
Intrusion Detection Using N-Grams of Object Access Graph Components 
Zachary Birnbaum       Andrey Dolgikh       Victor Skormin 

Binghamton University,  

Binghamton, NY, USA 

{zbirnba1, adolgik1, vskormin}@binghamton.edu 

 

 
Abstract - Cyber warfare demonstrates an arms race between 

mutually escalating malware and Intrusion Detection System 

(IDS) technologies. We put forward a novel process for defin-

ing system behavior with the end result being a highly effective 

IDS. System calls accumulated under normal network opera-

tion are converted into graph components, and used as part of 

the IDS normalcy profile. This paper are as follows: detection 

of attacks based on the anomalous use of program functionali-

ty; reduced window of attack; reduced false positive rate; in-

creased performance in comparison to standard n-gram meth-

ods; a graph compression algorithm for efficient processing of 

system call graphs. The proposed IDS can be used within lim-

ited access environments such as industrial or military systems 

where only approved applications are running and any anoma-

lies are indicative of a cyber attack or malfunction. 

Keywords: security, intrusion detection, behavioral anomaly 

detection, graph processing 

I. INTRODUCTION 

Modern computer systems, especially those employed in in-

dustrial control and automation spheres, usually feature a diverse 

software stack and unique configuration. This peculiarity was 

mentioned as the “Diversity hypothesis” in [1]. The diverse envi-

ronment results in unique computer system operation as seen from 

the system call level. This can be successfully used to develop a 

customized behavioral profile tailored to the particular system 

under consideration. Customized profiling allows an anomaly 

detection approach to be used. By comparing the previously estab-

lished profile with the profile of the running system any extracur-

ricular activity within the system in question can be detected and 

flagged as an anomaly. Hofmeyr et al in [2] shows that intrusions 

and certain abnormal situations (e.g. lack of disk space or client 

misconfiguration) trigger anomaly detections. Therefore the detec-

tion of anomalous activity may alert a system operator of an intru-

sion or abnormal system operation.  

II. RELATED WORK 

A large number of approaches were developed and studied for 

anomaly based intrusion detection. We will limit our review to 

system call based Intrusion Detection Systems (IDS).  

Forrest et al in [3] offers a simple and effective method based 

on the n-gram model: 

A sequence of n elements of the same type is called n-gram. 

For example a trigram consists of three elements ���,��,��
�. The 

elements can be of any nature such as numbers, words of natural 

language, or system calls. 

The n-gram model operates as follows: 

1. The string of elementary observations � = ��,��,��, … ,�� 

over the alphabet of possible observations ∑ is transformed into 

a string of n-grams using a sliding window of size	�. For exam-

ple, for	� = 3 we will get the following string of trigrams: 

�� = ���,��,��
�, ���,��,��

�, ���,��,��
�, … , �����,����,��

� 
2. Learning phase: observed n-grams ��	 are accumulated into the 

database �: 

� = ���	
�

 

3. Detection phase: each observed n-gram � is tested if it belongs 

to database �. If � ∉ � (� does not belong to �) the anomaly 

is detected. 

Since its introduction, many modifications of the n-gram mod-

el have been offered, but with marginal improvement [4, 5, 6]. 

Recent notable large scale efforts to apply the n-gram model to 

malware detection were carried out by Lanzi et al in [7]. Lanzi 

performed large scale data collection covering ten different hosts 

under normal use over a prolonged period of time and thousands of 

malware samples. Forrest and Lanzi built their n-gram IDS with an 

observations alphabet ∑ equal to the set of system calls defined by 

the monitored system. Both models normally result in a high rate 

of anomaly/malicious n-gram detections. Therefore, some mecha-

nism was needed to separate real attack n-grams from false detec-

tion. The Forrest approach uses the fact that an attack usually oc-

curs within a very short time period and generates bursts of anoma-

lous n-grams. To average out false positives and highlight the 

attacks, gram-to-gram Hamming distance and normalization over 

the trace length was used. Lanzi used the detection count of mali-

cious n-grams exposed by each program. When the detection count 

crossed the threshold value an attack was declared. In spite of these 

techniques both approaches still have a high false positive rate that 

prevents their successful application in practice. This can be at-

tributed to the inability of n-grams to distinguish long range de-

pendencies from noise. 

