
Improving the Development Process for
Teleo-Reactive Programming Through Advanced

Composition
James Hawthorne, Richard J. Anthony, Miltos Petridis

School of Computing & Mathematical Sciences
The University of Greenwich

London, UK
{J.Hawthorne, R.J.Anthony, M.Petridis}@gre.ac.uk

Abstract—Teleo-Reactive programming as applied to auto-
nomic systems is both a viable and exciting prospect as it
inherently recovers from errors and unexpected events whilst
proceeding towards its goal. It does this without the need to
know in advance, the specific events which might occur, thus
greatly reducing the human maintenance element. Whilst the
benefits of this technique are great once the program has been
composed, the challenge of validation attached to these programs
also increases. We aim to ease the composition process needed
when constructing T-R programs by building new abilities in to
our existing Teleo-Reactive framework. Firstly, these new abilities
will make it possible to detect validation issues at design time,
thus reducing the likelihood of problems and increasing the ease
of detecting them. Secondly, it will be possible for programs to
be automatically composed from existing elements, thus further
reducing the cost of validation issues. These ideas can even be
extended to allow for dynamic composition and runtime changes
to goals and actions.

Index Terms—Teleo-Reactive Programming; Software Compo-
sition; Goal-Based Software

I. INTRODUCTION

Teleo-Reactive (T-R) programs developed by Nilsson [1]
were designed for autonomous control of mobile agents. T-R
programs continually accept feedback from the environment,
performing actions based on this current state. A T-R program
is structured with a hierarchical list of condition and action
pairs with each action fulfilling or partly fulfilling the condi-
tion of higher precedence. An action will end execution if it
ceases to be associated with the highest true condition, either
because the action has fulfilled the next condition or some
other circumstance has caused this case. We have shown in
previous work how T-R programs can be used to create reliable
and robust autonomic solutions [2].

The Oxford English dictionary describes Composition as
“the nature of something’s ingredients or constituents; the way
in which a whole or mixture is made up”. This description
could be imagined differently depending on the given allow-
able interaction of the context and the aim of the composition.
For example, in a heavily component oriented software design
[3], [4], most software engineers would imagine the links
and interactions between the objects and components as being
the Composition of the program. According to Szyperski [3],

components “have to be carefully generalised to allow for
reuse in a sufficient number of contexts” therefore the compo-
sition of the module could decide other labels it has attached.
‘Reusable’, ‘modularised’, or the antonym, ‘procedural’.

When we talk about composition of T-R programs, the
whole of the program is composed of its preceding rules
leading to the satisfaction of the goal. The ordering of rules
is fundamental in T-R programs as the higher the rule in the
program, the higher the priority. In a procedural program, the
modules of code are often tightly coupled to each other (if
modules exist at all) and the composition of those modules
are not greatly considered. The content of the modules take
priority here. In component-heavy programs, the connections
and interactions are considered to a greater extent, resulting
in greater re-usability and portability. In this paper, when we
talk about T-R composition, we are referring to the conditions
each action is associated with and the order of the rules in the
program list.

We have identified some of the problems in composing T-R
programs [5]. It is easy to make a mistake in the logical design
of the program such as incorrect rule ordering or an action
needing an extra condition to proceed correctly. This could
lead to perpetual skipping of one rule leading to falsehoods in
another rule or that the program is deadlocked and can never
reach its goal. In essence, T-R programs present a more natural
and robust way of approaching a goal (natural in the sense
that a human approaches an activity without first planning the
millions of different events which could interrupt the process).
This paradigm shift has however exposed new logic problems
which are very easy to trigger and difficult to diagnose.

Very often in fact, a program may look entirely logical
but when it is first run, mistakes become obvious to us. As
an analogy, an incomplete diagram of a house may appear
complete so an inexperienced builder may begin to build the
house. However, a structural part of the house is not shown
on the diagram and it is not obvious that it is needed either.
After the house is built, the mistake is obvious.

In [5] we highlight some frequently occurring issues and
propose a valuable set of guidelines to reduce the possibility
of these issues from ever embedding themselves in the T-R

75

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-134-2



program. We have already developed the Java Teleo-Reactive
Autonomic Framework (JTRAF) to allow for the easy creation
of high-level T-R solutions as well as allowing for future
improvements and extensions such as the ones proposed in this
paper to be applied without affecting existing JTRAF based
programs. By building our solution into JTRAF, we can shift
some of the validation work from the designer, tackle some
of these logic problems and automate the T-R composition
process. Thus T-R becomes a more viable autonomic solution.

