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Abstract—Normalized Systems theory has recently been pro-
posed to engineer evolvable information systems. This theory
includes also a potential of improvement in control software for
the automation of production systems. In production control
systems, the end user has always the right to have a copy of
the source code. However, it is seldom manageable to fluently
add changes to these systems, due to the same problems
as information systems: couplings, side-effects, combinatorial
effects, etc. Finding solutions for these problems include several
aspects. Some standards like ISA 88 suggest the use of building
blocks on macro level. The OPC UA standard enables these
building blocks to communicate and interoperate over the
borders of the hosting controllers via local networks or the
internet. Consequently, production data collection, manual
interfaces and recipe driven production control systems become
web service based. Finally the Normalized Systems’ theory
suggests how these building blocks should be coded on micro
level. This paper introduces a control module, based on a
design pattern for flexible manufacturing and the principles
of Normalized Systems for evolvable software.

Keywords-Normalized Systems, Automation control software,
PLC, ISA 88, IEC 61131-3, OPC UA.

I. INTRODUCTION

Industrial communication has in the last 10 years become
a key point in modern industry. A continually growing num-
ber of manufacturing companies desire, even require, totally
integrated systems. This integration extends from electronic
automation field devices (PLC: Programmable Logical Con-
troller, PAC: Programmable Automation Controller, DCS:
Distributed Control System) to Human Machine Interfaces
(HMI) culminating into supervision, trending, and alarm
software applications (SCADA: Supervisory Control And
Data Acquisition and MES: Manufacturing Execution Sys-
tem). Industrial communication is implemented from field
management via process management to Enterprise Re-
source Planning (ERP) applications (business management).

Just like transaction support software and decision support
software systems, production automation systems have also
a tendency to evolve to integrated systems. Tracking and
tracing production data is not only improving the business, in
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some cases it is also required by law (e.g., sectors like food
and pharmacy). Because of the scope of totally integrated
systems (combination of information systems and production
systems) the amount of suitable single vendor systems is
low or even non-existing. Large vendor companies may
offer total integrated solutions, but mostly these solutions
are assembled with products with another history (merged
companies or SMEs - Small and Medium Enterprises -
bought by larger groups). For the engineer, this situation
is very similar to a multi-vendor environment.

Globalisation is bringing opportunities for companies who
are focussing their target market on small niches, which
make part of a totally integrated system. These products
can expand single-vendor systems, or can become part of a
multi-vendor system. Moreover, strictly single-vendor sys-
tems are rather rare in modern industry. Sometimes they are
built from scratch, but once improvements or expansions are
needed, products of multiple vendors might bring solutions.
Over time, single vendor systems often evolve to multi
vendor systems. Minor changes, often optimizations or im-
provements of the original concept, occur short after taking-
in-service. Major changes occur when new economical or
technological requirements are introduced over time. As
a consequence, software projects should not only satisfy
the current requirements, but should also support future
requirements [1].

The scope of changes in production control systems, or
the impact of changes to related modules in a multi-vendor
environment is typically smaller than in ERP systems and
large supply chain systems. However, there is a similarity of
the problem of evolvability [2]. Since the possibilities of in-
dustrial communication increases, we anticipate to encounter
similar problems like in business information systems. The
more the tendency of vertical integration (field devices up to
ERP systems) increases, the more the impact of changes on
production level can increase. Since OPC UA (interOpera-
bility Productivity and Collaboration - Unified Architecture)
enables web based communication between field controllers
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and all types of software platforms, over local networks
or the internet, the amount of combinatorial effects after a
change can rise significantly (change propagation). Based
on the systems theoretic concept of stability, a software
engineering theory is proposed to engineer evolvable in-
formation systems [1]. Although the theory was developed
towards business information systems, it has an abstract and
generic fundament. Consequently, it should be applicable for
production automation control systems too.

