. For 
each node t in T(x), the only information stored is the 
identifier for t. 
• K(x) : The set of nodes known by x which either direct 
or indirectly magnetizes x. Hence, K(x) is a subset of S*(x). 
Because of the distributed nature of the algorithm, a node x 
does not know S*(x) in advance, so it is discovered as 
update messages arrive at x. For each node k in K(x), the 
following fields are stored: (1) The identifier for k. (2) The 
strength of k currently known by x, denoted as Fx(k). (3) 
The timestamp corresponding to the local time at k when 
its strength changed to Fx(k). (4) The distance from k to x 
with respect to the magnetization network. 
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• P*(x) : The global pivot for x, which is determined 
according to the information available on K(x). 
• M(x) : A node m that belongs to S(x) such that the 
strength of the global pivot for m is maximum among all 
global pivots for nodes in S(x). This field is employed to 
route application messages, since it ultimately leads to 
P*(x). 

All messages exchanged by the algorithm flow according 
to the magnetization network. So, any message is sent from a 
given node x to a node y that is directly magnetized by x. 
There are two types of messages, namely strength change and 
pivot change, explained as follows.  

A message m of type strength change contains the 
following fields: (1) The identifier for a sender node x. (2) The 
identifier for a destination node y. (3) The identifier for a node 
s which is the source node whose strength change is being 
notified by m. (4) The strength of s being notified by m, 
denoted as F'(s). (5) A timestamp corresponding to the local 
time at s when its strength changed to F'(s). (6) A distance 
from s to y with respect to the magnetization network. Such 
distance is useful for two purposes: (i) to determine the 
shortest magnetization path between y and its global pivot in 
the case where more than one such path exist; (ii) to detect 
message loops that may occur due to cycles in the 
magnetization network. A strength change message m which is 
sent from node x to node y in order to notify about the strength 
of a node s is handled by node y in the following way: 

if the strength change of s notified by m is releva nt 
 according to timestamps in m and K(y) then 

1. register into K(y) all data about s contained in  m 
2. if the strength of s went down then 

2.1. send a strength change message to every node t  
in T(y) in order to notify about s 

2.2. if s happens to be P * (y) then 
2.2.1. update P * (y) and M(y) according to data on 

S(y) 
2.2.2. if any data regarding P * (y) has changed 

then send a pivot change message to every 
node t in T(y) to notify about P * (y) 

A message m of type pivot change contains the following 
fields: (1) The identifier for a sender node x which is the 
source node whose global pivot has changed and is being 
notified by m. (2) The identifier for a destination node y. (3) 
The identifier for a node(p which is the global pivot for x 
being notified by m. (4) A timestamp corresponding to the 
local time at x when p became the global pivot for x. (5) The 
strength of p at the time when such node became the global 
pivot for x, denoted as F'(p). (6) A timestamp corresponding to 
the local time at p when its strength changed to F'(p). (7) The 
distance from p to y. Similarly, to strength change messages, 
such distance is useful to determine shortest path and to detect 
message loops. A pivot change message m which is sent from 
node x to node y in order to notify about the global pivot p for 
node x is handled by node y in the following way: 

if the pivot change of x notified by m is relevant 
 according to timestamps in m and S(y) then 
1. register into S(y) all data about x and p contai ned in m 
2. if either the strength of p notified by m is sta le 
according to timestamps in m and K(y) or the distan ce from p 
to y notified by m is greater than such distance re gistered 
on K(y) 

  then mark x as obsolete on S(y) 
   else if the strength of p notified by m is relev ant             
   according to timestamps in m and K(y) then 

2.1. register into K(y) all data about p 
contained in m 
2.2. if the strength of p went down then send a 
strength change message to every node t in T(y) 
to notify about p 

3. update P * (y) and M(y) according to data on S(y) 
4. if any data regarding P * (y) has changed then send a pivot 
change message to every node t in T(y) to notify ab out P * (y) 
 

V.  SIMULATION RESULTS 

A preliminary evaluation of the algorithms described in 
Section IV is presented in this section. The results were 
obtained from simulation and they show the impact of 
magnetization network connectivity on the number of update 
messages, as well as on the time to complete an update cycle 
and the number of bytes transmitted in each edge. The strength 
of a node is computed from the amount of resources consumed 
(memory, CPU, storage space and so on – details are out of the 
scope of this paper) and it is represented by a value ranging 
from 0% (the node is completely busy) to 100% (the node is 
completely idle). For the sake of simplicity, each node has just 
one server and all servers are capable of processing any task. 
Simulation was carried out using basically the parameters 
presented in [3], by randomly scattering a number of nodes 
over a fixed-sized (1,500x500 meters) rectangular area. The 
magnetization network was built by assigning a random radial 
range of influence to each node x from 50 to 200 meters; 
nodes within that range are considered neighbors of x (i.e., 
they are under the magnetic influence of x). Next, the 
magnetization network was a connected graph by 
consecutively (a) generating its adjacency matrix; (b) 
computing its transitive closure; (c) generating the set of 
reachable nodes from each other node; (d) joining sets whose 
intersection is not empty; (e) joining remaining sets by 
connecting the nearest nodes belonging to each pair of sets. 
The number of nodes scattered over the fixed-sized area were 
multiple of 10, ranging from 10 to 100, in such a way that the 
magnetization network connectivity and the number of edges 
per node increased accordingly, thus providing a means to 
assess its impact on the number of protocol messages. For 
each number of nodes, 1,000 tests were carried out and the 
results presented in the sequence correspond to a simple 
average. Initially, F(x) = 100 for all x and the measures were 
taken after producing random strength drops in all nodes 
simultaneously at instant zero causing a destabilization of all 
magnetic fields. 

