
Experimental Assessment of Routing for Grid and Cloud

Douglas O. Balen, Carlos B. Westphall, and Carla M. Westphall

Network and Management Laboratory

Federal University of Santa Catarina

Florianópolis – SC - Brazil

Emails: {douglasb, westphal, carlamw}@inf.ufsc.br

Abstract— Grid and Cloud computing technologies are being

applied as an affordable method to cluster computational

power together. These structures aim to support service

applications by grouping devices and shared resources in one

large computational unit. However, the management

complexity grows proportionally to the number of resources

being integrated. The paper claims to address the problems of

management, considering the routing problem in a particular

context. An experimental assessment of routing for grid and

cloud is presented. In addition, it introduces a proof-of-

concept implementation and case study scenarios.

Keywords - Grid and cloud computing; autonomic systems;

routing; network management.

I. INTRODUCTION

Since the creation of the Internet, systems have become

increasingly complex due to the scalability and availability

requirements posed by several of today's Web services. The

popularity of pervasive computing also contributes to

increase this complexity as new portable devices are

routinely released in the market and integrated into the

Internet Cloud.

According to IBM [1], traditionally, networks and

management systems are manually controlled processes

which demand one or more human operators to manage all

the computing systems aspects. In this environment, the

operator is strongly integrated to the management process

and his task is to execute low level system calls to solve

imminent problems. Even though this kind of management,

which keeps a human into the system, was appropriate in

the past, it cannot cope with modern systems.

The need to connect many heterogeneous systems is one

of the main necessities of grid and cloud computing,

introducing new levels of complexity. Even though it is a

complex environment, the configuration and management is

done by humans. This characteristic makes this task slow

and a subject of decision making problems. Even

administrator errors can occur at this task. In order to avoid

this problem a solution is needed in which the management

does not need human intervention. Observing this scenario,

a question emerges: How to manage efficiently and in an

automated way a heterogeneous and complex environment,

like grid or cloud?

In order to answer this question this work proposes an

experimental assessment of routing for grid and cloud

computing that supports autonomic computing paradigm.

The system has self-management properties, and redefines

the human operator's responsibilities, where their

experience is used to define general objectives and polices

to control the system instead of placing them in a decision

making position.

The rest of this work is organized as follows: Section II

provides some comments on autonomic computing, and

Section III discusses grid and cloud computing. Section IV

proposes an experimental assessment of routing for grid

and cloud computing and Section V describes the

implementation and tests performed.

II. AUTONOMIC COMPUTING

An autonomic system is able to regulate its own

functional parameters without incurring changes in the

main system objectives. This way an autonomic system can

optimize the use of its resources even under stress

conditions. As described by Horn [2], to achieve complete

autonomy a system must implement four main

characteristics: self-configuration, self-healing, self-

optimization, and self-protection.

The autonomic elements (AE), considered to be like the

bricks of a building, are the functional units of autonomic

systems. They control the resources and offer services to

the users and other AEs. They also manage the internal

behavior and its relations with other elements of the system,

like the policies established by humans or other AEs. The

autonomic behavior of the whole system emerges from the

numerous interactions between the autonomic elements. An

autonomic element consists of one or more managed

elements, linked to a single autonomic manager (AM) that

controls the managed elements, as shown in Figure 1. The

managed elements can be a hardware or software resource.

What differentiates an autonomic from a non-autonomic

system is the presence of the autonomic manager. Between

monitoring of managed elements and its external

environment, the autonomic manager is able to build and

execute plans based on the analysis of sent information,

which removes the need for human intervention.

341

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

Figure 1. Autonomic Computing Element

III. GRID AND CLOUD COMPUTING

Grid and cloud computing solutions aim to simplify the

access to resources (hardware and software) of a distributed

system, some times giving the idea that they form a unique

and powerful computer. This is achieved by techniques

such as virtualization. Resource virtualization [3]

minimizes the impact of heterogeneity by providing access

to well defined interfaces or to work units in terms of

virtual machines. Using this set of abstractions the user can

connect several different devices on his network.

