
Scalability of Distributed Dynamic Load Balancing Mechanisms

Alcides Calsavara and Luiz A. P. Lima Jr.
Graduate Program on Computer Science (PPGIa)
Pontifical Catholic University of Paraná - PUCPR

Curitiba, Brazil
{alcides, laplima}@ppgia.pucpr.br

Abstract—A load balancing mechanism for large-scale systems
should be distributed and dynamic in order to accomplish
scalability and high availability. Also, it should be autonomic in
order to ease network management. The recent development in
utility computing architectures, such as the so-called cloud
computing platforms, has increased the demand for such
mechanisms. This paper investigates a novel approach, based on
the concept of virtual magnetic fields, by which ready-to-start
tasks launched on a network middleware are “attracted” to idle
nodes. The key issue on such approach is that the update of
workload information amongst the cooperating nodes of a
network must be a low-cost and an autonomic operation. Two
different update algorithms are presented, and their complexity
is assessed through simulation. The results show that both
algorithms fulfill the scalability requirement.

Keywords - load balancing; scalability; distributed algorithm;
autonomic systems

I. INTRODUCTION

The recent development in utility computing architectures,
such as the so-called cloud computing platforms, has increased
the demand for load balancing mechanisms, which provide for
scalability, high availability and ease of management, amongst
other requirements [6][7]. Typically, utility computing
architectures are deployed as large-scale complex systems,
where changes in resource availability happen very often and
in an unpredictable way because, in principle, a task launched
at some client node can be assigned to any server node, at any
time. Moreover, the geographically distributed nature of such
systems makes centralized assignment of tasks to specific
servers infeasible, as the corresponding scheduler would
become a network bottleneck and a single point of failure.
Therefore, a key issue in the development of utility computing
architectures is the provision of a distributed load balancing
mechanism which is able: firstly, to respond within an
approximately constant time regardless network size and
topology, i.e., it should scale well; secondly, to proceed
responding in the presence of failures such as node crash and
network partition, i.e., it should be highly available; and,
thirdly, to manage workload information change with a
minimum of, preferably none, human intervention, i.e., it
should be autonomic.

Several distributed load balancing mechanisms have been
previously reported in the literature, as discussed in Section II,
and, to the best of our knowledge, their suitability for utility

computing architectures are yet to be verified. This paper
investigates a novel approach, based on the concept of virtual
magnetic fields, by which ready-to-start tasks launched on a
network middleware are “attracted” to idle nodes.

The paper is organized as follows. Section II discusses
some related work and their weaknesses and strengths. A
generic formal model for Virtual Magnetic Fields is presented
in Section III, and two workload update algorithms (namely,
QuickPath and ShortPath) are described in Section IV, each
taking a different approach to the problem. The algorithms are
then evaluated and compared through simulation, and the
corresponding results are presented in Section V. Finally,
Section VI draws some conclusions and discusses future work.

II. RELATED WORK

The problem of load balancing in an open environment,
such as a P2P overlay network, is well discussed in [1],
where many complex related issues are listed. Amongst them,
the problem of resource discovery, which means to search for
idle CPU cycles in this case, is considered as extremely
difficult since such resource is perishable, cannot be shared,
and is dynamic. Moreover, the set of participating hosts is
potentially very large and highly dynamic. The authors
compared several methods to solve that problem and they
noticed that a hard problem to solve is that large jobs may
dominate, resulting in delays for scheduling smaller jobs.

The problem of load balancing is also well studied in the
context of grid computing. However, differently from P2P
computing, where cycles are obtained from ordinary users in a
distributed open environment, in grid computing, cycles are
normally obtained from a previously known set of users who
agreed to share such resource according to well-defined rules.
A corresponding scheduling algorithm enforces such rules
and, as well, takes care of proper load balancing. Thus, it can
be simpler than a scheduling algorithm for P2P computing. As
an example, a dynamic tree-based model to represent a grid
architecture in order to manage workload is proposed in [2].
Its main purpose is to improve response time of user's
submitted applications by ensuring maximal utilization of
available resources through a hierarchical load balancing
strategy and associated algorithms based on neighborhood
properties. The authors claim to have achieved a reduced
communication overhead induced by tasks transferring and
flow information. Such solution is based on a group manager
who receives, in a periodic way, workload information from

347

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

each network element.
A discussion on various load balancing algorithms in the

context of parallel computing can be found in [8]. The authors
also present a list of parameters which can be useful to analyze
those algorithms, including stability: the cost of workload
information transfer versus the benefits of a better overall load
balance. According to their research, static algorithms – like
round-robin and randomized algorithms – are more stable than
dynamic algorithms. However, dynamic algorithms show
better overall results than static algorithms when all analysis
parameters are considered, especially where fault tolerance is
a key requirement.