Our proposal addresses two aims. The first, as already
mentioned, is to detect validation issues with the program
before deployment. This includes errors where an action
causes two rules to become true at the same time. The
lower priority rule is inadvertently made redundant because
the highest priority rule is always executed before the lower
one. Another error could be with deadlocked actions, where
one action never causes a higher priority condition to change
state and thus the logic can never proceed past this point.
These are vitally important issues that are not easily detected
or solved. From experience, we know that even simple T-R
programs can contain problems which are not easy to diagnose
through observation alone. Very often it is not until after an
initial execution of the program, do we find that an action is
deadlocked. This is more often than not, a fault in the high
level logic than a code fault.

The second aim is a natural progression from the first.
Namely, that if we can determine where faults are and if we
can inform our program which actions contribute to the logical
correctness of specific conditions, then it is intuitive that we
should be able to automatically compose the program in terms
of order and arrangement of rules and conditions. This will
further reduce human maintenance costs.

II. RELATED WORK

In [6] the authors describe a problem in T-R programs where
actions are executed one at a time. They argue that actions
should be eligible to be run concurrently with other actions
as there may be periods where you do not want to cease one
action to begin another. The work is proposed for the robotics
domain for which T-R programs were designed. In one given
example, “If a soccer robot should dribble and kick. If the
robot stops dribbling in order to prepare kicking, the ball will
roll away from the robot. Thus, the robot has to kick while it
concurrently dribbles.” If a robot has a similar T-R program:

.....

CanKick −→ Kick

HasBall −→ Dribble

.....

This may be a problem if the Kick action took more than
a few microseconds to complete. In many scenarios it is
possible to organise the logic so that actions are executed in
a time-slicing / multi-process way, where two conditions are
alternately switched between true and false states. The two
actions would then give the illusion of concurrency.

Much of the work on T-R is aimed towards using a variety
of artificial intelligence techniques to implement learning

algorithms on the model. For example, [7] uses neural net-
works to capture new environmental experiences which can
be integrated into a learning architecture. Whereas in [8]
a representation formalism is developed called ‘teleoreactive
logic problems’ which support learning. In this method, two
knowledge bases exist containing a list of ‘percepts’ about
the environment and a knowledge base containing known
actions. They also describe an interpreter that utilizes the logic
problems to achieve goals.

Through human guidance, the robots in [9] learn new T-R
programs. These new programs are aimed mainly at navigation
oriented tasks. To this end the low-level sensor readings are
first transformed into higher level output so that they can be
interpreted with physical objects represented as landmarks.
Another learning algorithm is presented in [10]. The authors
use genetic programming techniques to evolve T-R programs
and produce programs for solving some problems.

We can think of a T-R system as a goal-oriented system as
every T-R program proceeds towards its top level condition
(the goal). There are several goal-oriented software designs
which exist. Of particular note is [11], where a goal reasoning
tool is built on the Tropos [12] methodology. Tropos itself
supports software development at all stages, from requirements
analysis to design with goal-based reasoning as a driving
force. In [11], the authors try to make the goal analysis
more complete by building forward and backward reasoning
techniques into a graphical design tool.

This work is of particular interest to us because the back-
ward reasoning employed is similar to the way in which
our T-R software composition methods are implemented. The
forward reasoning is employed to evaluate the impact of
adopting the approaches with respect to softgoals. Softgoals
in Tropos and indeed, in many other goal-oriented systems
mean non-functional goals such as Are customers happy?.

In [13], the author argues the case for widespread use of
Goal Oriented Requirements Engineering (GORE). He argues
that it makes sense that the creation of software should be
directed towards what the user wants to get from it, i.e. the
goal, and that these goals should drive the requirements. The
author shows evidence of several successful projects which use
GORE and also argues that tool support should be integrated
into GORE development.

[14] also champion GORE as a way forward in software
development. They give a detailed account of the relationship
between goals in GORE models and use several examples to
illustrate their point. For example, the relationship between
one goal and another goal or softgoal can have several satis-
factory levels and contribution types, including satisfied, none,
conflict, denied, some positive, some negative to name just a
few.