This paper introduces a proof of principle on how the
software of a production control module can be developed
following the principles of Normalized Systems. Some de-
velopers could recognize parts of this approach, because it
needs to be emphasized that each of the Normalized Systems
theorems is not completely new, and even relates to the
heuristic knowledge of developers. However, formulating
this knowledge as theorems that cause combinatorial effects,
supports systematic identification of these combinatorial ef-
fects so that systems can be built with minimal combinatorial
effects [1]. Normalized Systems allows the handling of a
business flow of entities like orders, parts or products. For
these process-oriented solutions 5 patterns for evolvable
software elements are defined [2]. In this paper however,
we focus on the control of a piece of physical equipment
in an automated production system. The code of an ISA 88
based control module is not process-oriented but equipment-
oriented. The focus of this code is not about how a product
has to be made, but about how the equipment has to be
controlled. Consequently, we need another type of design
patterns. Moreover, we need another type of programming
languages because of the nature of industrial controllers. In
Section II, we will give an overview of industrial standards
on which industrial production control modules can be
based. These standards include software modelling and de-
sign patterns, communication capabilities, and programming
languages. In Section III, an evolvable control module is
introduced, including a discussion of change drivers. In
Section IV, some changes are implemented. We tested in
our lab industrial automation the robustness of the control
module against these changes. In Section V we evaluated
the proof of principle against the principles of Normalized
Systems. During this evaluation, the Design Theorems for
Software Stability [2] are used as criteria.

II. INDUSTRIAL STANDARDS

Manufacturing operations can be generally classified into
one of three different processes: discrete, continuous, and
batch. On October 23, 1995, the SP88 committee released
the ANSI/ISA-S88.01-1995 standard [3] to guideline the
design, control and operation of batch manufacturing plants.
The demand of the users for production systems with a
high flexibility and a high potential of making product
variants, became important. Process engineers focus on how
to handle the material flow to meet the specs of the end-
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product. Control system experts focus on how to control
equipment. To improve the cooperation of both groups, the
SP88 committee had isolated equipment from recipes. This
provides the possibility of process engineers to make process
changes directly, without the help of a control system expert
(reducing the setup-costs). This provides also the ability of
producing many product-variants with the same installation
(increasing the target market). Expensive equipment can be
shared by different production units (enough reducing the
production costs). This approach opened the way to what has
been called “agile manufacturing”. The utilization of ISA 88
data models simplify the design process considerably [7].

Despite the useful ISA 88 terminology and models to
structure flexible manufacturing, different interpretations are
possible. The standard does not specify how the abstract
models should be applied in real applications. Implementers
sometimes develop recipes and procedures, which are far
more complex than necessary. Since 1995 there have been
many applications and a commonly accepted method for
implementing the standard has emerged. The S88 design
patterns [5] of Dennis Brandl (2007) address this. These
patterns might decrease the tension of implementers to make
their recipes and procedures more complex than neces-
sary. Unfortunately the part, which describes the connection
between computer network systems and control network
systems, is limited.

This is where the OPC interfaces come into play. OPC
UA is considered one of the most promising incarnations of
WS technology for automation. From the very beginning,
OPC UA was intended as system interface, aggregating and
propagating data through different application domains. Its
design, thus, takes into account that the field of application
for industrial communication differs from regular IT com-
munication: embedded automation devices such as PLCs,
PACs or DCSs provide another environment for web-based
communication than standard PCs.

The fundamental components of OPC UA are different
transport mechanisms and a unified data modelling [4]. The
transport mechanisms tackle platform independent commu-
nication with the possibility of optimization with regard
to the involved systems. While communication between
industrial controllers or embedded systems may require
high speed, business management applications may need
high data volumes and firewall friendly transport. As a
consequence, two data encoding schemes are defined, named
OPC UA Binary and OPC UA XML [9].

Data modelling defines the rules and base building blocks
necessary to expose an information model with OPC UA.
Rather than support data communication, it facilitates the
conversion of data to information. The OPC Foundation
avoids the introduction of unnecessary new formalisms.
Instead, definitions of complex data based on related in-
dustrial standards are encouraged. Examples are FDI (Field
Device Integration), EDDL (Electronic Device Description
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Language), IEC 61131-3 (PLC programming languages) and
ISA 88 (batch control). Basically, an OPC UA information
model has nodes and references between nodes. Nodes
can contain both online data (instances) and meta data
(classes). OPC UA clients can browse through the nodes of
an OPC UA server via the references, and gather semantic
information about the underlying industrial standards. For
clients, it is very powerful to program against these complex
data types, it brings a potential of code-reuse.