Methods different in nature from n-gram models use various 

kinds of additional information to recover and monitor program 

control or data flow [8, 9, 10, 11, 12]. 

Our approach exceeds the performance of the simple n-gram 

model by using recognized data flow graph components as a 

source alphabet. Graph components capture completed and seman-

tically meaningful sequences of system calls. The use of graph 

components helps to eliminate the mentioned inability of n-gram 

models to capture long contexts. Thus our approach combines n-

gram and data flow approaches to cover long spans of program 

operation. 

II.1. Our Approach 
The principal idea behind our behavior based IDS is the detec-

tion of anomalous use of known program functionalities. In other 

words, the IDS detects non-standard, previously unseen use of 

known program functions.  

In order to establish a behavioral profile of the program our 

IDS consumes intercepted system calls with their respective pa-

209Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-324-7

ICDS 2014 : The Eighth International Conference on Digital Society



rameters similar to Kolbitsch [13] and Mutz [10]. Using this in-

formation, we can trace how each OS object is accessed. This 

access history can be represented by an Object Access Graph 

(OAG). After a sufficiently long time, the OAG represents the 

essence of normal system operation. This facilitates structural 

anomaly detection, i.e. the detection of anomalous graph compo-

nents not seen before in the system. 

To capture the context of different program functionalities or 

structural components we use n-gram model. At this point anoma-

lies can be detected by comparing the n-grams obtained from the 

current OAG to n-grams accumulated during the learning stage.  

Any OAG component of a running system can be incorporated 

into the normalcy graph, thus rendering reinforcement of the struc-

tural normalcy profile trivial. Moreover, detected anomalous com-

ponents labeled by a human expert as malicious can be instantly 

added to the malicious profile and later recognized as malware 

skipping the last n-gram detection stage. 

II.2. Contributions 
We report the following contributions: 

• Detection of attacks from the anomalous use of program func-

tionality (section 3.8).  

• Reduced false positive rate in comparison to standard n-gram 

methods (section 4.4.a). 

• Reduced window of attack (section 4.4.b). 

• Increased performance in comparison to standard n-gram meth-

ods (section 4.5). 

III. SYSTEM OVERVIEW 

III.1. System Call Monitoring 
A number of methods exist to intercept system calls and ex-

tract their parameters on the majority of OSs. Kernel driver ena-

bled techniques demonstrate negligible overhead [9, 11]. For con-

venient research and testing purposes, we chose the Linux kernel 

and the strace system call monitoring program as our platform 

[14]. The research conducted on this platform is generic and can 

easily be duplicated on other platforms given they provide similar 

data.  

Linux provides approximately 200 different system calls. 

Strace, a debugging utility, is included in the Linux operating 

system and is capable of monitoring system calls from all non-

system processes [14]. To support a system wide monitoring ap-

proach, we use strace options that allow us to capture data from 

processes created after system call monitoring began. 

III.2. Data Parsing 
Strace output contains very useful information, including the 

time of the system call, the system call name, and most important-

ly, the argument values for the system call. The argument values 

vary depending on the system call, but all relevant information will 

be listed in the strace output. A typical output of strace: 

PID   Time  Syscall   Parameters 

4734    1    open     ("test.txt”)= 8 

4734    2    dup2     (8, 5)           = 5 

3668    3    open     (“test2.txt”)=15 

4734    4    close    (8)    = 0 

4734    5    write    (5, {“R”}, X) = 0 

3668    6    close    (15)               = 0 

Figure 1. Sample of strace output 

As seen in the sample of strace output, the process 4734 at 

time 1 opened the file “test.txt” and has a handle of 8.  Any subse-

quent calls using the same object refer to handle 8 instead of the 

specific file “test.txt.” This parameter value dependency is a key 

concept that is crucial to building an Object Access Graph. 