The middleware is the software layer between the

operational system and the applications, which provides

some services that are needed by the applications. It creates

the grid environment and gives transparency to the

applications. There are several projects in this field,

including Globus [4], Gridbus [5], Legion [6], UNICORE

[7], Alchemi [8], OurGrid [9] and Grid-M [10].

TABLE I

SOME CURRENT MIDDLEWARES

Looking at the features supported by these systems in

Table 1, one can see that all listed middleware support

collaboration and resource allocation. However, only two

systems support execution on mobile environments. Only

one provides context sensibility. None of them supports

autonomic behavior. Due to a grid complexity, there is a

need for middleware that supports autonomic.

There is no consensus about what exactly cloud

computing is, but some characteristics are clearly repeated.

It is a new distributed computing and business paradigm. It

can provide computing power, software and storage

resources, and even a distributed data center infrastructure

on demand. To make these characteristics viable, it uses

existing technologies, such as virtualization, distributed

computing, grid computing, utility computing and the

network infrastructure provided by the Internet. In this

work, we are considering cloud computing, using our

middleware Grid-M [10], developed by the Laboratory on

Networks and Management.

IV. ROUTING FOR GRID AND CLOUD COMPUTING

Pervasive computing is a paradigm that aims to provide a

computing environment anywhere through the use of

virtualization of information, services and applications.

A middleware capable of supporting this new

computational environment must offer large scale

distributed computing that permits to integrate sensors and

mobile devices, always taking into consideration the

dynamics of the environment and the context sensibility.

The only middleware from those examined that presents

these characteristics is the Grid-M [10]. However, similarly

to others, it does not offer autonomic behavior. The

computational grids are known as a dynamic and

heterogeneous computational environment, even though,

the configuration of these environments is done manually

and susceptible to slow decision making or errors of the

administrators. In order to avoid this problem a solution is

needed to take the responsibility away from the human

administrators.

This work proposes a system for this kind of

environment, offering the opportunity to create a grid and

cloud computing with autonomic management.

A. Related Work

The system proposed intersects with fields that are being

the target of continuous academic research such as

autonomic systems, and grid and cloud computing.

However, the union of these initiatives is still new and

related work with the same focus is scarce. Some of the

projects in this area are:

• Liu et al. [11] proposes an autonomic architecture to

manage the heterogeneity and dynamics of the grid

environments. This architecture allows the behavior

of services and applications and its interactions to be

specified and adapted according to the high-level

rules. Everything is based on the requisites, states

and execution context of the applications;

• Beckstein et al. [12] presents the SOGOS

architecture aimed to support self-organization in

computational grids. This is allowed to work with

dynamic environments through semantic information

342

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

(metadata) that describes the involved organizations,

roles, rights of the participating agents and how they

interact to solve the problem. The decisions are

based on the metadata;

• Brennand et al. [13] presents the AutoMan, a system

which has the objective of offering certain levels of

automatic management to the computational grids in

pairs. Beyond this scope, it tries to optimize the

usage of resources on the grid, simplifying the

management activities at the same time;

• Buyya et al. [14] defines Cloud computing and

provides the architecture for creating market-

oriented Clouds by leveraging technologies such as

Virtual Machines (VMs);

• Xiao et al. [15] adapts web pages to small screen

devices. In addition, as the limited computing ability

and capacity of storage of wireless handheld devices,

it is extremely challenging to deploy existing web

page adaptation engine. By utilizing the large

computing and storage resource capabilities of

cloud computing infrastructures, a new wireless web

access mode is proposed; and

• Vieira et al. [16] shows a solution for intrusion

detection in grid and cloud computing environment

in which audit data is collected from the cloud and

two intrusion detection techniques are applied.