A comparative study of distributed load balancing
algorithms is presented in [7]. The authors discuss the
importance of such algorithms in the context of cloud
computing, although no particular mapping of the algorithms
to real computing platforms is presented. Three distinct
algorithms, namely Honeybee Foraging, Biased Random
Sampling and Active Clustering, are assessed through
simulation in an ideal scenario for cloud computing where
nodes are typed to accomplish for node heterogeneity, by
using task throughput as the main evaluation parameter.
According to their experiments, Honeybee Foraging has a
much better throughput than Biased Random Walk and Active
Clustering when the number of node types increases in a
fixed-size number of nodes; the throughput is slightly better
for Active Clustering than for Biased Random Walk. On the
other hand, when the number of nodes increases for a fixed-
size number of node types, Biased Random Walk and Active
Clustering present a much better throughput than Honeybee
Foraging, with a small advantage for Biased Random Walk.

III. PROPOSED LOAD BALANCING MECHANISM

Given any two linked nodes, say node S and node T, a
relationship between them can be defined in which S attracts
messages (which contain tasks) that were initially sent to T.
Metaphorically speaking, a node S that can attract messages
from a neighbor node T contains a virtual magnet and T is
within the virtual magnetic field produced by such magnet. So,
S and T have a magnetization relationship: a source of
attraction S magnetizes a target T. In other words, a
magnetization relationship from S to T implies that S can help
T to perform its tasks. In particular, any node that possesses a
magnet will attract messages to itself. Moreover, the
magnetization relationship is defined as transitive, so that, if
node x (directly) magnetizes node y and node y (directly)
magnetizes node z, then node x (indirectly) magnetizes node z.
As a result, the set of all nodes and their magnetization
relationships define an overlay network, named as
magnetization network. For the sake of simplicity, a
magnetization network is modeled as a directed graph where
each vertex corresponds to a network node and each edge
corresponds to a magnetization relationship. The set of nodes
which are directly magnetized by a node x, denoted as T(x), is
discovered by following the edges that leave x. Conversely,
the set of nodes that directly magnetize a node x, denoted as
S(x), is discovered by following the edges that enter x. By

definition, each node is self-magnetized, i.e. any node x
belongs to both S(x) and T(x). The set of nodes which are
either directly or indirectly magnetized by a node x, denoted as
T*(x), and, as well, the set of nodes which either directly or
indirectly magnetizes a node x, denoted as S*(x), are
determined simply by traversing magnetization relationships.

Each node x attracts messages according to an associated
strength or force, denoted as F(x), which is set according to
local workload information, such as the locally available
processing power. So, given a node x, the strength F(x) will be
determined according to some criteria and, in the general case,
it may change over time, as node and network properties
change and, as well, as messages are delivered to nodes. For
any node x, the strongest node in S*(x) is called the global
pivot for node x, denoted as P*(x). So, according to the
semantics of the magnetization relationship, any message sent
to a node x must be delivered to P*(x). Also, for any node k in
S(x), the partial pivot for x with respect to k, denoted as Pk(x),
is the global pivot for node k, that is, Pk(x)=P*(k). Thus, given
a node x, P*(x) is recursively computed as the node with
greatest strength between all nodes Pk(x) where k belongs to
S(x). Naturally, care must be taken to prevent infinite loops in
such computation, since cycles are allowed in the
magnetization network. Thus, supposing that tasks are
independent from each other and they do not depend on
remote data, in the proposed load balancing mechanism, an
application message that contains a ready-to-run task is simply
attracted, i.e., routed to the node corresponding to the global
pivot with respect to the node where the message is originally
created. From the implementation point of view, a
magnetization network is a network middleware where the life
cycle of any application message m accomplishes the
following steps:

1. m is created at the application level and sent to a node x;
2. m is routed from node x to a node y, where y belongs to

S*(x), such that F(y) is greater or equal to F(k), for any
k that belongs to S*(x), that is, y=P*(x);

3. m is delivered to the application level of node y;
4. m is properly handled at node y and, depending on the

application semantics, it is either eventually destroyed
or kept at node y forever.