The number of messages can be large if small strength 
changes are considered. For that reason, a parameter (not 
shown in the algorithms), named threshold (th), was 
introduced to control when a strength change is relevant, i.e. 
when a strength change must be notified to the corresponding 
magnetized nodes. So, when the threshold is set to zero, 
absolutely any strength change is considered relevant, even the 
smallest. On the other hand, if, for instance, the threshold is 
set to 10 then a variation of strength is notified only if it is 
either higher or lower than 10 units of strength with respect to 
the last notified strength, otherwise such strength variation is 
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considered irrelevant. 
The graphs in Figures 1, 2 and 3 present the results 

obtained after applying QuickPath and ShortPath algorithms 
to a network with N=10 to 100 nodes.  

 

Figure 1.  Ideal Execution Delay till stabilization for QuickPath and 
ShortPath algorithms with threshold values (th) ranging from 0 to 30. 

The number of edges per node ranges from (N-1)/N (a tree, 
since the neighborhood graph is always connected) to 
approximately 6, as the number of nodes in the fixed-size area 
is increased. 

Assuming that a single message takes one time unit to be 
processed and transmitted over any communication link – the 
“ ideal time” [5] –, the graphs in Figure 1 permit to conclude 
that the total amount of ideal time units tends to stabilize as 
the number of edges per node grows, thus indicating excellent 
scalability. Moreover, this tendency is confirmed when the 
curve with the threshold value greater than zero is analyzed. 

Figure 2 shows the total amount of messages exchanged by 
all nodes in order to update all magnetic field information in 
the network. Notice that the growth of the number of messages 
in the whole network obeys a quadratic equation as the 
average number of edges per node grows. However, its growth 

per node (not shown) can be described by a linear equation, 
which demonstrates again the scalability of the algorithms. 
Also, the number of messages issued by QuickPath drops 
faster than ShortPath’s as the threshold increases, since 
QuickPath decides to carry out further propagations using a 
single condition that is greatly influenced by the threshold 
value. 

 

Figure 2.  Comparative overall number of messages exchanged by all nodes 
till magnetic fields stabilization in each algorithm, considering threshold 
values ranging from 0 to 30. 

The average number of bytes transmitted in each link is 
represented by the graphs in Figure 3. It can be noticed that 
the curves growth is close to linear, yet again indicating good 
scalability. Also, it should be noticed that, at instant zero, 
update messages are sent over every edge of the network 
while, at each time slot, up to the ideal execution delay, the 
number of bytes transmitted drops till it reaches zero. This 
happens because, at each step, only relevant information 
causes further propagations.  

In real-world situations (those with th>0), the behavior of 
all the curves indicate good scalability. Just to have an idea of 
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real values, in a network with 1.5 Mbps links, the stabilization 
delay is approximately 6 ms in the worst case (with a 
maximum initial destabilization and with th=0). 

 

Figure 3.  Average number of bytes transmitted in each link for both 
QuickPath and ShortPath algorithms with threshold values ranging from 0 to 
30. 

Other measures like local memory consumption and node 
workload also show similar results, i.e., linear growth, 
pointing to good scalability of both algorithms. 

VI.   CONCLUSION AND FUTURE WORK 

This paper presented a novel mechanism for load balancing 
based on the concept of virtual magnetic fields. There is no 
centralized global scheduler, as tasks are simply forwarded to 
the idlest source node, according to the corresponding 
magnetic field. Also, there is no particular component to 
manage workload information, as every relevant change of 
workload in a network element is perceived by all magnetized 
nodes, recursively, in order to update the corresponding 
magnetic field. Two distinct distributed autonomic algorithms 
for dynamically updating magnetic fields were verified by 

means of simulation so that their feasibility and performance 
could be evaluated. The results showed that the proposed 
mechanism is effective, requiring acceptable cost of storage, 
processing and communication. In fact, the simulation results 
permitted to conclude that both algorithms scale very well. 

The proposed mechanism can be further investigated, as 
follows. Firstly, the behavior of the mechanism should be 
verified in continuous systems operation, i.e., when tasks are 
started anywhere anytime, and also for the cases where nodes 
are heterogeneous. In such scenario, the efficiency of the 
proposed mechanism should be verified according to a 
theoretical analysis on the approximation ration to the 
optimum solution. Secondly, network faults should be injected 
to verify the correctness of the mechanism, as well as, the 
impact of such faults on its success rate. Thirdly, magnetic 
fields can be experienced in the context of cloud computing 
and, then, compared to standard solutions to scheduling and 
load balancing. The implementation of the proposed 
mechanism on top of a real-world platform will permit to 
assess its performance in terms of throughput of virtual 
transport connections, such as TCP and UDP. Fourthly, other 
important issues, such as trust, reputation and security should 
be considered. For example, an aspect to analyze is the effect 
of the transitive property of magnetization relationships on 
QoS and security requirements. Fifthly, the proposed 
mechanism can be directly compared to other load balancing 
techniques, such as those mentioned in Section II, and also 
techniques based on the swarm approach, on active networks 
and on mobile agents. 
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