B. Autonomic Manager

 What allows a system to be called autonomic is a

presence of an autonomic manager. Through the monitoring

of managed elements and their external environment, the

autonomic manager is able to build and execute plans for

implementation, based on the analysis of sent information.

Therefore, the autonomic manager is responsible for

ensuring self-management, achieved when all its sub-areas

(self-configuration, self-regeneration, self-optimization and

self-protection) are guaranteed.

For this purpose, this paper suggests that the manager is

composed of some components, responsible for monitoring

the data sent by the managed elements and others elements

of the autonomic grid, analyze them, plan actions according

to their objectives and implement these actions, thus

achieving a high degree of autonomy.

C. Routing among the nodes

The number of mobile devices is constantly changing,

which can result in big changes in the overall system. For

the interconnection among the devices, it is essential to

keep the routing table consistent. The Routing Table

Management component has the goal of detecting routing

inconsistencies, but it cannot directly manipulate the

routing table. The latter is done by the grid’s routing

algorithm.

The system proposed here implements two routing

algorithms: one is based on the direct interconnection with

a neighbor node, and the other is based on the

interconnection among all nodes.

In grids, every element has its own routing table that

contains the destination (node name) and a metric (the

distance until the next element in hops). On the first

algorithm, each node connects to the neighbor node only.

Thus, the route to the neighbor node becomes a default

route (gateway) to the other elements in the grid. For

example, when an element wants to request a service, it

sends a request to the gateway, and the gateway is

responsible for forwarding the request to the others nodes

connected to it. This process is repeated until the

destination receives the request.

Figure 2. Routing algorithm based on the direct interconnection to the

neighbor node.

 Figure 2 illustrates how that algorithm works. On the left

side, node 5 is out of the grid, thus the other elements

cannot connect to it. As soon as node 5 joins the grid

through node 4, the latter includes a route to node 5 with

metric 1, i.e., directly connected.

 The other algorithm is a little different. As an element

joins the grid, all the other elements add a direct route to it

(metric 1). This makes the whole grid to be seen as a

complete graph. The propagation of the information about a

node joining or leaving the grid is coordinated by this same

algorithm in an autonomic way. When all the nodes

discover the topology changes, we have reached the

convergence.

 Figure 3 illustrates this situation. At first, node 5 is out of

the grid. Note that all other elements are directly connected

(metric 1). Then, node 5 is included. It does not matter

knowing which node it is connected to, because the

distance among all elements is the same. The first node to

notice its join-request is going to add a direct route to it,

sends its actual routing table, and finally informs all the

other elements that there is a new node in the grid.

343

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

Figure 3. Routing algorithm based on the complete connection among

nodes

It is the responsibility of the grid’s manager to decide

which algorithm to use. Remark that it is not possible to use

both algorithms at once, all nodes must use the same

algorithm.

V. IMPLEMENTATION AND TESTS

To this point, this paper described the theory upon which

the proposed system was based, the architecture details, its

components and interactions, and the routing algorithms.

To test it, we have implemented it on Grid-M [10]. Among

the main benefits of the Grid-M middleware are: it is open

source, it is easy to deal with small devices, it has a friendly

API and it is portable [10].

This section shows the results of a few quantity tests

performed during the implementation with the purpose of

showing the proposed system efficiency in different use

situations.

A grid of 30 nodes was created. These devices are

personal computers with an Intel Core Duo 1.66Ghz CPU,

2GB of RAM memory and running Window XP. All

devices ran the same programs.

A. Convergence Time

Here, we do three separated tests for the two kinds of

algorithms to test the convergence time. To a routing

protocol, convergence time means the time it takes for all

the routing tables to be updated when there is a change on

the topology (e.g., when a node joins the grid).

At the beginning, we thought the convergence time

would be a bottleneck, especially on the algorithm which

all nodes are directly connected since all routing tables are

spread among all nodes.