Every time a change happens with respect to the strength
of any node, the magnetic field of such node must be properly
updated. Also, as a consequence, the global pivot for any node
may change, thus requiring, proper update of its magnetic
field, as well. In Section IV, two distinct update algorithms are
described and analyzed.

IV. WORKLOAD UPDATE ALGORITHMS

As discussed in Section III, a virtual magnetic field has to
be updated when the strength of the corresponding magnet
(i.e. its workload) changes significantly, since such magnet
strength can be relevant to nodes which are either direct or
indirectly magnetized by the node that hosts such magnet.
Also, any node can change its global pivot at any time,
primarily as a consequence of one or more events of magnet

348

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

strength change. A global pivot change for a node x, on the
other hand, can be relevant to the nodes which are directly
magnetized by x, since their own global pivot can change as a
consequence. Hence, this section presents two completely
distributed algorithms to keep track of magnetic field
information in order to try to guarantee that any application
message sent to a node x will be attracted to the node that
either direct or indirectly magnetizes x with the strongest
magnet. Naturally, there will always be a chance that an
application message is not routed to the ideal (actual strongest)
node because the latency of networks may delay the effect of
update messages.

Both algorithms work on the basis that there is no
centralized component, so every node behaves autonomously
and, at the same time, cooperatively with its neighbors with
respect to the magnetization network, thus assuming that they
can trust each other. That is achieved by defining a common
data structure stored by each node in order to keep track of
magnetic field information, and a common behavior to
internally handle update messages, possibly issuing new ones.
Each node is assumed to be uniquely identified and network
messages take arbitrary finite time to be delivered, though they
never get lost, duplicated or corrupted. In other words, the
underlying network protocol does not need to guarantee order,
but it has to be reliable.

A. QuickPath

QuickPath is the distributed self-stabilizing algorithm that
propagates changes in magnetic fields by updating the strength
perception of each node k in T*(x) using the first notification
message that arrives at k. The consequence of doing so is that
further application messages m containing some task that are
sent to node x will be routed to P*(x) through the fastest path
(in case there are more than one) determined at magnetic field
update time. Once a node x receives a notification of magnetic
field change, this notification is propagated to T(x)-{x} only if
either P*(x) or F(P*(x)) have changed. In order to do so,
QuickPath must avoid remagnetization of nodes. Therefore, if
P*(y)=x, there must be only one path k1, k2, …, kn from y to x,
in which P*(ki)=x (1 ≤ i ≤ n). All other nodes in T*(x) that do
not belong to {k1, k2, …, kn} will be updated with alternative
information (typically, second greatest strength and pivot)
collected in the update notification path.

This procedure produces two nice properties of QuickPath:
(a) the algorithm always stabilizes within a finite amount of
time for a finite number of nodes (in other words, the number
of change notification messages of QuickPath is always finite
regardless the network topology), and (b) the algorithm
updates the perception each node x has of P*(x) generating
acyclic (possibly non-deterministic) routing paths from x to
P*(x). The first property (a) is consequence of the fact that
propagation of change notifications is only carried out if the
perceived strength and/or pivot have changed. So, the same
message arriving more than once at a node will not cause
further propagations. Property (b) derives from the avoidance
of remagnetization as explained above.

The core of QuickPath can be described as follows. Let
m={ rm,ra} be a change notification message where

rm=<p,F(p)> and ra=<a,F(a)> are pairs with information
about the known pivot (p) and alternative pivot and their
respective strengths (rm.pivot = p and rm.strength=F(p)). Let
lm and la be similar pairs with information about known pivot
and pivot alternative before the receipt of m. QuickPath’s
propagation algorithm is defined by:

Node x upon receiving (rm, ra):
begin
 update local info about known pivot and alternativ e \
 using (rm,ra)
 {lm’,la’} = information known after the update
 if (lm’ ≠lm) or (la’ ≠la) then
 {pm,pa} = {lm’,Max{la’,ra}}
 if pm=pa then
 pa = la’ // avoid sending repeated info
 endif
 if pm.strength=pa.strength and pm.pivot>pa.pivot then
 swap(pm,pa)
 endif
 send {pm,pa} to T(x)-{x}
 endif
end

The algorithm above always causes propagation of the best
alternative pivot known along with de actual pivot information
every time the local perception of the magnetic field changes.
If the strengths of the main and alternative pivots are the same,
always propagate consider pivot the one with smaller id, so to
break symmetry and avoid propagation loops. Further details
of QuickPath can be found in [4].