It will certainly be interesting to see if our proposed tech-
niques described in this paper can have their desired benefit
with such minimal extra requirements on the T-R software
designer considering the number of embellishments needed
for the completion of a GORE-based system. However, the
stages of development and their aims vary. i.e. GORE is largely

76

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-134-2



Developing self-healing Applications 9

The final goal condition should be the state which all other actions are work-
ing towards. Here is an example where a delivery company uses GPS to track
its delivery van and display the status of the van on a web site for customers to
view (the software is running on a computer in the van depot):

Has van returned to depot −→ Nil

Has DB link ∧Has van status −→Write van status to DB

Has van status −→ Get DB link

Has van link ∧ Timer expired −→ Get van status

T −→ Establish van link

IsF ileComplete −→ Nil

IsF ivePacketsSent −→ ChangePacketSize

IsConnected −→ SendNextPacket

IsAccepting ∧ IsWaiting −→ Connect

T −→ Accept

Now imagine we are at the stage where we about to write the van status to
the database but the ‘Has van status’ condition is no longer true for whatever
reason. The program may ‘drop back’ to establishing the link to the van and
getting its state again. From this point it can work back to the point of writing
to the database, thus the program self-heals.

The developed framework allows each T-R program to be run as a thread so
in this case the T-R program would have as many instances as there are vans to
track which would all be running in the background leaving the main program
free for more important tasks. We can be confident that each instance will work
unsupervised because we know errors will be handled. This is why confidence
in this part of design is so important. This is the main goal in autonomics as
well; to have programs handle themselves so there is little maintenance for the
programmer after deployment, and only low levels of external supervisory input
are needed.

4.2 Program Structure Design

The framework has been designed to allow the concepts discussed in this paper
to be realized and even integrated into current systems as easy as possible.
Programmers are required only to extend the types Action and Conditional as
shown in figure 2. It is important to recognize that the onus currently resides
with the programmer to produce actions and conditions which can complete at
least some of the time given the expected state and context. The framework
robustly handles events and errors, however, an action or condition which never

Fig. 1. Typical view of a T-R program (simple file sender program)

concerned with modelling a system at the requirements stage
whereas we want to aid the designer at the design/development
stage.

Although T-R was developed as an autonomous low-level
robotic and agent control method, we believe that the approach
can be of use in higher level autonomic software and we are
interested in applying this approach in this field. As such, we
note some of this research.

There have been several approaches to autonomic software
solutions, from architectural designs [15], [16] to artificial
intelligence [17] and utility function based ideas [18], many
of which are very complex solutions themselves and thus the
ease of implementation is sometimes questionable. We wish
to minimise “complexity tail chasing”; a term used in [19]
to describe the situation where one aspect of the complexity
problem is resolved by increasing complexity in other aspects.
Such approaches can exacerbate the challenges of validation
and trustworthiness.

III. EXISTING T-R COMPOSITION METHOD

For our discussion, we will use a very simple file sending T-
R program first presented in [2]. This program was designed
to show how the T-R system can recover from unexpected
events. The program simulates a network file sending service
from the point of view of the server. It sends a file in packets
once a client has connected. Depending on the success of
previous packet sending attempts, the packet size is adjusted
accordingly; dynamically achieving a balance between com-
munication efficiency and robustness.

A typical representation of this T-R program is shown in
figure 1 with the boolean conditions to the left of the arrows,
and the actions to the right. It is worth emphasising that the
higher the rule, the higher the precedence. So lower rules are
ignored if a higher condition is true. For example, in figure 1 if
both IsConnected and a IsFivePacketsSent were both true then
only action ChangePacketSize would be eligible to execute
as IsFivePacketsSent is located higher in the program and
therefore takes precedence (IsFivePacketsSent actually means
has a multiple of five packets been sent ‘true’ or ‘false’).

This program was implemented using the JTRAF frame-
work where each action contains only one condition. For
example, the Connect action of figure 1 is instantiated in
JTRAF with a reference to an instance of an AndConditon
which itself contains references to instances of IsAccepting and
IsWaiting conditions. Therefore connectAction only references
one condition (andCondition).

