
An Idea On Infinite Horizon Decision Support For Rule-based Process Models

Michaela Baumann∗, Michael Heinrich Baumann†, and Stefan Jablonski∗
∗Institute for Computer Science
†Institute for Mathematics

University of Bayreuth, Germany
Email: {michaela.baumann,michael.baumann,stefan.jablonski}@uni-bayreuth.de

Abstract—In recent years, process models tend to turn away from
common procedural models to more flexible, rule-based models.
The models are characterized by the fact that in each execution
step users usually have to decide between several rule-consistent
tasks to perform next. Precise execution paths are not given,
which is why adequate execution support needs to be provided.
Simulation is one means to facilitate the users’ decisions. In this
context, we suggest an execution simulation tool with an infinite
horizon, i.e., in each (simulated) step, users are informed about
the tasks that in any case still need to be done to properly finish
one process instance, and about tasks that may no longer be
executed. The forecasts consider an actual or a simulated history
of the process instance and the rules given by the model.

Keywords–Process execution; Rule-based process models; Pro-
cess decision support;

I. INTRODUCTION

In many fields of economy, industry, and research, process
models are used for supporting the execution of operating pro-
cesses, for designing work steps, for documentation purposes,
etc. Usually, these process models are a sort of procedural
process models, where the execution order of the process
steps is prescribed through the control flow. Other execution
orders than the prescribed ones are not provided. This is why
computational offloading (“the extent to which differential
external representations reduce the amount of cognitive effort
required to solve informationally equivalent problems” [1])
is quite well achieved in procedural process models. For
rule-based process models, this is not the case [2], as they
take a different modeling and representation approach. They
are typically used when procedural process models are too
restrictive or get too complicated when complex facts shall be
displayed. The approach of rule-based process models is to
provide a set of tasks, firstly without stating any execution
order, and then to restrict all possible execution orders by
adding rules or constraints that should be met during the
execution. An example for such a rule could be: “If task A
has been executed, afterwards task C needs to be eventually
executed, too”. Thus, especially for rule-based process models,
guidance for the user through the process is necessary, as the
execution sequences leading to a proper process completion
are not easy to see [3].

In this paper, we do not want to answer the question of
which tasks may be executed in the next step, with a certain
process history underlying. This has been done in other work,
e.g., in [4] for ConDec models via automata, and is not part
of the work at hand. Tasks for the next step have to be chosen
in a way that every resulting process history is model conform

and that dead ends are avoided. Furthermore, we need process
models that do not contain conflicting constraints [4].

For run-time support, recommendations for effective exe-
cution [5] can be given. However, these recommendations are
usually based on past experiences and need a specific goal, i.e.,
a rating of experiences in terms of desirability [6], as input.
Parts of the executable tasks are hidden from the executing
agent, i.e., a preselection has occurred. The decision support
we head for is somehow different, as we do not intend to give
recommendations based on a specific goal (as input into the
system) but to provide the agent an overview over the impact
of each of his decisions. He can then decide, according to the
overview and a goal (which is only in his mind), which step
to execute next. The system and the model do not need to
be changed, which may cause history-based violations when
done at run-time [6]. The questions that shall be answered by
the support are the following: “Which tasks still need to be
executed during the process instance?”, “Which tasks may/can
still be executed eventually during the process instance?”,
“What changes apply to the answers of the two preceding
questions if one (or more) certain task is executed next?” As
one can see, there is no limit of steps till the end of an instance
for answering these questions, which is why we talk of infinite
horizon in this context. A use case for this approach could be
the following example situation: An employee has noticed that
his colleague is overloaded with work, and thus he wants to
finish the process without involving this colleague, i.e., avoid
certain tasks, if possible.

The work proceeds as follows: Section II proposes the in-
finite horizon decision support with help of examples, Section
III concludes with some features of the approach, remaining
questions that still need to be answered, and suggestions for
future work.