Analyzing Figure 4 though, which shows the

convergence time of the algorithm based on the direct

interconnection to the neighbor node, we notice that the

convergence time is really small and almost constant

(varying between 10ms and 14ms). This happens because

the only processing needed is the inclusion of the

neighbor’s route in the routing table. No data about a

joining node is passed along. The time was taken when a

new element joined the grid. The elements were added in

the following manner: node 2 connects to node 1, node 3

connects to node 2, node 4 connects to node 3, and

successively.

Figure 4. Convergence time – Algorithm based on the direct

interconnection to the neighbor node

 On the other hand, on the other algorithm, when a node

joins the grid, all elements’ routing tables are updated with

the new information. The convergence time of this

algorithm is shown on Figure 5. The data was obtained the

same way as the previous test.

 Figure 5 shows that the lowest convergence time was

achieved on test 2, after the insertion of node 6, and the

highest convergence time was achieved on test 2 as well,

after the insertion of node 10. As you can see, as more

nodes get in the grid, the convergence time increases, but

on an ease pace (the average time at the beginning was

138ms and at the end it was 144ms). As the convergence

time was still low in this case, we chose this algorithm

because its response time during tasks executions is a lot

lower.

Figure 5. Convergence time – Algorithm based on the complete

connection among the nodes

344

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

B. Response time of the tasks execution

Another important point is the response time of a

service request. The response time refers to the sum of two

distinct tasks: the service search time and the task execution

time.

The task search time is the time a requester spent to

search for a determined service in the grid to find who has

it and who has the best available resource percentage. So, at

the end of the search, we have the best candidate for the

execution and a task is created with him being the

destination. All the process of search and request

redirections is managed and controlled by the Autonomic

Manager.

With the intention of testing the response time of the

service execution requests, we have used the same structure

of the previous test (30 equal nodes). The test consists in

the node 1 request a service to the grid. The only node that

has it is the node 30.

We would like to clarify that the response time depends

on the routing algorithm type utilized. As we use the

algorithm based on the direct interconnection with the

neighbor node, the search takes longer if we compare it to

the algorithm based on the complete interconnection among

nodes. This happens because the latter has a complete view

of the topology. Therefore, the search in all nodes can be

done in parallel (by using threads). Case we use the first

algorithm, the search request must pass through the

intermediate nodes before getting to its destination. The test

results using both algorithms are shown on Figure 6.

As expected, the response time of the algorithm based

on the restrict connection to the neighbor node is longer

than the other one.

Figure 6. Response time results

C. Efficiency of the services replication

On the previous test, the node 1 requested a service to

the grid. When the search was done, it was verified that

only node 30 offered the determined service. As it was a

test and we knew that there was only one requester, we

discard the possibility of the node 30 being a bottleneck due

to it being overloaded. However, what would happen if the

other 29 nodes requested the same service? On this case,

there would be the possibility of the node 30 not being able

to answer to all requests on the best possible way, lowering

the performance of the grid. At this time the node 30, aware

that he is overloaded, would send a replication request to

find an available element that offers the same service. Note

that the replication is necessary only once. After that, the

node that received the service will start answering to other

requests about the same service.

Figure 7 shows the resources used by 4 elements during

the tests. We got this information from the Grid-M logs.

Figure 7. The resources utilized by the nodes and the services replications

On this test, nodes 1 and 3 make requests all the time to a

service that initially only node 2 provides. After a while,

node 2 becomes overloaded (the free resources percentage

gets lower than 18%) and then a service replication occurs,

from node 2 that has the service, to node 4 that was the

node which had more free resources at that time. After that,

the service requests are answered by node 4 as well,

distributing the processing of these requests. Analyzing the

chart (Figure 7), we observe that the algorithm eliminated

the eminent saturation of the node 2 and the possible

creation of a bottleneck in the grid.