.....
Conditional andCondition = new AndCondition(

new IsAccepting(), new IsWaiting());

IsFileComplete

- contributingAction:  Action

Nil

- condition:  Condition

IsFivePacketsSent

- contributingAction:  Action

IsConnected

- contributingAction:  Action

AndCondition

- leftCondition:  Condition
- rightCondition:  Condition

T

IsAccepting

- contributingAction:  Action

IsWaiting

- contributingAction:  Action

ChangePacketSize

- condition:  Condition

SendNextPacket

- condition:  Condition

Connect

- condition:  Condition

Accept

- condition:  Condition

Externally Triggered

Fig. 2. Class diagram representation of the file sending program in JTRAF

Action connectAction = new ConnectAction(
andCondition);

.....

Each action is instantiated in a similar manner but does
not yet include the sequence order and the T-R program still
needs to be composed. For the simple file sending application
the code is as follows.

.....
TRProgram trProg = new TRProgram();

.....
trProg.addActionToBottom(nil);
trProg.addActionToBottom(changePacketSize);
trProg.addActionToBottom(sendPacket);
trProg.addActionToBottom(connectAction);
trProg.addActionToBottom(acceptAction);

.....

The method addActionToBottom(Action) is used by the
program designer as shown to compose the actions in (what
they perceive as) the correct order. In this case we create the
T-R program of figure 1. A class diagram representation is
shown in figure 2.

The important fact illustrated here is that, although each
action has a reference to its conditions, it has no reference to
any other part of the program. This could be considered good
software design as the loose coupling means changes to one
part of the program will have little effect on any other part.

A. Related Problems

The problem with T-R programs in general is the heavy
reliance on the designer to correctly compose them. The order
of rules and number of conditions related to each action and
their arrangement have to be decided by the designer. This
may appear straightforward but even in the simple file sending
example mistakes can and were made. These mistakes not only

77

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-134-2



invalidate the entire program but can be very difficult to find
and diagnose.

As shown in figure 2 this heavy reliance is due to the fact
that there is no link between the T-R elements within the
program itself so the designer must arrange the elements in the
order that is thought to be correct. What the designer thinks
is correct and what is actually correct can be very different.
Often, it is not until the program is first executed do these
composition mistakes become evident.

As a real example, the program author (one of the authors
of this paper) made the mistake of thinking that the packet size
could be configured before packets were sent and originally
reversed the order of the second and third rules. He neglected
to recognise that organising the logic this way would make
the packet optimisation rule redundant. As the packet sending
rule now had priority over the packet optimising rule and since
sendPacket only requires IsConnected to be true, the packet
optimising rule will be skipped entirely. The goal of sending
the file could still be achieved but without packet optimisation.
Therefore it was difficult to ascertain that there was any fault
in the program.

This example also serves to illustrate the difference in type
of error which can occur in a T-R program and a program
written in a high level language. We can imagine a similar
program written in Java where any errors which do occur are
likely to be a mixture of compile-time and run-time faults in
code. Compile-time errors will be flagged by the compiler and
corrected when they are first known. Run-time errors can be
much harder to identify and are too numerous to have complete
confidence that we have identified them all.

It is possible for an action to have an effect on more
than one condition or a condition may or may not become
true after only one iteration of its contributing action. If
several iterations are needed; each successful iteration would
be moving the program towards a state where the condition
can become true. If a condition is made false by some action
and is then prevented from ever becoming true again then the
program is effectively deadlocked when dropping below this
false condition as the associated action can now never execute
and it may not be possible to reach the goal. Similarly, if a
condition, once true, can never return to a false state then that
may prevent a lower precedence condition from ever being
reached. The associated action for the unreachable condition
may be needed at a later stage by a different condition to make
it true.

A T-R program can be correct despite not being able to
predict its exact state at any moment due to its dynamic
behavior which is sensitive to its operating context. This
affords the T-R program the ability to recover from a broad
range of unexpected events but the difficulty in building a
formal model is exacerbated by the dynamic context-driven
behaviour, as the sequence of states visited is not knowable
pre-runtime and can be different in each run.

This highlights some of the complexity problems associated
with composing a T-R program. Adding only one extra rule
will likely result in an exponential growth in the complexity.

The need for an automated method of detecting logical errors
and composing T-R programs in order to expose T-R program-
ming as a way to produce autonomic programs is proving to
be a requirement rather than an option.