II. IDEA: INFINITE HORIZON DECISION SUPPORT

We want to present our approach with a short example.
Therefore, we consider four rules: the existence rule, the
response rule, the precedence rule, and the chainResponse
rule. They are defined as follows:

i) existence(A,m, n): Task A must at least be executed m
times and may at most be executed n times (m ≤ n)

ii) response(A,B): If task A appears in the process in-
stance, then task B has to appear after A, too

iii) precedence(A,B): Task B can only be executed if task
A has already been executed, i.e., already appears in the
process history

iv) chainResponse(A,B): Every execution of task A has to
be directly followed by B

73Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

∀A ∈ A: man(A)← 0; opt(A)←∞;
Figure 1: Initialization of mandatory and optional values

∀ existence(A,m, n) ∈ R:
If start: man(A)← m; If start: opt(A)← n;

Figure 2: Update rules for process rule existence

For every task in the process model two states are recorded:
mandatory and optional. The initialization of these states is
conform to the rule-based approach. Let A denote the set of
all tasks and R the set of all rules. At first, without considering
any rules, no task must be executed (∀A ∈ A : man(A) = 0)
but may be executed arbitrarily often (∀A : opt(A) = ∞).
The process history is stored in variable h. At the beginning,
the history is empty: h = �. The task executed in the previous
step is given by `(h) ∈ A ∪ {NA}.

After initialization of the status values for all tasks (Figure
1), the values are sequentially restricted according to the
update rules (Figures 2–5), where function start denotes the
beginning of a process instance and exec(·) the execution of a
task. After each task execution, both status values of the corre-
sponding task are reduced by 1, if possible, before considering
the update rules and adjusting the status values according to
them. The list of all rules is processed sequentially, as many
times, until in one run nothing more changes.

The update rules can be divided into three different kinds
of rules. One type are the start and execution rules (If start,
If exec(·)). The start rules only need to be processed once
after starting the process and can be skipped for the rest
of the process after the first task execution. The execution
rules need to be processed once after each task execution
and can be skipped at the beginning. The second type are
the indirect status update rules (all other rules in the example
Figures 2–5 except for the last one in Figure 5), triggered
through chain reactions caused by start and execution rules.
Rules of the third type need to hold permanently and have no
special trigger constraint, like the last rule in Figure 5 or the
rule opt(A) ≥ man(A). The reason for the last update rule
(resulting from chainResponse) in Figure 5 is: As after A,
task B must always follow directly, then B needs to be done
at least as many times as A (plus 1, if A was the most recently
task). If B needs to be done more often anyway, then nothing
changes.

A possible prototype could look like the design draft
in Figure 6, where two situations are shown. After having

∀ response(A,B) ∈ R:
If exec(A): man(B)← max{man(B), 1};
If man(A) > 0: man(B)← max{man(B), 1};
If opt(B) == 0: opt(A)← 0;

Figure 3: Update rules for process rule response

∀ precedence(A,B) ∈ R:
If opt(A) == 0 ∧A /∈ h: opt(B)← 0;
If man(B) > 0 ∧A /∈ h: man(A)← min{man(A), 1};

Figure 4: Update rules for process rule precedence

∀ chainResponse(A,B) ∈ R :
If exec(A): man(B)← max{man(B), 1};
If opt(B) 6=∞:
opt(A)← min{opt(B), opt(A)−1`(h)==A};

man(B)← max{man(B),man(A) + 1`(h)==A};
Figure 5: Update rules for process rule chainResponse

Figure 6: Prototypical design for an infinite horizon decision support tool

executed tasks A, A, C, F, and B, the tasks that are executable
next in the first situation are tasks A and C. Note, that the
update rules do not derive these next-executable tasks (that one
with horizon step n = 1). The update rules rather determine
the column on the right (n =∞), which says that there exist
possible execution paths for each task A to F, and that tasks B
and C need to be executed in all of these paths to successfully
finish the process execution. In the second situation, the history
is still the same, but it is simulated how the infinite horizon
changes if task C would be executed next (if the history was
A.A.C.F.B.C). Now, task D may no longer be executed, no
matter which task is chosen next (B, C, or E), and the status of
C changes from mandatory to optional, so, man(C) = 0 and
opt(C) > 0. This information, especially the infinite horizon
after the simulation step (simulated execution of C), may help
the agent to decide what to do next. The decision support can
be expanded by using past execution histories to provide the
agent information about average execution time for each step
or about success rate of certain histories [5].