B. ShortPath

In the ShortPath algorithm, an application message will
traverse the shortest path in case there is more than one path
between a node and its global pivot. A more detailed
description of the algorithm can be found in [9], where the
algorithm is applied for general message routing. The data
structure stored by any node x consists of the following items:

• F(x) : The strength of x.
• S(x) : The set of nodes that directly magnetizes x. For
each node s in S(x), the following fields are stored: (1) The
identifier for s. (2) The identifier for the global pivot for s,
that is, P*(s). (3) The distance from P*(s) to x with respect
to the magnetization network. (4) A timestamp
corresponding to the local time at s when P*(s) was set for
the last time. Such timestamp is useful to discard related
messages which arrive out of order. (5) A flag to indicate
whether the global pivot information is either up-to-date or
obsolete.
• T(x) : The set of nodes directly magnetized by x. For
each node t in T(x), the only information stored is the
identifier for t.
• K(x) : The set of nodes known by x which either direct
or indirectly magnetizes x. Hence, K(x) is a subset of S*(x).
Because of the distributed nature of the algorithm, a node x
does not know S*(x) in advance, so it is discovered as
update messages arrive at x. For each node k in K(x), the
following fields are stored: (1) The identifier for k. (2) The
strength of k currently known by x, denoted as Fx(k). (3)
The timestamp corresponding to the local time at k when
its strength changed to Fx(k). (4) The distance from k to x
with respect to the magnetization network.

349

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

• P*(x) : The global pivot for x, which is determined
according to the information available on K(x).
• M(x) : A node m that belongs to S(x) such that the
strength of the global pivot for m is maximum among all
global pivots for nodes in S(x). This field is employed to
route application messages, since it ultimately leads to
P*(x).

All messages exchanged by the algorithm flow according
to the magnetization network. So, any message is sent from a
given node x to a node y that is directly magnetized by x.
There are two types of messages, namely strength change and
pivot change, explained as follows.

A message m of type strength change contains the
following fields: (1) The identifier for a sender node x. (2) The
identifier for a destination node y. (3) The identifier for a node
s which is the source node whose strength change is being
notified by m. (4) The strength of s being notified by m,
denoted as F'(s). (5) A timestamp corresponding to the local
time at s when its strength changed to F'(s). (6) A distance
from s to y with respect to the magnetization network. Such
distance is useful for two purposes: (i) to determine the
shortest magnetization path between y and its global pivot in
the case where more than one such path exist; (ii) to detect
message loops that may occur due to cycles in the
magnetization network. A strength change message m which is
sent from node x to node y in order to notify about the strength
of a node s is handled by node y in the following way:

if the strength change of s notified by m is releva nt
 according to timestamps in m and K(y) then

1. register into K(y) all data about s contained in m
2. if the strength of s went down then

2.1. send a strength change message to every node t
in T(y) in order to notify about s

2.2. if s happens to be P * (y) then
2.2.1. update P * (y) and M(y) according to data on

S(y)
2.2.2. if any data regarding P * (y) has changed

then send a pivot change message to every
node t in T(y) to notify about P * (y)

A message m of type pivot change contains the following
fields: (1) The identifier for a sender node x which is the
source node whose global pivot has changed and is being
notified by m. (2) The identifier for a destination node y. (3)
The identifier for a node(p which is the global pivot for x
being notified by m. (4) A timestamp corresponding to the
local time at x when p became the global pivot for x. (5) The
strength of p at the time when such node became the global
pivot for x, denoted as F'(p). (6) A timestamp corresponding to
the local time at p when its strength changed to F'(p). (7) The
distance from p to y. Similarly, to strength change messages,
such distance is useful to determine shortest path and to detect
message loops. A pivot change message m which is sent from
node x to node y in order to notify about the global pivot p for
node x is handled by node y in the following way:

if the pivot change of x notified by m is relevant
 according to timestamps in m and S(y) then
1. register into S(y) all data about x and p contai ned in m
2. if either the strength of p notified by m is sta le
according to timestamps in m and K(y) or the distan ce from p
to y notified by m is greater than such distance re gistered
on K(y)

 then mark x as obsolete on S(y)
 else if the strength of p notified by m is relev ant
 according to timestamps in m and K(y) then

2.1. register into K(y) all data about p
contained in m
2.2. if the strength of p went down then send a
strength change message to every node t in T(y)
to notify about p