The lowest level of the ISA 88 control hierarchy is the
control module. Control modules perform two primary func-
tions: they provide an interface with the physical devices,
and they contain basic control algorithms. Control modules
encapsulate basic control algorithms and the I/O interface
to the actual physical devices. The most common method
of programming control modules is any of the IEC 61131-
3 programming languages [6]. This standard specifies the
syntax and semantics of a unified suite of programming
languages for programmable controllers. These consist of
two textual languages, IL (Instruction List, has some sim-
ilarity with assembler) and ST (Structured Text, has some
similarity with C or pascal), and two graphical languages,
LD (Ladder Diagram, has some similarity with electrical
schemes) and FBD (Function Block Diagram, is based
on boolean algebra). Industrial programmable controllers
are based on divers, often dedicated, operating systems
and vendor-dependent programming environments. Besides,
earlier days every controller had its own programming
language. The release of IEC 61131-3 addresses the pro-
blem of too many different programming languages for
similar solutions with controllers of different brands. The
code of the proof of principle of this paper is written in
these languages. However, we emphasize that using the
IEC 61131-3 languages is not enough for a ’best practice’
implementation. One of the available modelling concepts
to analyse the problem and structuring the solution will
considerable improve an implementation [11].

III. EVOLVABLE CONTROL MODULES

An invalid function call because the function meanwhile
has an updated parameter set is an issue what happens in
PLC programming as well as in IT software. Other prob-
lems on evolving software occur as well. One of the most
annoying problems an automation service engineer confronts
is the fear to cause side-effects with an intervention. They
have often no clear view on how many places they have
to adapt code to be consistent with the consequences of
a change. Some development environments provide tools
like cross references to address this, but the behaviour of
a development environment is vendor-dependent, although
the languages are typically based on IEC 61131-3.

In this section we introduce a control module for a motor.
We aim to make this motor control software module as
generic as possible. In stead of introducing new formalisms,
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we based our proof of principle on existing standards. For
the modelling, we used concepts of ISA 88 (IEC 61512),
for interfacing, we used OPC UA (IEC 62541), and for
coding we used IEC 61131-3. More specific, we used the
S88 design patterns [S] (derived from ISA 88) because
these patterns can be used not only in batch control, but
also for discrete and continue manufacturing. None of these
standards contain suggestions on how the internal code of
a control module should be structured. We introduce a
granular structure following the theorems of Normalized
Systems. Since the process-oriented approach of evolvable
elements for business software [2] is not applicable in
our equipment-oriented controller code, we neglect these
patterns and use design patterns based on ISA 88 [5]. Every
task (action), which must be done by the control module, is
coded in a separated POU (Program Organization Unit, sort
of subroutine [6]).

In the most elementary form control modules are de-
vice drivers, but they provide extra functions like man-
ual/automatic mode, interlocking (permissions), alarming,
simulation, etc. [8]. We used the design pattern of Figure
1. This state machine is very simple, when the control
systems powers on, the motor comes in the ’off’ state. It
can be started and stopped via the "on’ and ’off” commands.
Hardware failures can cause the motor to go to the ’failed’
state, from where a ‘reset’ command is needed to return to
the ’off” state. The concept of this ’failed’ state brings us a
very important benefit: process safety. Besides, it forms the
base for failure notification [10]. This functionality is im-
plemented in a function block we called ’StateAction’. This
function block has only one parameter we called 'Device’.
The datatype of this parameter is called *DeviceDataType’.
Only a part of this complex datatype is used in the function
block ’StateAction’. We called this part *StateType’ (Figure
2). For every other action like controlling the hardware or
handling the modes (see further), we have a similar datatype.
All action related datatypes are merged into one overall
datatype. Exchange of data between the actions can be done
via this DeviceDataType (stamp coupling), however without
crossing the borders of the control module.

It is obvious that both commands (arrows) and states
of Figure 1 are represented as a boolean value in this
datatype. One parameter is passing all the necessary data for
performing one task: the state action of the control module.

The primary function of our control module is not fulfilled
yet: controlling the physical device, in our example the
motor, or more general the device hardware. Controlling
the hardware is another task in another function block.
This function block is receiving the same single parameter
"Device’, but it uses another part. The content of the code
and the datatype is again very limited (Figure 3). This is
one of the key-points of normalized systems: building the
application starting from very small modules, performing
only one task.
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Figure 1: Example of a motor state model [5]

The complex datatype *DeviceDataType’ encapsulates the
datatypes ’StateType’ and ’HardwareType’. The resulting
building block, the Control Module, is connected to only
one parameter: an instance of DeviceDataType’. This block
contains only one action: DeviceAction. This complex action
contains two actions: StateAction and HardwareAction, each
performing one task. But what is a task? We propose that
the definition of tasks can be derived from change drivers.
Every interface to our control module can cause or have
influence of a change. In our case the change drivers are
exposed in Figure 4.

