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Abstract—Recently several approaches have been presented
that exploit the ability of Physarum polycephalum to connect
several food sources via a network of pipes in order to main-
tain an efficient food distribution inside the organism. These
approaches use the mechanisms found in nature in order to solve
a technical problem, namely the design of constructing fault-
tolerant and efficient connection networks. These works comprise
experiments with a real slime mold Physarum polycephalum as
well as computer simulations based on a tubular model and an
agent-based approach. In this work, we study the suitability of
those bio-inspired approaches and compare their performance
to a graph-theoretic algorithm for construction of fault-tolerant
connection networks, the (k, t)-spanner algorithm. The graph-
theoretic algorithm is able to construct graphs with a certain
degree of fault tolerance as well as meet a given maximal path
length between two arbitrary nodes. However the definition of
fault tolerance in previous bio-inspired works differs to that
used in graph theory. Thus in our contribution we analyze the
bio-inspired approaches as well as the graph-theoretic approach
for their efficiency of designing optimal fault-tolerant graphs.
We demonstrate the usability of the graph-theoretic approach
despite relying on a different definition of fault tolerance. We
conclude that classical efficient computational algorithms from
graph theory can be adapted and applied in the same field as the
bio-inspired approaches for the problem of constructing efficient
fault tolerant networks. They often provide an easier to use
and more direct solution than bio-inspired approaches, that need
more parameter tuning before getting satisfactory results.

Index Terms—slime mold, Physarum polycephalum, fault tol-
erant network, (k,t)-spanner

I. MOTIVATION

Recently bio-inspired computing based on slime molds
raised attention in scientific renowned journals [1]–[3] as well
as in popular newspapers for the slime molds’ ability to solve
complex problems, despite being a brainless primitive life-
form [4].

Research groups use a real slime mold or different types of
simulations of slime mold behavior for building networks or
finding a short path through a maze. One group [1] conducted
experiments with a real slime mold Physarum polycephalum
and computer simulations based on a tube model in order to
construct a fault tolerant and efficient transport network for
the Tokyo rail system. The natural slime mold as well as the
simulated slime mold generate networks that are similar to
the existing rail system of Tokyo. While the quality of the
solutions of the real slime mold shows considerable variations,

the networks constructed by tubular simulations show a very
regular structure in their quality that is correlated with one
parameter. In another approach [5] an agent based simulation
of Physarum polycephalum turned out to better approximate
the characteristics of the real slime mold’s networks.

However, existing classical algorithms for those problems
have not been included in the evaluation of bio-inspired
approaches in previous works.

Thus in this work we study, whether natural or simulated
Physarum polycephalum is an efficient means for construction
of fault tolerant networks at all, i.e., can networks of good
quality be generated with reasonable computational effort.
Although Physarum polycephalum simulations have also been
used in the past for obtaining fault tolerant networks, the
quality of such networks has only been compared to existing
networks that have been historically grown and not been
constructed efficiently from scratch. We demonstrate how
algorithms from graph theory can be used for the design
of fault-tolerant efficient networks, despite using different
definitions of fault tolerance. We show that in many scenarios
the graph-theoretic algorithm is a viable means to efficiently
obtain reliable results without having the additional effort of
parameter tuning which often is a serious disadvantage of bio-
inspired algorithms.

In the following, we will describe the state of the art
concerning simulation models of Physarum polycephalum that
can be used for the construction of fault tolerant connection
networks. We use the Tokyo railway network, which is the
mostly used reference network in this context. We also de-
scribe the agent-based simulation model and the (k, t)-spanner
algorithm from graph theory. A presentation and discussion of
the resulting networks for all approaches concludes this work.

II. PHYSARUM POLYCEPHALUM

There are basically two kinds of slime molds (cellular
and acellular) which are member of a category of eukaryotic
organisms that typically have some fungal-like attributes and
some animal-like attributes. In this work, we are interested in
Physarum polycephalum, a slime mold visible to the unaided
eye.
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A. Biological Foundations

Physarum polycephalum is a yellow single-celled slime
mold whose plasmodium is visible for the unaided human eye
and can grow up to one square meter if the environmental con-
ditions are ideal. Otherwise it usually has the size of a palm.
Starting with spores of Physarum polycephalum mysamben
with a single nucleus will be produced, which can reproduce
by mitosis. Dependent on environmental conditions flagellates
can evolve. If two flagellates of different sex meet they form
a diploid zygote. This will grow to the final size plasmodium
by division of the nucleus.