III.3. Object Access Graph 
Observing system calls with their parameters provides a useful 

model of system behavior. This model is represented by a vertex-

edge, directed, and acyclic graph constructed from the parsed 

strace output and can be described as follows: 

 Gm=(V, E, Fv, Fe) 

where 

V – set of vertices, 

E – set of edges, 

Fv - mapping from V to set of system calls S. 

Fe - mapping from E to set of system call argument types T. 

The graph Gm can be built from the strace data according to 

the following rules: 

• Labeled vertex vs is added to Gm for each issued system call s.  

• Labeled edge e
τ
 from vi to vj is added for system calls i and j 

when one of the parameters of i and j have the same data type τ, 

have equal data value d, and have one of the following: 

─ vi has d as the output and vj takes d as the input 

─ vi was the last system call registered before vj 

For example, open and dup2 (Figure 1) occur at times 1 and 2, 

respectively, and have a common parameter of handle type equal 

to 8. In the resulting graph (Figure 2b), nodes corresponding to 

calls open and dup2 are connected with the directed edge 8. Nodes 

dup2 and close are also connected with an edge labeled 8 because 

the close that occurred at time 4 uses the same handle 8. 

 

Figure 2. Conversion of system call stream (a) into 

Object Access Graph (b) 

210Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-324-7

ICDS 2014 : The Eighth International Conference on Digital Society



These rules allow us to trace how each OS object is used by 

different processes. Unlike program centric approaches taken by 

the majority of Behavior Based IDS [8, 13], this method centers on 

the system wide behavioral picture imposed by programs over OS 

objects. 

III.4. Graph Component Detection 
There are certain terminating system calls defined by the ker-

nel (e.g. close, exit_group). Once these system calls have been 

executed over a particular OS object reference, there can be no 

additional system calls using this reference. In the OAG this means 

that the component cannot be extended once all its leaves end with 

terminating calls. Consider the OAG in Figure 3 which contains 

three completed components. 

 

Figure 3. Completed components in OAG 

Component detection transforms the stream of system calls in-

to a stream of completed OAG components. 

III.5. Component Compression 
Due to the repetitive/cyclic actions usually performed by pro-

grams over OS objects, some OAG components may grow to un-

manageable sizes. However, repetitive occurrences of a single 

system call or some graph substructures do not provide the observ-

er with substantial additional information. Moreover, it has a det-

rimental effect on graph recognition. 

Consider the graphs featured in Figure 4.a, 4.c. These graph in-

stances represent typical large system call graph components. 

These graphs are simple in nature but have large node counts that 

reflect repetitive operations usually performed by programs over 

one or two OS objects. For example, a network input-output rou-

tine may repeatedly send data in small chunks, generating long 

chains of sends/receives over the socket handle. This type of be-

havior impairs the recognition process in two ways: First, large 

graphs take a lot of computing resources to process them. Second, 

the number of substructure repetitions and consequently the graph 

component size may depend on factors irrelevant to exposed be-

havior. This in turn leads to unnecessary component duplication in 

the database of known components. Therefore it is beneficial to 

remove/collapse repetitive subgraphs as shown in Figure 4.b, 4.d. 

It reduces processing load and substantially decreases the number 

of different graphs observed throughout program operation. 

 

Figure 4. Graph compression 

We perform frequent subgraph compression in two stages: 

First we remove long repetitive chains of single call as show in 

Figure 4 (a, b). Second, we apply the modified Graphitour algo-

rithm [15] to find and remove/collapse more complex repetitive 

components.  

III.6. Graph Component Database 
After compression every completed graph component c is sub-

jected to the following normalcy profiling algorithm: 

 Input: completed component c,  

        set of components DB={d1, d2, …} 

 Output: Component database DB 

 ---------------------------- 

 Begin 

1   foreach �	 ∈ �	 = {��,��, …�
} do 
2      if 
�
�����ℎ��(�,�) then continue 
3      else �� = �� ∪ � 
 End 

Figure 5. Normalcy profiling algorithm 

Where the function IsIsomorphic tests if two graphs have the 

same structure. 