VI. CONCLUSION

In this paper, we have proposed an experimental

assessment of routing for grid and cloud computing. The

convergence time of the algorithm based on the direct

interconnection to the neighbor node is really small and

almost constant. As expected, the response time of the

algorithm based on the restrict connection to the neighbor

node is longer than the other one. The big question to be

answered was: How to make a heterogeneous environment

and with huge complexity, like grid and cloud computing,

not being managed manually, which is inefficient? The

solution proposal is the creation of autonomic elements

acting as intelligent agents, capable of feel the environment

where they are and act the same according to pre-defined

policies.

345

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

REFERENCES

[1] IBM-Corporation. An architectural blueprint for autonomic

computing.

http://www.ibm.com/developerworks/autonomic/library/ac-

summary/ac-blue.html

[2] P. Horn. Autonomic computing: IBM’s perspective on the state of

information technology. Technical report, International Business

Machines Corporation, Armonk, NY, USA, 2001.

[3] J. Joseph and M. Ernest. Evolution of grid computing architecture

and grid adoption models. IBM Systems Journal, 2004, 43(4).

[4] I. Foster and C. Kesselman. Globus: A metacomputing

infrastructure toolkit. Internacional Journal of Supercomputer

Applications, 1997, 11(2), pp. 115–128.

[5] R. Buyya. Market-oriented grid computing and the gridbus

middleware. 16th International Conference on Advanced

Computing and Communications, 2008. ADCOM 2008.

[6] A. Grimshaw and A. Natrajan. Legion: Lessons learned building a

grid operating system. Proceedings of the IEEE, 2005, 93(3), pp.

589–603.

[7] UNICORE. UNIform Interface to Computer Resources.

http://www.unicore.eu/ (last access on Dec. 2010).

[8] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal. Alchemi: A

.net-based grid computing framework and its integration into

global grids, pp. 1-17, 2005. (informal publication).

http://www.cloudbus.org/papers/Alchemi.pdf

[9] F. Brasileiro, E. C. de Araujo, W. Voorsluys, M. Oliveira, and F.

Figueiredo, "Bridging the High Performance Computing Gap: the

OurGrid Experience," ccgrid, pp.817-822, Seventh IEEE

International Symposium on Cluster Computing and the Grid

(CCGrid '07), 2007.

[10] H. A. Franke, C. Rolim, C. B. Westphall, F. Koch, and D. O.

Balen. Grid-M: Middleware to integrate mobile devices, sensors

and grid computing. The Third International Conference on

Wireless and Mobile Comunications – ICWMC 2007.

[11] H. Liu,V. Bhat, M. Parashar, and S. Klasky. An autonomic service

architecture for self-managing grid applications. InGRID’05:

Proceedings of the 6th IEEE/ACM Internation Workshop on Grid

Computing, 2005.

[12] C. Beckstein, P. Dittrich, C. Erfurth, D. Fey, B. Konig-Ries, M.

Mundhenk, and H. Sack. Sogos-distributed meta level architecture

for the self-organizing grid of services. In MDM’06: Proceedings

of the 7th International Conference on Mobile Data Management,

2006.

[13] C. Brennand, M. Spohn, A. Souza, G. Ferreira, D. Candeia, G.

Germoglio, and F. Santos. Automan: Autonomic Management on

Ourgrid. V Workshop for Grid Computing and Aplications, 2007.

[14] R. Buyya, C. S. Yeo, and S. Venugopal, Market-Oriented Cloud

Computing: Vision, Hype, and Reality for Delivering IT Services

as Computing Utilities. 10th IEEE International Conference In

High Performance Computing and Communications, 2008.

[15] Y. Xiao, Y. Tao, and Q. Li, A New Wireless Web Access Mode

Based on Cloud Computing. Pacific-Asia Workshop on

Computational Intelligence and Industrial Application, 2008.

[16] K. Vieira, A. Schulter, C. B. Westphall, and C. M. Westphall,

“Intrusion Detection for Grid and Cloud Computing”. IEEE IT

Professional Magazine. V.12 (4). pp. 38-43. 2010.

346

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