The change driver ’physical equipment’ forms the base
for the task 'HardwareAction’. The state commands and
states forms the base for the task ’StateAction’. Figure 4
suggest another change driver. If we allow low level HMI,
the operator becomes the incarnation of a change driver.
This means that we add a state machine (ModeAction)
to deal with manual/automatic modes, and a subroutine
(CommandAction) to separate the commands of the operator
(manual commands) and the commands of a higher entity
in the automation control project (automatic commands).
Following ISA 88 this should be an Equipment Module.

Change drivers have influence on the data structure. To
add the functionality above, we need a part "ModeType’ and
’CommandType’ in the complex datatype *DeviceDataType’.
So we end up in a Control Module with 4 datatypes
(StateType, HardwareType, ModeType, CommandType) en-
capsulated by the datatype DeviceDataType (Figure 5).

These datatypes are passing all actions, but have all one
corresponding action: StateAction, HardwareAction, Mode-
Action and CommandAction.

IV. ADDING CHANGES

A way to test evolvability is just adding changes and
evaluating the impact of these changes. We have 3 actors
on our control module: the operator (manual mode), the
hardware and the equipment module (automatic mode).
Every actor can change his behaviour or can have new
expectations or can do new requests. Moreover, one should
be able to debug without causing side-effects on other or
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Figure 2: Structure of the datatype ’StateType’

older features. In general, we start with a first version. Then
we maintain one or more running instances of the control
module with initial expected behaviour. Second, we consider
the addition of a change, and consequently a possible update
of the datatype, existing actions or introduction of a new
action. Finally, we make a new instance, check the new
functionality and the initial expected behaviour of the older
instances as well.

We considered the situation that manual operations could
harm automatic procedures. For instance, stopping our motor
manually could confuse an algorithm if it is happening
during a dosing action. To prevent this, we add the feature
manual lock. This means, we still support manual mode, but
we disable manual mode during the period a software entity
like an equipment module requires this.

Without removing the calls of instances, which dont need
this feature, we added a command ’ManLockcmd’ to the
datatype ’CommandType’. Consequently, this new command
becomes part of the overall ’DeviceDataType’, so it is
passing all actions, but only ModeAction is doing something
with this new command.

We considered the situation of a motor instance, which
must be able to run in two directions. Again, without
removing the calls of instances of single-direction motors,
we added a hardware tag ‘reverse’ to the HardwareType and
the commands *"ManReverseCmd’ and ’ AutoReverseCmd’ to
the CommandType. In the StateType the tags 'ReverseCmd’
and ’ReverseState’ were added. As expected, we had to
adapt some code in the function blocks "HardwareAction’,
’CommandAction’ and ’StateAction’.

On a similar way, we performed other changes like
the use of another fieldbus, which required mappings to
new hardware addresses. We also introduced a new action
SimAction, made (for software testing purposes) to neglect
the Fault command (FaultCmd) if no hardware is connected.
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Figure 3: HardwareAction and HardwareType

V. EVALUATION ACCORDING TO THE
PRINCIPLES OF NORMALIZED SYSTEMS

Since it is not possible to anticipate on all changes, we
cannot test all future change cases. Besides, we are aware
that our proof of principle is performed on lab scale, and
other, real life situations can occur in a real industrial au-
tomation project. In our evaluation we made the assumption
that code, following the principles of normalized systems
will evolve better than systems, which are not respecting
these principles. As a consequence, we checked whether the
code is respecting these rules.

First, we consider the separation of concerns. An action
entity can only contain a single task. In contrast with
industrial usage, where a control module is often just one
POU, we made 4 (or more) separate function blocks who
are encapsulated by one overall module. For the definition
of a task, we based the primary actions on change drivers.
Later on, we added the simulation action, which was not
directly related to a change driver and thus could be added.

Second, we looked at data version transparency. Data
entities that are received as input or produced as output by
action entities, need to exhibit version transparency. Only
one complex parameter is passed to the control module.
Obviously deleting or changing the name of the parameter
would destroy existing running connections. Whether adding
a parameter would destroy a running instance is vendor-
dependent. We stick to one parameter during all changes.
Four (later on five) structs are nested. All actions can see
the data passing, but every action just picks the data needed
for the specific task. We never changed tags, we only added
tags. Because of this, earlier instance calls were not affected
by data type conflicts.

Third, following the theorem of action version trans-
parency: action entities that are called by other action enti-
ties, need to exhibit version transparency. When we changed
code, we always bewared for not harming the original func-
tionality. For example, we never erased a state or transition in
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Figure 4: Change drivers of a control module [5]

a state machine, we only added new states and/or transitions.
More specific, besides the new functionality, we checked the
initial behaviour of existing instances as well.