3. update P * (y) and M(y) according to data on S(y)
4. if any data regarding P * (y) has changed then send a pivot
change message to every node t in T(y) to notify ab out P * (y)

V. SIMULATION RESULTS

A preliminary evaluation of the algorithms described in
Section IV is presented in this section. The results were
obtained from simulation and they show the impact of
magnetization network connectivity on the number of update
messages, as well as on the time to complete an update cycle
and the number of bytes transmitted in each edge. The strength
of a node is computed from the amount of resources consumed
(memory, CPU, storage space and so on – details are out of the
scope of this paper) and it is represented by a value ranging
from 0% (the node is completely busy) to 100% (the node is
completely idle). For the sake of simplicity, each node has just
one server and all servers are capable of processing any task.
Simulation was carried out using basically the parameters
presented in [3], by randomly scattering a number of nodes
over a fixed-sized (1,500x500 meters) rectangular area. The
magnetization network was built by assigning a random radial
range of influence to each node x from 50 to 200 meters;
nodes within that range are considered neighbors of x (i.e.,
they are under the magnetic influence of x). Next, the
magnetization network was a connected graph by
consecutively (a) generating its adjacency matrix; (b)
computing its transitive closure; (c) generating the set of
reachable nodes from each other node; (d) joining sets whose
intersection is not empty; (e) joining remaining sets by
connecting the nearest nodes belonging to each pair of sets.
The number of nodes scattered over the fixed-sized area were
multiple of 10, ranging from 10 to 100, in such a way that the
magnetization network connectivity and the number of edges
per node increased accordingly, thus providing a means to
assess its impact on the number of protocol messages. For
each number of nodes, 1,000 tests were carried out and the
results presented in the sequence correspond to a simple
average. Initially, F(x) = 100 for all x and the measures were
taken after producing random strength drops in all nodes
simultaneously at instant zero causing a destabilization of all
magnetic fields.

The number of messages can be large if small strength
changes are considered. For that reason, a parameter (not
shown in the algorithms), named threshold (th), was
introduced to control when a strength change is relevant, i.e.
when a strength change must be notified to the corresponding
magnetized nodes. So, when the threshold is set to zero,
absolutely any strength change is considered relevant, even the
smallest. On the other hand, if, for instance, the threshold is
set to 10 then a variation of strength is notified only if it is
either higher or lower than 10 units of strength with respect to
the last notified strength, otherwise such strength variation is

350

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

considered irrelevant.
The graphs in Figures 1, 2 and 3 present the results

obtained after applying QuickPath and ShortPath algorithms
to a network with N=10 to 100 nodes.

Figure 1. Ideal Execution Delay till stabilization for QuickPath and
ShortPath algorithms with threshold values (th) ranging from 0 to 30.

The number of edges per node ranges from (N-1)/N (a tree,
since the neighborhood graph is always connected) to
approximately 6, as the number of nodes in the fixed-size area
is increased.

Assuming that a single message takes one time unit to be
processed and transmitted over any communication link – the
“ ideal time” [5] –, the graphs in Figure 1 permit to conclude
that the total amount of ideal time units tends to stabilize as
the number of edges per node grows, thus indicating excellent
scalability. Moreover, this tendency is confirmed when the
curve with the threshold value greater than zero is analyzed.

Figure 2 shows the total amount of messages exchanged by
all nodes in order to update all magnetic field information in
the network. Notice that the growth of the number of messages
in the whole network obeys a quadratic equation as the
average number of edges per node grows. However, its growth

per node (not shown) can be described by a linear equation,
which demonstrates again the scalability of the algorithms.
Also, the number of messages issued by QuickPath drops
faster than ShortPath’s as the threshold increases, since
QuickPath decides to carry out further propagations using a
single condition that is greatly influenced by the threshold
value.

Figure 2. Comparative overall number of messages exchanged by all nodes
till magnetic fields stabilization in each algorithm, considering threshold
values ranging from 0 to 30.

The average number of bytes transmitted in each link is
represented by the graphs in Figure 3. It can be noticed that
the curves growth is close to linear, yet again indicating good
scalability. Also, it should be noticed that, at instant zero,
update messages are sent over every edge of the network
while, at each time slot, up to the ideal execution delay, the
number of bytes transmitted drops till it reaches zero. This
happens because, at each step, only relevant information
causes further propagations.