The algorithm produces a compact database containing one in-

stance of each observed graph component. Using this database, we 

can detect components that have not been previously encountered. 

Therefore, it constitutes a normalcy profile of the system. 

III.7. Anomalous Component Detection 
Once malware has been introduced to the system, it will per-

form its mission, resulting in additional system calls. Malware 

functionality will differ from normal system operation and new, 

unknown OAG components will be observable. 

Input: completed component c,  

        set of components DB={d1, d2, …} 

 Output: Match or No_match 

 ---------------------------- 

 Begin 

1   foreach �	 ∈ �	 = {��,��, …�
} do 
2      if 
�
�����ℎ��(�,�) then return Match 
4   return No_match 

 End 

Figure 6. Anomaly detection algorithm 

211Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-324-7

ICDS 2014 : The Eighth International Conference on Digital Society



These new components, along with components consistent 

with standard operation, are fed to the anomaly detection algo-

rithm. The anomaly detection algorithm is similar to the profiling 

algorithm in Figure 5. However, it returns No_match instead of 

updating the database, when an unknown component is detected. 

At this point, we are able to detect the manifestation of mal-

ware intrusion in the domain of system call graph components. 

Using this approach, malware becomes discernible system-wide at 

a higher semantic level. 

III.8. N-grams applied to graph components 
To detect the anomalous use of known program functionalities 

identified by the algorithm in Figure 6 we apply the n-gram model. 

The model operates as follows: 

1. The string of system call observations 

   � = ��,��,��, … ,�� is converted into string of 

   graph components �′ = ��, ��, ��, … , �� using algorithm 
   featured in section 3.3. 

2. Sliding window is used to convert string of 

   observed graph components into string of  

   graph-n-grams: 

   �′
 = ���, … , �
�, ���, … , �
���, … , ����
��, … , ���. 
3. Learning phase: graph-n-grams are accumulated 

   into database 

� = ��′�

�

 

4. Detection phase: each observed graph-n-gram is 

   tested if it belongs to accumulated database. 

   All graph-n-grams that are not present in 

   normalcy database are detected as anomalous. 

Figure 7. Learning algorithm for n-gram components over graphs 

N-grams over OAG components capture system behavior at 

the level of program functional blocks such as complete network 

IO or file editing. This allows us to detect tampering with program 

control flow at a higher semantic level. 

IV. EXPERIMENTAL EVALUATION 

In this section we provide experimental evaluation for each 

step of the detection pipeline. The experimental data is available to 

the public [22]. 

IV.1. Experimental Setup 
In order to evaluate the IDS, we utilized the experiment featur-

ing three computers connected to a common network: victim com-

puter, attack computer, and IDS computer. The victim computer 

represents the Metasploitable Virtual Machine [16]. The 

Metasploitable Virtual Machine is an OS package, preconfigured 

with many exploitable services. In our experiments, we used FTP 

server (vsFTPd 2.3.4), Samba service (version 3.0.20-Debian), and 

HTTP Apache server (version 2.2.8) with PHP (version 5.2.12) 

installed. The victim computer was running a customized strace 

program, which forwarded the system call stream to IDS computer. 

The attacking computer is represented by Backtrack Linux, 

packaged with the Metasploit framework. Metasploit is a software 

package which comes with tools for vulnerability scanning and 

penetration testing [17]. Using Metasploit on the attacking com-

puter, we mounted an exploit against services on the victim ma-

chine. 

A third computer acts as our Intrusion Detection System. The 

IDS assembles system calls sent from the monitored victim into 

OAG components.  It then passes components into the anomaly 

detector. At the same time, all activity at the victim host is visual-

ized for expert analysis. 