IV. PROPOSED T-R COMPOSITION METHOD

The T-R program designer will be required to make only
one small addition to their program design. That is, to add a
reference from conditions to actions informing JTRAF which
actions contribute to the completeness of which conditions.
By using this information to drive the composition algorithms
we have implemented in the framework, JTRAF will be
able to detect any logical errors in the T-R program design.
With the newly supplied information and the current program
composition it will be possible to determine if any condition
is obtainable by recursively checking if the contributing action
is located in a preceding rule. If so, we need to determine if
this action will ever execute. We can do this by checking if the
condition for this action is obtainable in the same manner as
above. Essentially, we are forming a chain within the program
as in figure 3 and thus be able to determine if the goal can be
achieved or if any rule is skipped.

At the programming level we include a method (isAchiev-
able(Condition)) which returns a boolean result indicating
whether the provided condition will ever return true given the
current composition of the T-R program. Since the goal of a T-
R program is also a type of condition, the designer can test the
goal and determine if the program is valid or not. If not, the de-
signer can use the same method on the preceding conditions to
determine the point of failure. For example in our previous file
sender example, ‘trProg.isAchievable(IsFileComplete);’ will
return true because ‘IsFileComplete’ is achievable given the
current program and additional contributing action informa-
tion. However if the method returned false, the designer could
work back through the program using this method in order to
find the point of failure.

The isAchievable(Condition) method will warn the designer
if for example the given condition ‘is achievable’ but some
rules will be skipped entirely ‘en route’. This indicates that
there is an error in design but the condition is still able to
become true.

As shown in figure 3 some conditions can be externally
triggered. This means that the condition could be made true by
some event external to the program itself. In the file sending
case, IsWaiting becomes true when a client connects and is
added to the waiting queue. Since we have no control within
the T-R program over when this event might happen, we
should mark the condition as being externally triggered. A
condition should be marked as externally triggered if it is
possible that the condition will become true at some point.
A condition marked externally triggered when in fact it is
always false could cause the program to be falsely validated
as the goal might be perceived as reachable when in fact the
incorrectly marked condition prevents this. In such a situation
there is no guarantee that a condition will ever be triggered
externally but this will not mean the program will ever fail

78

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-134-2



IsFileComplete

- contributingAction:  Action

Nil

- condition:  Condition

IsFivePacketsSent

- contributingAction:  Action

IsConnected

- contributingAction:  Action

AndCondition

- leftCondition:  Condition
- rightCondition:  Condition

T

IsAccepting

- contributingAction:  Action

IsWaiting

- contributingAction:  Action

ChangePacketSize

- condition:  Condition

SendNextPacket

- condition:  Condition

Connect

- condition:  Condition

Accept

- condition:  Condition

Externally Triggered

Fig. 3. Class type diagram representation of the file sending program in
JTRAF with implemented composition design (solid lines indicate required
conditions for an action, dashed lines indicate contributing actions for a
condition)

entirely, only that the program will perpetually wait for the
condition to become true.

The information required to detect composition mistakes is
enough for the composition method to be extended, allowing
JTRAF to automatically compose T-R programs as long as
a composition is possible of course. Figure 3 shows the
references between conditions and actions created through the
contributing action variable and indicated by the additional
arrows. The figure shows the program correctly composed
and ordered. However, if the references exist, JTRAF will be
able to reorder the rules and correctly compose the program
even when the initial composition is incorrect or no previous
composition exists. In any case JTRAF can return a correctly
composed solution as in figure 3.

Again, at the programming level, a new method compose()
will take the existing elements of the T-R program and arrange
them so that the goal is achievable. Of course there may be
more than one way to arrange the elements to satisfy the goal
and the method may generate several failed compositions be-
fore a correct one is reached. The composition algorithm will
implement the isAchievable(Condition) method as part of the
mechanism for generating and testing for correct compositions.
In this way the isAchievable(Condition) method becomes the
foundation for composition, making compose() an intuitive and
logical next step in validating a T-R program.

This short paper does not present the inner workings of
the composition algorithm in detail, however, we provide a
brief overview. For any condition to be achievable, it must
hold a reference to a contributing action and the condition
for this action must be satisfiable and associated with its own
contributing action. This action must as well be associated

with a satisfiable condition. This continues until the initial
action and T condition are reached. If the solution is complete
then it can be composed by JTRAF. This of course raises the
possibility of multiple solutions, discussed in section VI.