If the underlying process model is changed, then the set
of update rules needs to be changed, too. The update rules
corresponding to removed process rules, or even removed
tasks, have to be eliminated, whereas new update rules, caused
by added process rules, are included. For running process
instances, there may occur two situations [7]: The current
history is conform to the new set of process rules, then the
new status values can be achieved by simulating their evolution
according to the new set of update rules. If a so-called “history
violation” [7] occurs, then we refer to [7] for handling the
problem.

III. FEATURES, REMAINING QUESTIONS, AND FUTURE
WORK

The idea paper suggests a possibility for decision support
for declarative process models. This decision support applies
to an infinitely long forecast horizon. It makes use of the

74Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

process rules and their implications to the states (mandatory
and optional) of the tasks they refer to. At the moment, the
focus lies only on rules concerning control-flow. It should
be investigated if and how an extension to other process
perspectives, like data and agents, is possible. Furthermore,
instead of regarding tasks as single points in time, i.e., only
their final execution is registered, it would be beneficial to split
one task into different events, at least start and end. Nesting
of tasks (subprocesses) could also be analyzed.

Repeatability and optionality of tasks [8] may be read off
the status values, as well as dead activities when regarding the
status values with empty history h = �. If one task A has
opt(A) = 0 at the beginning after the first evaluation round of
the update rules, it can never be executed. The question arises
if it is possible to modify update rules so that conflicts can be
detected. Also, the completeness of the list of update rules has
to be proven.

A further issue would be to check, if the status values and
update rules can be utilized for determining tasks that can
be executed next (the part of the tool, that is assumed to be
given at the moment). Perhaps this can be achieved through
a checking like this: “If task A is executed next, then the
constraint opt(B) ≥ man(B) (for an arbitrary task B) is
violated”. Thus, A cannot be suggested now (in the next step)
for execution. Automata like in [4] would not be needed in
that case.

In the context of log-based recommendations, it could also
be interesting to include reviews into the decision support
system. Users could rate their decisions at some time after
their execution which is valuable information in future. To
improve the performance, once calculated status values could
be stored as tables together with the respective history in a
hash-based repository.

ACKNOWLEDGEMENT

The work of Michael Heinrich Baumann is supported by a
scholarship of “Hanns-Seidel-Stiftung (HSS)” which is funded
by “Bundesministerium für Bildung und Forschung (BMBF)”.
The authors want to thank Lars Ackermann and Stefan
Schönig, both with University of Bayreuth.

REFERENCES

[1] M. Scaife and Y. Rogers, “External cognition: how do graphical rep-
resentations work?” International Journal of Human-Computer Studies,
vol. 45, no. 2, pp. 185–213, 1996.

[2] S. Zugal, J. Pinggera, and B. Weber, “Creating declarative process models
using test driven modeling suite,” in IS Olympics: Information Systems in
a Diverse World, ser. LNBIP, S. Nurcan, Ed. Springer Berlin Heidelberg,
2012, vol. 107, pp. 16–32.

[3] W. M. van der Aalst, M. Weske, and D. Grnbauer, “Case handling: a new
paradigm for business process support,” Data & Knowledge Engineering,
vol. 53, no. 2, pp. 129 – 162, 2005.

[4] M. Pesic, “Contraint-based workflow management systems: Shifting
control to users,” Ph.D. dissertation, Technische Universiteit Eindhoven,
2008.

[5] W. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative workflows:
Balancing between flexibility and support,” Computer Science - Research
and Development, vol. 23, no. 2, pp. 99–113, 2009.

[6] M. Pesic, H. Schonenberg, and W. van der Aalst, “DECLARE: Full
support for loosely-structured processes,” in Enterprise Distributed Ob-
ject Computing Conference, 2007. EDOC 2007. 11th IEEE International,
2007, pp. 287–287.

[7] M. Pesic, M. Schonenberg, N. Sidorova, and W. van der Aalst,
“Constraint-based workflow models: Change made easy,” in On the Move
to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA,
and IS, ser. LNCS, R. Meersman and Z. Tari, Eds. Springer Berlin
Heidelberg, 2007, vol. 4803, pp. 77–94.

[8] M. Baumann, M. H. Baumann, and S. Jablonski, “On behavioral
process model similarity matching: A centroid-based approach,” 2015,
preprint. [Online]. Available: https://epub.uni-bayreuth.de/id/eprint/2051
[accessed 2015-07-18]

75Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