IV.2. Component Database Stabilization 
To confirm that our IDS is capable of extracting a limited size 

OAG component database by processing a volume of system calls 

data, we ran several tests with loads of different natures: no load, 

FTP load, HTTP/PHP load, and Samba load. We exercised the 

FTP server with two different FTP clients by repeatedly connect-

ing/disconnecting, copying small and large volumes of data, 

changing file permissions, etc. The same approach was taken with 

the Samba server. The HTTP/PHP server was tested by manual 

browsing through the sample web site. The results are presented in 

Figure 8, where the Y-axis illustrates the total number of compo-

nents in the OAG component database profile, and the X-axis 

represents the system runtime in number of system calls. With 

time, all four graphs quickly flatten out, showing that the normalcy 

profile converges to certain size, which represents all functionality 

exercised by system. 

For each type of load, the absolute number of learned graph 

components, its average, and maximum sizes stored within the 

profile are presented in Table 1. 

TABLE 1. NORMALCY PROFILE METRICS 

 

No 

Load 
Samba FTP 

HTTP/

PHP 

Combined 

Profile 

Largest Component 10 8 8 12 12 

Number of System 

Calls 
94556 575800 483458 107086 1260900 

Number of Nodes 

in Components 
55 42 57 83 130 

Number of Compo-

nents 
13 11 15 17 26 

 

A useful feature of our IDS approach is the ability to combine 

different normalcy profiles into one normalcy profile. The com-

bined profile can be used to recognize behaviors from each incor-

porated profile. By its nature, the combined profile cannot contain 

duplicate components, therefore keeping only one copy of each. 

One may assume that components from the no load profile must be 

present in all subsequent profiles as a background. This is not 

entirely correct as background operations performed by various 

daemons are time dependent. Therefore, certain operations ob-

served in the no load profile are not present in Samba profile as we 

run Samba profiling at a different time. The combined profile 

automatically takes care of such issues. 

 

Figure 8. Stabilization of the graph component database size. 

0

2

4

6

8

10

12

14

16

18

152155 304339 456524

Samba Idle FTP HTTP/PHP

212Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-324-7

ICDS 2014 : The Eighth International Conference on Digital Society



IV.3. N-gram Database Stabilization 
The next step is to confirm that the database of n-grams 

learned from the stream of OAG components according to algo-

rithm in Figure 7 converges to a limited size. Figure 9 shows that 

the database converges for both direct system call n-grams and 

OAG n-grams. This stabilization was observed under various 

loads: Idle, Samba, HTTP/PHP, and FTP. 

 

Figure 9. Stabilization of component 3-grams (solid line) and system call 3-

grams (dotted line) under no load 

One may notice that OAG n-gram database has much lower n-

gram counts in comparison to direct system call n-grams. We 

attribute this to the ability of our system to capture logically fin-

ished sequences of program actions.  

TABLE 2. COMPARISON OF N-GRAM PROFILE DATA 

  # Syscalls n 
OAG n-gram 

DB size 

direct n-grams DB 

size 

No Load 94556 

3 91 628 

5 194 1159 

10 390 2510 

Samba 575800 

3 67 449 

5 125 858 

10 384 2398 

FTP 483458 

3 182 2808 

5 467 9775 

10 1111 36005 

HTTP/ 

PHP 
107086 

3 126 1222 

5 263 2517 

10 558 4767 

 

The pitfall of direct n-grams is a small viewing window. As a 

result, events connected over a longer period are viewed by system 

as anomalies. The OAG-based system has much wider context 

awareness. As a result, it makes fewer errors and requires fewer n-

grams to achieve similar or better performance. As seen in Table 2, 

longer n-grams require larger databases to cover the same activity. 

Regardless of �, the OAG approach requires a significantly smaller 

database to capture program normal behavior. 

IV.4. Anomaly Detection 
In this section, we discuss the detection capability of the 

anomaly detection algorithm under three types of loads: file and 

print services (Samba), web services (HTTP/PHP), and file trans-

ferring services (FTP). 

Metasploitable, serving as our victim machine, is prepackaged 

with vulnerable services (see Table 3).  

All experiments were performed in real time according to the 

procedure featured in Figure 10. For all tests the n-gram normalcy 

profile is represented by a merged normal behavior for all loads. 