Automatic composition has a big advantage for the program
designer because it means that the logical ordering and num-
bers of conditions and actions and the problems of making a
mistake here (see section III-A) are now less of a concern.
If JTRAF cannot compose the supplied program, then it is
likely to be because there is a lack of conditions or that the
designer has neglected to add the contributing action to a
condition. These problems are much simpler to rectify than
the composition problems which occur without the aid of
JTRAF’s composition techniques. It also means that errors
are discoverable at design time now. The designer does not
have to wait until post deployment stage before composition
problems are detected.

It is important to make clear that although information
about which actions contribute to which conditions can now be
provided, not every piece of information can be, and therefore
the composition additions cannot guarantee the correctness
of a program. Temporal data about condition checking and
action execution might cause a deadlock but temporal data
is not considered in JTRAF. This may cause a program to
be validated whereas had the temporal data been considered
and processed it would be impossible to do so. For example,
suppose ActionA relies on ConditionA and ConditionB to be
true. ConditionA is true when checked but it only remains true
for two seconds. ConditionB takes three seconds before a true
or false result is returned so by this time ConditionA is again
false. If we knew this, then we could say that ActionA can
never execute and therefore invalidates the program.

Entering temporal data into the composition algorithm
would be of huge benefit in terms of validation for real-time
applications but it would be unreasonable to expect precise
timing measurements to be known in advance, especially for
adaptive systems and/or systems with dynamic environments.
A better solution would be for the measurements to be taken by
and incorporated into JTRAF automatically. See section VI. It
has always been an objective of JTRAF that any changes and
improvements should not affect any existing programs which
use JTRAF. Also, any additions which are warranted by the
program designer should be easy to implement.

One of the main advantages of a pre-built Java framework
is that the proposals in this paper and future methods can
be seamlessly integrated into T-R designs. This means that
the advantages are provided with the designer expending very
little extra effort.

V. CONCLUSION

In this paper we have shown how effective and robust a T-R
program can be and also how easy it is to compose the program
incorrectly and thus never reach the goal. We have illustrated
the seriousness of this problem and proposed that advanced
composition techniques be built into our already existing Java
T-R framework in order to automate the composition process,

79

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-134-2



relieve the designer of this burden and to offer better assurance
over the correctness of a program.

We believe that the techniques described in this paper are
both necessary for the wide-spread use of T-R programming
in both high and low-level applications. The solutions are im-
plemented and benefits gained without requiring the program
designer to endure much extra overheads. In fact to gain the
benefits of advanced, automated composition, the designer is
required to complete only one extra variable in order to link
conditions to contributing actions.

VI. FUTURE WORK

There is a lot of scope here for future ideas to be imple-
mented. In essence the work presented in this paper forms the
foundation for many adaptations.

For example, if a condition has more than one action which
can contribute to it; JTRAF could use this information to
form multiple solutions for the completion of the program
goal with the different solutions using the different possible
actions. It may be that some of the actions contribute to
the condition in question but not to another higher priority
condition, which may be necessary for completion of the
goal and therefore this particular solution is invalid. This
information about the exact correctness of the composition
might only be discoverable at run-time, since the program
might need to be in operation before some information is
known. For instance, the designer might claim that ActionA
contributes to ConditionA, but after the program has been in
operation, it is automatically discovered that this is not the
case. JTRAF could then self-adapt according to an actual
correct composition. The developers’ original composition of
the program could be treated as a suggestion rather than an
unchangeable structure, with the composition always assessed
and changed by JTRAF at run-time according to the proven
reliability of each composition.

It may also be true that several of the actions are applicable
to a particular program i.e. several actions could be used in
the program to complete the same goal. In which case, JTRAF
should determine which of the solutions is the better one.
Perhaps one solution completes the goal in the quickest time
whilst another solution is more reliable i.e. the actions in the
reliable solution are much slower but rarely contain errors.

The failure of an action is less of a concern in a T-R program
since if an action fails, all this means is that the program will
fall back to a lower precedence rule until it is ready to try the
action again. Never-the-less the program designer may require
some actions to be more reliable than others. Perhaps using a
combination of weights in a utility function and policies for
the designer to decide whether speed or robustness is more of
a concern to them.

We could also adapt JTRAF so that actions and conditions
can be dynamically inserted into a running T-R program.
Either a human could insert new conditions and actions or
JTRAF could learn a new action by itself and dynamically in-
sert it into the program. These newly learnt actions could even
be used in the composition of completely new goals which

were not possible before the new action existed. With the
advanced composition techniques implemented there would be
no need to decide where to place the new condition or action.
JTRAF could decide where in the program it should be placed.