Summarizing, the large visible yellow slime mold is a large
single cell with multiple nuclei. When food is used up in
the area of the cell it enters the hunger phase. In this phase
Physarum polycephalum optimizes its shape by maintaining
thick pipes between food sources and by shrinking the contour
where no food is available any more. This is the phase that is
used by most computational slime mold inspired algorithms.

B. Computational Applications of Physarum polycephalum

New research showed that this kind of slime mold is able to
construct efficient and fault tolerant connection networks be-
tween multiple food sources. This ability has been used (with
real slime molds and simulations of Physarum polycephalum)
on examples such as British and American motorways [6],
[7] and for the Tokyo railway network [1]. Physarum poly-
cephalum constructed networks that had similar properties as
the existing networks designed by human engineers. Another
application is the usage of Physarum polycephalum as light
detector of a robot [8] and in wireless ad hoc networks [9].

C. Simulation Models for Physarum polycephalum

In the literature, several types of computer simulation mod-
els can be found.

In [10], the hunger-phase of Physarum polycephalum is
modeled by a mesh network of tubes that can enlarge or shrink.
This model is close to the natural mechanisms, where nutrition
is streamed through the slime mold, so that nutrition is spread
throughout the whole cell, from food sources to areas with
less food. During that process the streaming channels of the
slime mold enlarge, where more nutrition has to be moved, and
channels shrink or disappear where little nutrition is present or
is to be transported. The simulation model includes differential
equations of the pressure and the movement of the fluid with
time, and the changing of the size of pipes dependent on the
moving fluid.

In [11], an agent based model is used which basically is a
cellular automaton. Each place in the two dimensional matrix
can be visited by an agent. An agent has three sensors in its
front view, front right, front left and front middle. Parameters
are sensor angle and sensor range. Two actions are possible:
move to another cell and/or leave a trace. This approach
models the distribution of the nutrition inside the Physarum
polycephalum cell in a more abstract way, physically and
quantitatively not very close to the natural mechanisms. How-
ever the phenomena of building fault tolerant short networks

is captured by this model very well. The agents can be
interpreted as moving nutrition that is not explicitly channeled.
However channel-like streams will build up implicitly by the
rules governing the agents’ behavior. Furthermore the agent
based approach allows fast simulations/calculations and it is
not necessary to deal with costly calculation and solution of
differential equations.

The approach in [12] models the expansion and shrinkage
phase similarly to dilation and erosion as know from computer
graphics. This algorithm is especially designed for path finding
in a maze.

Subsequently, we will show how to obtain connection
networks using the agent-based simulation of Physarum poly-
cephalum. The resulting networks (see also [5]) will be
presented and their quality will be compared to that of the net-
works obtained by tubular simulations and with experiments
done with real Physarum polycephalum (see [1]). Then, it will
be demonstrated how algorithms from graph theory [13] can
be adapted for application in our context.

III. NETWORK DESIGN BY AGENT BASED SIMULATION OF
Physarum polycephalum

We used our simulator, that is based on the model in [11],
in order to construct a number of different fault tolerant
connection networks and compared the characteristics of the
found solutions with the existing real railway network and
with a manually constructed fault tolerant graph (by human
expertise, resulting from enhancing the Minimum Spanning
Tree (MST) where fault tolerance has been introduced by
manually adding some edges).

Our simulator is based on a cellular automaton. The play-
ground is a two dimensional matrix, on which agents are
placed, that observe their environment and that can move
around and/or leave a chemical, dependent on the environ-
mental conditions. The chemical is steering the movement of
agents. The chemical is emitted by food sources and spreads
spatially, by the same time vanishing through evaporation.
Agents can reinforce this signal by emitting the chemical
themselves. The value of the chemicals concentration is stored
as attribute of each cell of the matrix.