0. Start the IDS machine and load n-gram database. 

1. Start victim host. 

2. Enable system call tracing on the victim host. 

3. Start vulnerable service on the victim host. 

4. Exercise the service with a normal load. 

5. Launch the attack against vulnerable server. 

6. Observe detected anomalous n-grams. 

Figure 10. Experiment procedure 

In the experiments, we demonstrated the ability of OAG n-

gram and direct n-gram approaches to successfully detect anoma-

lies induced by exploitation attacks. Table 4 summarizes empirical 

data obtained in the experiments.  

Both approaches register anomalies induced by performed at-

tacks. Our OAG n-gram method matches the detection perfor-

mance of the direct n-gram approach. 

TABLE 3. EXPERIMENTAL SETUP 

Version Samba 3.020-Debian 

HTTP/PHP Apache 2.2.8/ 5.2.12 

FTP vsFTPd 2.3.4 

Exploit Samba /multi/samba/usermap_script 

HTTP/PHP /multi/http/php_cgi_arg_injection 

FTP /unix/ftp/vsftpd_234_backdoor 

Normal 

activity 

test 

Samba upload, download, delete, and create files 

and folders 

HTTP/PHP browsing hosted pages 

FTP upload, download, delete, and create files 

and folders 

 

Increasing values of n results in a greater number of anomalous 

grams detected. Therefore larger values of n are beneficial for 

increased sensitivity to attacks. Regardless of the gram size OAG 

approach shows lower anomaly counts. This is due to the OAG 

approach operating on a higher semantic level (graph component 

level) than direct n-grams (system call level).  

TABLE 4. ANOMALY DETECTION 

   n 

Anomalies 

direct n-gram OAG n-gram 

FTP 

3 182 27 

5 552 99 

10 1376 252 

SAMBA 

3 211 24 

5 509 81 

10 1028 261 

HTTP/ 

PHP 

3 54 3 

5 136 51 

10 341 82 

 

0

100

200

300

400

500

600

700

1 7305 14610 21915 29220

213Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-324-7

ICDS 2014 : The Eighth International Conference on Digital Society



IV.4.1. False Positive Rate 
To measure the false positive rate we repeated the experi-

mental procedure featured in Figure 10 however no attack was 

launched (no step 5). The results of the experiments are summa-

rized in Table 5.  

TABLE 5. FALSE POSITIVE RATE 

  n 

False positives 

direct n-gram OAG n-gram 

FTP 

3 144 6 

5 319 22 

10 668 60 

SAMBA 

3 1065 12 

5 2374 41 

10 4520 92 

HTTP/PHP 

3 49 3 

5 292 16 

10 467 47 

 

The OAG approach produces fewer false positives than the di-

rect n-gram approach across all services.  

IV.4.2. False Negative Rate 
Wagner and Dean proposed a statistical mimicry attack against 

n-gram based methods [18]. We significantly reduce the window 

of opportunity for such attacks. Now the attacker would need to 

mimic n-gram statistics, OAG components and OAG n-gram sta-

tistics to successfully evade detection. Wagner’s method relies on 

generating long lists of dummy system calls. These dummy system 

call sequences applied randomly will not match the OAG profile. 

Therefore proper implementation of Wanger’s attack under OAG 

will require generation of system call sequences that match the 

OAG profile. This means the attacker cannot sneak in any new 

functionality and is forced to use functional components already 

present in the system normalcy profile. 

IV.5. Performance Evaluation 
We present the runtime performance of our IDS in two dimen-

sions: capturing overhead and detection overhead. 

Capturing overhead measures the performance penalty in-

curred by strace. Tests performed using Samba, FTP, and PHP 

with strace enabled did not show noticeable slowdown. A synthet-

ic test using a custom program designed to stress system call inter-

face showed a tenfold runtime increase. The capturing overhead is 

dependent upon the mechanism used.  For example, a kernel driver 

implementation will result in negligible overhead ([9] reports less 

than 6% overhead). 