REFERENCES

[1] N. J. Nilsson, “Teleo-reactive programs for agent control,” Journal of
Artificial Intelligence Research, vol. 1, pp. 139–158, 1994.

[2] J. Hawthorne and R. Anthony, “Using a teleo-reactive programming
style to develop self-healing applications,” in Autonomics 2009: Third
International ICST Conference on Autonomic Computing and Commu-
nication Systems. Limassol, Cyprus: ICST, September 2009.

[3] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[4] C. Szyperski, “Component technology: what, where, and how?” in ICSE
’03: Proceedings of the 25th International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2003,
pp. 684–693.

[5] J. Hawthorne and R. Anthony, “A methodology for the use of the teleo-
reactive programming technique in autonomic computing,” in Software
Engineering Artificial Intelligence Networking and Parallel/Distributed
Computing (SNPD), 2010 11th ACIS International Conference on, June
2010, pp. 245 –250.

[6] G. Gubisch, G. Steinbauer, M. Weiglhofer, and F. Wotawa, “A teleo-
reactive architecture for fast, reactive and robust control of mobile
robots,” in New Frontiers in Applied Artificial Intelligence, ser. Lecture
Notes in Computer Science, N. Nguyen, L. Borzemski, A. Grzech, and
M. Ali, Eds. Springer Berlin / Heidelberg, 2008, vol. 5027, pp. 541–
550.

[7] J. Ramı́rez, “Neural synthesis of teleo-reactive programs,” in ICMAS
’98: Proceedings of the 3rd International Conference on Multi Agent
Systems. Washington, DC, USA: IEEE Computer Society, 1998, p.
459.

[8] D. Choi and P. Langley, “Learning teleoreactive logic programs from
problem solving,” in Proceedings of the Fifteenth International Confer-
ence on Inductive Logic Programming. Springer, 2005, pp. 51–68.

[9] B. Vargas and E. Morales, “Learning navigation teleo-reactive programs
using behavioural cloning,” in Mechatronics, 2009. ICM 2009. IEEE
International Conference on, 14-17 2009, pp. 1 –6.

[10] M. J. Kochenderfer, “Evolving hierarchical and recursive teleo-reactive
programs through genetic programming,” in Programming, EuroGP
2003, LNCS 2610. Springer-Verlag, 2003, pp. 83–92.

[11] P. Giorgini, J. Mylopoulos, and R. Sebastiani, “Goal-oriented require-
ments analysis and reasoning in the tropos methodology,” Engineering
Applications of Artificial Intelligence, vol. 18, no. 2, pp. 159–171, March
2005.

[12] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,
“Tropos: An agent-oriented software development methodology,” Au-
tonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 203–236,
2004.

[13] A. van Lamsweerde, “Goal-oriented requirements enginering: A
roundtrip from research to practice,” Requirements Engineering, IEEE
International Conference on, vol. 0, pp. 4–7, 2004.

[14] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and
E. Yu, “Evaluating goal models within the goal-oriented requirement
language,” Int. J. Intell. Syst., vol. 25, pp. 841–877, August 2010.

[15] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “Towards
architecture-based self-healing systems,” in WOSS ’02: Proceedings of
the first workshop on Self-healing systems. New York, NY, USA: ACM,
2002, pp. 21–26.

[16] J. Kramer and J. Magee, “Self-managed systems: an architectural
challenge,” in FOSE ’07: 2007 Future of Software Engineering. Wash-
ington, DC, USA: IEEE Computer Society, 2007, pp. 259–268.

[17] S. Hassan, D. Mcsherry, and D. Bustard, “Autonomic self healing
and recovery informed by environment knowledge,” Artif. Intell. Rev.,
vol. 26, no. 1-2, pp. 89–101, 2006.

[18] J. O. Kephart and R. Das, “Achieving self-management via utility
functions,” IEEE Internet Computing, vol. 11, no. 1, pp. 40–48, 2007.

[19] R. J. Anthony, “Policy-centric integration and dynamic composition of
autonomic computing techniques,” in ICAC ’07: Proceedings of the
Fourth International Conference on Autonomic Computing. Washing-
ton, DC, USA: IEEE Computer Society, 2007, p. 2.

80

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-134-2