The main rules of the agent’s behavior according to [11]
(slightly different rules can be found in [14], [15]) are:

Movement:
Step 1: ’Attempt to move forward in current direc-
tion’
Step 2:
.....IF (’move forward successful’)
..........THEN ’Deposit trail in new location’
..........ELSE ’Choose random new orientation’

Given that each agent faces into a certain direction and can
sense the matrix for the concentration of the chemical in front
direction (F), front right (FL) and front left (FL), the agent
maintains its direction, rotates a certain angle (RA) to the left
or right, or randomly:

Step 1: ’Sample trail map sensor values F, FL, FR’
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Fig. 1. Screenshot of simulation

Step 2:
IF (F > FL) AND (F > FR)
.....’Stay facing same direction’
ELSEIF (F < FL) AND (F < FR)
.....’Rotate randomly left or right by RA’
ELSEIF (FL < FR)
.....’Rotate right by RA’
ELSEIF (FR < FL)
.....’Rotate left by RA’
ELSE
.....’Continue facing same direction’

The simulation starts with a matrix which can be represented
as bitmap where the different colors stand for the various
states of a cell (cf. Fig. 1): The background representing
empty cells is white. A food source is yellow. Yellow food
sources represent the nodes of a graph (cities) which have
to be connected by the slime mold (connections representing
railways). Black and blue is forbidden terrain, red to gray is
the intensity of the trail signal.

In nature, food is the attractor for Physarum poly-
cephalum and where there is more food there Physarum poly-
cephalum moves to. In nature, food flows through Physarum
polycephalum and influences the movement and shape of
Physarum polycephalum. In the agent model, the food flow
is modeled by a trace that agents leave on their trail, the trace
signaling that food is near, or that many agents are heading
in this direction, probably because someone found food there.
This behavior is similar to ant algorithms, where ants also emit
pheromones on their path [16].

The optimization problem to be solved when constructing a
fault tolerant graph is to find a solution between the Minimum
Spanning Tree (minimum cost, that is sum of length of
edges between nodes, but no fault tolerance) and a fully
connected graph (maximal fault tolerance but also maximal
cost). The slime molds tries to connect all food sources thereby
shortening all of its connections as much as it can. Fault

tolerance is not a direct goal of the slime mold, fault tolerance
is a side effect since the slime mold just connects nodes that
are near each other so that automatically several paths are
established when a higher number of nodes are crowded in
an area. Only isolated nodes will not be connected in a fault
tolerant way. Note that the graph constructed by Physarum
polycephalum will not only consist of direct links between
nodes but may also have Steiner tree like connections. As can
be observed from the picture in Fig. 1, the agents/chemicals
not necessarily ’draw’ an easily automatically measurable line
between food sources. Thus the resulting graph has to be
determined manually by drawing an edge where are ’enough’
agents between two food sources. The graph constructed that
way can then be analyzed for its quality measures. Because
there is not always a state of clear convergence a stopping
criteria has to be defined, i.e., when the simulation has to be
stopped and the graph has to be defined and analyzed. We did
measurements in two ways to account for the dynamics of the
simulation: First experiments stopped after a fixed number of
iterations (5000), the resulting network was measured then. In
the second row of experiments, the simulation was stopped
periodically (every 250 iterations), the graph was measured
and analyzed, and then the simulation has been continued.

Both experiments were repeated with an additionally ac-
tivated 3x3 filter, that smoothens the chemical values around
each agent by averaging the values, which makes four different
experimental setups which will be shown and discussed in
Fig. 3 in the next section.

Before presenting the results, the measures describing the
quality of the found graph will be introduced. In order to make
this comparable to recent results the definition of the quality
measures are taken from [1]:
• Graph G
• S: Set of nodes of G
• E: Set of edges e of G
• length(e): weight of edge e representing the distance of

two nodes
• MST(G): Minimum Spanning Tree of G
• N : Number of nodes of G
• SP (vi, vj): Shortest Path from node i to node j
The evaluation of the found networks is analogous to [1],

where the definitions for the following measures of the graph
are taken from:

Total length of all connections:

TL(G) =
∑
e∈E

length(e)

Cost of the network relative to the minimum cost (of the
MST):

Cost(G) =
TL(G)

TL(MST (G))

Fault Tolerance FT that takes into account the length of
edges, since a long connection is more prone to fault:

FT(G) =

∑
e∈E|(G\{e}) isConnected length(e)

TL(G)
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Fig. 2. Fault tolerance of spanner algorithm with varying value of t

The performance of the network as average distance be-
tween two arbitrary nodes relative to MST:

Performance(G) =
avgDistance(G)

avgDistance(MST )

IV. GEOMETRICAL SPANNERS

In this section we explain the algorithm from graph theory,
that has as input a set of points, and delivers a graph with a
certain degree of fault tolerance and a maximal path length
between each pair of nodes as result.