Fourth, separation of states: the calling of an action entity
by another entity needs to exhibit state keeping. It is obvious
that the StateAction is managing his state, and keeping it
in the related StateType instance. The CommandAction is
resulting in a command for the StateAction. The Hard-
wareAction is resulting in a command for the physical
hardware. Finally, similar with the StateAction it is obvious
that also the ModeAction is managing his state, and keeping
it in the related ModeType instance. Besides, the later
on added SimAction results in the tags *SimOnState’ and
"SimOffState’.

VI. CONCLUSION AND FUTURE WORK

Evolvability of software systems is important for IT
systems, but also a relevant quality value for industrial
automation systems. Function blocks of automation sys-
tems are programmed close to the processor capabilities.
For example, there is a similarity with the IEC 61131-3
language Instruction List (IL) and assembler. The key point
of Normalized Systems is a large granularity of software
modules, with a structure, which is strictly disciplined to
the related theorems. As a consequence, making a proof of
principle close to the processor is a very informative exercise
to concretize the principles of normalized systems. Besides,
this approach can be of great value for improving the quality
of industrial automation software projects.

It must be stated that implementing these concepts were
highly facilitated by the use of existing industrial standards.
They provide us methods to develop the macro-design of
software modules, while Normalized Systems provide us
guidelines for the micro-design of the actions and data struc-
tures encapsulated in these modules. Adding functionality
or even adding an action to a (macro) building block, in
our case the Control Module, can be done with a limited
impact (micro manageable) towards other (macro) entities
(bounded impact). To define the most basic actions (tasks)
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Figure 5: Structure DeviceDatatype

and data structures, the identification of the change drivers of
the concerned entity, in our case represented by the different
interfaces to external entities, is essential. This confirms the
first theorem for software stability, separation of concerns.

Our future work will be focused on other (macro) ele-
ments of ISA 88, which contain other types of control. A
Control Module contains mainly basic control, together with
a limited coordination control (the mode). We will study on
elements with more advanced coordination control code and
procedural control, again developed and tested following the
principles of Normalized Systems.

Moreover, future work will also be focused on interfaces.
Since OPC UA is very generic, we wonder if constraints
should be added to the standard to let data communication
be compliant to the second theorem of software stability,
data version transparency. We wonder whether both currently
existing OPC UA transport types, UA binary and UA XML,
can be done in a data transparent way.

ACKNOWLEDGMENT

The authors thank Marc Martens (Artesis lab industrial au-
tomation), for building the hardware mini-processes needed
for performing the testing of this paper, and the good
collaboration.

REFERENCES

[1] van Nuffel Dieter, Mannaert Herwig, de Backer Carlos, Verelst
Jan. “Towards a deterministic business process modelling
method based on normalized theory” International journal on
advances in software - ISSN 1942-2628 -3:1/2(2010), p. 54-69

[2] Mannaert Herwig, Verelst Jan. “Normalized Systems Re-
creating Information Technology Based on Laws for Software
Evolvability” Koppa, 2009.

[3] ANSI/ISA-88.01-1995, Batch Control Part 1: “Models and
Terminology.”

[4] Mahnke Wolfgang, Leitner Stefan-Helmut, Damm Matthias.
”OPC Unified Architecture”, Springer, 2009.

[5] Brandl Dennis. ”Design patterns for flexible manufacturing”,
ISA, 2007.

[6] International Electrotechnical Commission (IEC). "IEC 61131-
3, Programmable controllers- part 3: Programming languages”,
Edition 2.0, 2003-01.

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-124-3

[7] Juoku Virta, Ilkz Seilonen, Antti Tuomi, Kari Koskinen. ”SOA-
Based Integration for Batch Process Management with OPC
UA and ISA-88/95”, 15th IEEE International Conference on
Emerging Technologies and Factory Automation, september
13-16, 2010, Bilboa, Spain.

[8] Larry Lamb, Jim Parshall. ”Applying S88 - Batch Control from
User’s Perspective”, ISA, 2000

[9] OPC Foundation. ”OPC Unified Architecture, Partl: Overview
and Concepts”, Release 1.01, february 2009.

[10] Clark Case, Rockwell Automation. ”Applying ISA S88 to
Small, Simple Processes”, World Batch Forum conference 13-
15 nov 2006, Zemst, Belgium

[11] David Friedrich, Birgit Vogel-heuser. ”Benefit of system mod-
eling in automation and control education”, American Control
Conference, 2007, New York City, USA.

117