In real-world situations (those with th>0), the behavior of
all the curves indicate good scalability. Just to have an idea of

351

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

real values, in a network with 1.5 Mbps links, the stabilization
delay is approximately 6 ms in the worst case (with a
maximum initial destabilization and with th=0).

Figure 3. Average number of bytes transmitted in each link for both
QuickPath and ShortPath algorithms with threshold values ranging from 0 to
30.

Other measures like local memory consumption and node
workload also show similar results, i.e., linear growth,
pointing to good scalability of both algorithms.

VI. CONCLUSION AND FUTURE WORK

This paper presented a novel mechanism for load balancing
based on the concept of virtual magnetic fields. There is no
centralized global scheduler, as tasks are simply forwarded to
the idlest source node, according to the corresponding
magnetic field. Also, there is no particular component to
manage workload information, as every relevant change of
workload in a network element is perceived by all magnetized
nodes, recursively, in order to update the corresponding
magnetic field. Two distinct distributed autonomic algorithms
for dynamically updating magnetic fields were verified by

means of simulation so that their feasibility and performance
could be evaluated. The results showed that the proposed
mechanism is effective, requiring acceptable cost of storage,
processing and communication. In fact, the simulation results
permitted to conclude that both algorithms scale very well.

The proposed mechanism can be further investigated, as
follows. Firstly, the behavior of the mechanism should be
verified in continuous systems operation, i.e., when tasks are
started anywhere anytime, and also for the cases where nodes
are heterogeneous. In such scenario, the efficiency of the
proposed mechanism should be verified according to a
theoretical analysis on the approximation ration to the
optimum solution. Secondly, network faults should be injected
to verify the correctness of the mechanism, as well as, the
impact of such faults on its success rate. Thirdly, magnetic
fields can be experienced in the context of cloud computing
and, then, compared to standard solutions to scheduling and
load balancing. The implementation of the proposed
mechanism on top of a real-world platform will permit to
assess its performance in terms of throughput of virtual
transport connections, such as TCP and UDP. Fourthly, other
important issues, such as trust, reputation and security should
be considered. For example, an aspect to analyze is the effect
of the transitive property of magnetization relationships on
QoS and security requirements. Fifthly, the proposed
mechanism can be directly compared to other load balancing
techniques, such as those mentioned in Section II, and also
techniques based on the swarm approach, on active networks
and on mobile agents.

ACKNOWLEDGMENT

This work was partially funded by Fundação Araucária
(367/2010 - Prot: 20.063) and CNPq (482593/2010-5).

REFERENCES
[1] Lo, V., Zappala, D., Zhou, D., Liu, Y., and Zhao, S. “Cluster computing

on the fly: P2P scheduling of idle cycles in the Internet”. In 3rd
International Workshop on Peer-to-Peer Systems (IPTPS 2004), pp. 227-
236, 2004.

[2] Yagoubi, B. and Slimani, Y. “Task load balancing strategy for grid
computing”, Journal of Computer Science, 3(3):186-194, 2007.

[3] Ting, Y.-W. and Chang, Y.-K. “A novel cooperative caching scheme for
wireless ad hoc networks: GroupCaching”. In International Conference
on Networking, Architecture and Storage (NAS 2007), pp. 62-68, 2007.

[4] Lima Jr., L.-A. and Calsavara, A. 2010. “Autonomic application-level
message delivery using virtual magnetic fields”. Journal of Network and
Systems Management, 18(1):97-116, March 2010.

[5] Santoro, N. “Design and Analysis of Distributed Algorithms”, Wiley,
2006, ISBN: 978-0-471-71997-7.

[6] Zhang, Q., Cheng, L., and Boutaba, R. “Cloud computing: state-of-the-
art and research challenges”. Journal of Internet Services and
Applications, 1(1):7-18, 2010.

[7] Randles, M., Lamb, D., and Taleb-Bendiab, A. “A comparative study
into distributed load balancing algorithms for cloud computing”. In IEEE
24th International Conference on Advanced Information Networking and
Applications, pp. 551-556, 2010.

[8] Sharma, S., Singh, S., and Sharma, M. “Performance analysis of load
balancing algorithms”. In World Academy of Science, Engineering and
Technology, 38:269-272, 2008.

[9] Calsavara, A. and Lima Jr., L.-A. “Routing based on message attraction”.
In 24th Advanced Information Networking and Applications Workshops
(WAINA), pp. 189-194, 2010.

352

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