For a given set of nodes, a spanner is a graph that connects
all nodes. In this context, the notion of fault tolerance is
defined independently of the length of edges: a graph is said
to be k-fault tolerant when k arbitrary edges can be removed
and the graph still remains fully connected.

Obviously, the Minimum Spanning Tree is a spanner with
zero fault tolerance.

A. Definition and Construction of a (k, t)-Spanner

Taken from [17], the necessary definitions and the algorithm
for construction of a (k, t) spanner, are presented in this
section. Note that it has also be proven that vertex and edge
fault tolerance are corresponding concepts.

Let S be the set of N points in R2 as defined above. Let
t > 1 be a real number, let k ≥ 0 be an integer, and let
G = (S,E) be an undirected Euclidean graph with vertex
set S. The spanner with stretch factor t is called t-spanner, if
δ(p, q) < t|pq| for any two points of S. The notation |pq| to
denote the Euclidean distance and δ(p, q) to denote the shortest
Euclidean length of a path in a geometric graph G between p
and q. The approach is a greedy algorithm. Each edge of the
complete graph is considered for construction of the spanner.
The edges are processed in increasing order of the edge length,

for that purpose they are stored sorted in list L. For each edge
the intermediate result graph will be checked, whether already
the fault tolerant criterion between the two points connected
by that edge is fulfilled. If not, the edge is added to the graph.
If yes, but the t criterion is not fulfilled (i.e. the existing paths
are too long) then the edge is also added. Formally, that is, if
the graph G does not contains k+1 vertex-disjoint t-spanner
paths between p and q, the edge (p, q) will be included in the
set of edges E. The output of algorithm is a t-spanner for S
with k fault tolerance.

Altogether, the algorithm can be formalized as shown in the
following algorithm 1 (excerpted from [17]).

Algorithm 1 (k, t)-spanner algorithm

Input: A set S of N points in R2, an integer k ≥ 0,
and a real number t > 1

Output: A (k, t)-spanner for S
Initialisation: G := (S,E) with E := ∅

for each {p, q}εL considered pairs in nondecreasing order
do if G does not contain k + 1 vertex-disjoint t-spanner

paths between p and q
then E := E ∪ {{p, q}}

G := (S,E)
endif

endfor

Note that there are different definitions of fault tolerance. In
the following we will use the definition that includes the length
of edges. This has two reasons; first, the networks produced
by bio-inspired algorithms nearly never show fault tolerance
greater than one. Second, for application in real networks, the
definition including the lengths of edges is more realistic, since
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Fig. 3. Agent-based slime mold simulation results for the trade-off fault tolerance vs cost (both normalized to MST)

the fault probability of longer connections usually is higher in
reality, be it communication lines or transport networks.

In Fig. 2, the characteristics of the generated networks
can be observed for changing values of t (for k = 0). For
values of t approaching one, the generated networks converge
towards the complete graph. Since for large values of t the
resulting networks converge towards the Minimum Spanning
Tree, the fault tolerance of the resulting spanners initially is
one, and falls down on a convex curve towards zero. We
conclude that by variation of parameter t a wide range of
networks can be generated. In the next section, we will analyse
these networks for their properties concerning length and fault
tolerance and compare them to those generated by the slime
mold simulation.

V. RESULTS

A. Fault Tolerance versus Costs

Fig. 3 presents the results obtained by agent-based sim-
ulations of Physarum polycephalum, showing the degree of
fault tolerance versus the costs of each produced network.
The diversity of networks has its origin in the stochastic
nature of the agent-based simulation. Additionally, the real
Tokyo network is included, as well as a network which has
been designed manually, taking the MST and adding several
connections manually, where obviously necessary. As first
observation, it can clearly be seen that the fault tolerance
of the Tokyo network as well as the manually constructed

network is better than the networks produced by the slime
mold algorithm. The Tokyo network is a bit less fault tolerant
and has marginally less costs than the manually constructed
network.

This is not surprising since the Tokyo network is grown
historically and has to cope with geographical, political and
other constraints that are not represented in the graph.

Since fault tolerance is not a primary goal of the slime
mold algorithm the results for performance do not reach top
values. However, a number of solutions show a good trade
off: Especially the simulation results after 5000 iterations
without filter reach values for fault tolerance around 0.84 while
having costs of only 1.4 (the Tokyo and manually constructed
networks have fault tolerance of around 0.98 and costs of
around 1.75).