TABLE 6. DETECTION OVERHEAD 

  n 

Trace Length Time Spend Detecting 

system 

calls 

OAG 

components Direct OAG 

FTP 

3 11971 346 0.26 0.29 

5 11971 346 1.006 0.29 

10 11971 346 5.25 0.29 

Samba 

3 55163 341 9.25 0.35 

5 55163 341 34.29 0.37 

10 55163 341 128 0.36 

HTTP/ 

PHP 

3 9503 586 0.36 0.53 

5 9503 586 2.62 0.56 

10 9503 586 15.55 0.53 

 

Detection overhead measures the anomaly detector perfor-

mance's impact on system operation. For OAG based approach it 

includes reduction of raw data into graph components and graph 

gram matching. Table 6 shows that OAG n-gram matching ap-

proach is extremely efficient, resulting lower overhead when com-

pared to the direct n-gram method with larger n. As n increases, the 

OAG approach doesn’t slow down unlike the direct method. This 

can be attributed to a much smaller database of OAG n-grams. 

V. LIMITATIONS 

Our approach assumes a tamper-free data source. We do not 

have the ability to detect attacks completely hidden by rootkits 

[19]. However if a rootkit is used to hide only a certain subset of 

system calls it is likely to break the dependence of calls within 

OAG components or OAG n-grams thus revealing itself as an 

anomaly. The same is true for attacks relying on race conditions 

[20].  

Attacks that do not change the program control flow (such as 

[21]) are not detected by our IDS. However, several important 

cases of such attacks are still detectable. For example, when the 

attack alters the data flow, it results in changes of the OAG. 

Attacks that make use of misconfigured resources in a legiti-

mate way may not be detected if the same functionality is routine. 

Our approach for system normalcy relies on past system be-

havior. Any unidentifiable future behavior, benign or malicious, as 

previously discussed, will trigger an anomaly. 

VI. CONCLUSION 

The widespread use of malicious software continues to be an 

ever-growing concern. Our research resulted in a prototype IDS 

built on two key ideas: The transformation of system calls into 

graph components and matching their sequences.  

The IDS employs several novel concepts for program data 

flow processing. We establish an Object Access Graph (OAG) 

representing interdependent program operations over OS objects. 

The OAG is compressed to efficiently represent the essence of 

program activity. OAG components are subjected to a well known 

n-gram method.  

The developed IDS yielded promising results in several as-

pects. First, the IDS can detect attacks disguised as normal system 

operation by using existing program functionality. Second, our 

method significantly reduces the attack window by monitoring 

program behavior at different semantic levels.  

Experiments demonstrated both a reduction in the false posi-

tive rate as well as increased performance when compared to 

standard n-gram methods. Results also showed that the IDS is 

capable of detecting unknown attacks against system services. 

Our results show that achieving efficient anomaly detection is 

possible through the intelligent application of graph processing 

algorithms to system behavioral profiling. 

ACKNOWLEDGMENTS 

This research is funded by the Air Force Office of Scientific 

Research (AFOSR) project FA9550-12-1-0077. The authors are 

grateful to Dr. Robert Herklotz for supporting this effort.  

  

214Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-324-7

ICDS 2014 : The Eighth International Conference on Digital Society



REFERENCES 

[1] S. Forrest, S. Hofmeyr, A. Somayaji, “The Evolution of 

System-Call Monitoring,” Proceedings of the 2008 Annual 

Computer Security Applications Conference, 2008 

[2] S. Hofmeyr, S. Forrest, A. Somayaji, “Intrusion detection 

using sequences of system calls,” Journal in Computer Se-

curity. 6, pp. 151-180, 1998 

[3] S. Forrest, S. Hofmeyr, A. Somayaji, T. Longstaff, 

“A sense of self for Unix processes, ”Security and Privacy, 

1996. Proceedings., 1996 IEEE Symposium on , vol., no., 

pp. 120-128, 6-8 May 1996 

[4] C. Warrender, S. Forrest; B. Pearlmutter, “Detecting intru-

sions using system calls: alternative data models,” Security 

and Privacy, 1999. Proceedings of the 1999 IEEE Sympo-

sium on , vol., no., pp.133-145, 1999 

[5] A. B. Somayaji, “Operating System Stability and Security 

Through Process Homeostasis,” Ph.D. Dissertation. The 

University of New Mexico. 2002 

[6] N. Hubballi, S. Biswas, S. Nandi, “Sequencegram: n-gram 

modeling of system calls for program based anomaly de-

tection,” Communication Systems and Networks 

(COMSNETS), 2011 Third International Conference on , 

vol., no., pp.1-10, 4-8 Jan. 2011 

[7] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, E. 

Kirda, “Access Miner: using system-centric models for 

malware protection,” Proceedings of the 17th ACM con-

ference on Computer and communications security, 

pp. 399-412, 2010 

[8] R. Sekar, M. Bendre, P. Bollineni, D. Dhurjati,  “A fast au-

tomaton-based approach for detecting anomalous program 

behaviors,” IEEE Symposium on Security and Privacy, pp. 

141, 2001 

[9] D. Gao, M. Reiter, D. Song, “Gray-box extraction of exe-

cution graphs for anomaly detection,” Proceedings of the 

11th ACM conference on Computer and communications 

security, pp. 318-329, 2004 

[10] D. Mutz, F. Valeur, G. Vigna, C. Kruegel, “Anomalous 

system call detection,” ACM Trans. Inf. Syst. Secur. 9, 1, 

pp. 61-93, 2006 

[11] A. Tokhtabayev, V. Skormin and A. Dolgikh, “Expressive, 

Efficient and Obfuscation Resilient Behavior Based IDS,” 

Proc. European Symposium on Research in Computer Se-

curity, pp. 698-715, 2010 

[12] V. Zwanger, F. Freiling, “Kernel mode API spectroscopy 

for incident response and digital forensics,” In Proceedings 

of the 2nd ACM SIGPLAN Program Protection and Re-

verse Engineering Workshop, article 3, 2013 

[13] C. Kolbitsch, P. Comparetti, C. Kruegel, E. Kirda, X. 

Zhou, X.Feng Wang,  “Effective and efficient malware de-

tection at the end host,” Proceedings of the 18th confer-

ence on USENIX security symposium, pp. 351-366, 2009 

[14] Online. strace software, http://linux.die.net/man/1/strace, 

retrieved Feb 2013 

[15] L. Peshkin, “Structure induction by lossless graph com-

pression,” In Proceedings of the 2007 Data Compression 

Conference (DCC '07, pp. 53-62, 2007 

[16] Online. Metasploitable Virtual Machine, 

https://community.rapid7.com/docs/DOC-1875, retrieved 

Feb 2013 

[17] Online. Metasploit Software, http://www.metasploit.com/, 

retrieved Feb 2013 

[18] D. Wagner, D. Dean, “Intrusion Detection via Static Anal-

ysis,” In Proceedings of the 2001 IEEE Symposium on Se-

curity and Privacy, pp. 156, (SP '01) 

[19] A. Srivastava, A. Lanzi, J. Giffin, D. Balzarotti, “Operat-

ing system interface obfuscation and the revealing of hid-

den operations,” Proceedings of the 8th international con-

ference on Detection of intrusions and malware, and vul-

nerability assessment, pp. 214-233, 2011 

[20] R. Watson, “Exploiting concurrency vulnerabilities in sys-

tem call wrappers,” Proceedings of the first USENIX 

workshop on Offensive Technologies, article 2, 2007 

[21] C. Parampalli, R. Sekar, R. Johnson, “A practical mimicry 

attack against powerful system-call monitors,” Proceed-

ings of the 2008 ACM symposium on Information, com-

puter and communications security, pp. 156-167,2008 

[22] Online, strace traces, http://testbed.binghamton.edu/traces 

 

215Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-324-7

ICDS 2014 : The Eighth International Conference on Digital Society