Fig. 3 directly relates to Fig. 3 (A) in [1]. For reference, the
results for the natural slime mold and the tubular simulations
from [1] are given in Fig. 4 here. It can be seen that the
graph for the tubular simulation results starts with zero fault
tolerance and cost of one (obviously it found the MST), raising
quickly in a straight line to a fault tolerance of approximately
0.9 at normalized cost of 1.5 and from there on converging
to one, at raising cost. Contrary to the tubular simulation, the
results for the natural Physarum polycephalum barely find a
non-fault tolerant network, nearly all networks having fault
tolerance over 0.6. The convergence to fault tolerant networks
at high costs cannot be observed, several networks with costs
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Fig. 4. Fault tolerance versus costs for tubular model, (k, t)-spanner and natural slime mold

of around 1.5 have a fault tolerance of less than 0.8.
The agent-based simulation results reproduce much better

the variety of the results obtained by the natural slime mold as
can be seen by comparing Fig. 3 and Fig. 4. Taking the results
for 5000 iterations without filter and continuous measurements
with filter together, the results resemble the natural results
much more in their variance, and also not showing less fault
tolerance than 0.4. The results for continuous measurement
without filter seem to be similar to the tube model, the trend
to convergence for fault tolerant networks at higher cost can
be clearly observed.

Fig. 4 also contains the results for the (k, t)-spanner. The
data points for the spanner algorithm show a good accordance
to the naturally produced variety of networks regarding non-
extremal values for t. For the extremal values of t the results
of course converge against the complete graph and MST,
similarly as for the tubular model.

Contrary to the tubular model, the spanner algorithm repro-
duces the variety of naturally produced networks much better
for non-extremal values for t, resulting in networks with costs
in the interval of 1.25 and 2, and fault tolerance between 0.5
and 0.95.

Altogether, it can be stated that the (k, t)-spanner algorithm
is applicable despite the different definition of fault tolerance
and that it is well capable of producing networks whose
characteristics show the same variety as networks constructed
by real slime molds. This is achieved by changing the value
of parameter t.

VI. DISCUSSION AND CONCLUSION

The results in the last section showed that slime mold
inspired construction of fault tolerant optimized connection
networks is a working approach.

However, it is the question, whether dedicated classical
algorithms might be a better choice for this task.

Algorithms for that purpose belong to the class of al-
gorithms for geometrical spanners [13], [17]. It has been
shown in this paper that by varying the parameter t in the
(k, t)-spanner algorithm, networks with the desired trade-off
between fault tolerance and performance can be generated. It
has also been shown how to overcome the different definitions
of fault tolerance, used in graph theory and in the bio-inspired
approaches.

Thus, the (k, t)-spanner algorithm can well be used in order
to construct a connection network tailored to the needs, be it
fault tolerance, length, etc.

For the Tokyo network, the spanner algorithm worked
quite satisfactory and faster than the bio-inspired approaches.
However the complexity is O(|L| · log|L|) stemming from the
sorting of |L| possible edges. Note that the problem size should
be characterized by the number of points N to be connected,
resulting in

(
N
2

)
possible edges. For future work it should be

investigated, for which N the (k, t)-spanner algorithm is not
applicable anymore and whether the bio-inspired approaches
still work for that problem complexity. In order to do this
an approach is needed to automatically construct a graph out
of the simulation results, since manually marking the result
graph in the image of the final agent distribution is not a
viable approach for larger problems.

It also showed that the approach of using human intuition,
i.e., constructing a Minimum Spanning Tree and adding man-
ually some edges for fault tolerance, is a cheap solution that
leads to good results. However, this approach is not viable for
larger graphs.

Summarizing, it can be said that naturally inspired algo-
rithms is of course an interesting field that also lead to valuable
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new algorithmic approaches. However, not everything that
works in nature can be transferred to technical solutions easily.
As we show in this work, slime mold inspired algorithms
are capable to construct fault tolerant connection networks.
Drawbacks are found in the analysis of the simulation results
and in the runtime for the application of the Tokyo railway
system. Furthermore, relatively high effort has to be put in
the parameter tuning of the complex agent-based algorithm,
until it delivers satisfactory results. Additionally, it turned out
that among the different modeling approaches for Physarum
polycephalum, the agent based model the best one in the
context of constructing networks between food sources.

Future work will include evaluation of both bio-inspired and
classical approaches for a number of small to large benchmark
problems in order to decide for which problem complexity
classical or bio-inspired approaches are superior.
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