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Abstract—Developing autonomous systems requires adaptable 
and context aware techniques. The approach described here 
decomposes a complex system into service components –
functionally simple building blocks enriched with local 
knowledge attributes. The internal components’ knowledge is 
used to dynamically construct ensembles of service 
components. Thus, ensembles capture collective behavior by 
grouping service components in many-to-many manner, 
according to their communication and operational/functional 
requirements.  Linguistic constructs and software tools have 
been developed to support modeling, validation, development 
and deployment of autonomous systems. A strong pragmatic 
orientation of the approach is illustrated by two different 
scenarios. 

Keywords-autonomous systems; component-based system; 
context-aware systems 

I. INTRODUCTION 

Developing massively distributed systems has always 
been a grand challenge in software engineering [1,2,3]. 
Incremental technology advances have continuously been 
followed by more and more requirements as distributed 
applications grew mature. Nowadays, one expects a massive 
number of nodes with highly autonomic behaviour still 
having harmonized global utilization of the overall system. 
Our everyday life is dependent on new technology which 
poses extra requirements to already complex systems: we 
need reliable systems whose properties can be guaranteed; 
we expect systems to adapt to changing demands over a 
long operational time and to optimize their energy 
consumption [4,5].   

One engineering response to these challenges is to 
structure software intensive systems in ensembles featuring 
autonomous and self-aware behaviour [6,7]. The major 
objective of the approach is to provide formalisms, 
linguistic constructs and programming tools featuring 
autonomous and adaptive behavior based on awareness. 
Furthermore, making technical systems aware of the energy 
consumption contributes significantly to the ecological 
requirements, namely to save energy and increase overall 
system utilization. The focus here is to integrate the 
functional, operational and energy awareness into the 
systems providing autonomous functioning with reduced 
energy consumption. The rationale, expressing power and 
practical value of the approach are illustrated on e-mobility 
and cloud computing application domains. The two complex 
domains appear to be fairly different. However, taking a 

closer look at the requirements of the two scenarios it 
becomes noticeable that the problem domains share 
numerous generic system properties, especially seen from 
the optimized control perspective. 

The paper presents work in progress focusing on energy 
optimization in complex distributed control systems. It 
further elaborates methods and techniques to model and 
construct complex distributed systems with service 
components and ensembles. The rationale of the approach is 
presented through close requirements analysis, system 
modeling and development. The deployment is illustrated 
by the science cloud application scenario. Finally, the 
approach is summarized giving further directions for the 
work to come.  

II. REQUIREMENTS ANALYSIS 

To explore the system requirements, two complex 
application domains are closely examined: e-mobility 
control and cloud computing.  

E-mobility is a vision of future transportation by means 
of electric vehicles network allowing people to fulfill their 
individual mobility needs in an environmental friendly 
manner (decreasing polution, saving energy, sharing 
vehicels, etc).  

Cloud computing is an approach that delivers computing 
resources to users in a service-based manner, over the 
internet, thus re-inforsing sharing and reducing energy 
consumption). 

At a first glance electric vehicular transportation and 
distributed computing on demand have nothing really in 
common! 

A. Common Characteristics 

In a closer examination the two systems, though very 
different, have a number of common characteristics. 

1) Massive Distribution and Individual Interest 
E-mobility deals with managing a huge number of e-

vehicles that transport people from one place to another 
taking into account numerous restrictions that the electrical 
transportation means imposes.  

Each cloud computing user has also his/her individual 
application demands and interest to efficiently execute it on 
the cloud. The goal of cloud computing is to satisfy all these 
competing demands.  

Both applications are characterized with huge number of 
single entities with individual goals. 
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2) Sharing and Collectiveness 

In order to cover longer distances, an e-vehicle driver 
must interrupt the journey to either exchange or re-charge 
the battery. Energy consumption has been the major 
obstacle in a wider use of electric vehicles. Alternative 
strategy is to share e-vehicles in a way that optimizes the 
overall mobility of people and the spending of energy.  In 
other words: when my battery is empty – you will take me 
further if we go in the same direction and vice versa [8]. 

The processing statistics show that most of the time 
computers are idle – waiting for input to do some 
calculations.  Computers belong amongst the fastest yet 
most wasteful devices man has ever made. And they 
dissipate energy too. Cloud computing overcomes that 
problem by sharing computer resources making them better 
utilized. In another words, if my computer is free – it can 
process your data and vice versa; or even better, let us have 
light devices and leave a heavy work for the cloud [9]. 

At a closer look “sharing and collectiveness” are 
common characteristics of both application domains! 

3) Awareness and Knowledge 
E-mobility can support coordination only if e-vehicles 

know their own restrictions (battery state), destinations of 
users, re-charging possibilities, parking availabilities, the 
state of other e-vehicles nearby. With such knowledge 
collective behavior may take place, respecting   individual 
goals, energy consumption and environmental requirements. 

Cloud computing deals with dynamic (re-)scheduling of 
available (not fully used) computing resources. Maximal 
utilization can only be achieved if the cloud is “aware” of 
the users’ processing needs and the states of the deployed 
cloud resources.  Only with such knowledge a cloud can 
make a good utilization of computers while serving 
individual users’ needs. 

At a closer look “awareness” of own potentials, 
restrictions and goals as well as those of the others is a 
common characteristic. Both domains require self-aware, 
self-expressive and self-adaptive behavior based on a 
knowledge about those “self*” properties.  

4) Dynamic and Distributed Energy Optimization 
E-mobility is a distributed network that manages 

numerous independent and separate entities such as e-
vehicles, parking slots, re-charge stations, drivers. Through 
collective and awareness-rich control strategy the system 
may dynamically re-organize and optimize the use of energy 
while satisfying users’ transportation needs. 

Cloud computing actually behaves as a classical 
distributed operating system with a goal to maximize 
operation and throughput and minimize energy 
consumption, performing tasks of multiple users. 

At a closer look “dynamic and distributed optimization” 
is inherent characteristic of the control environment for both 
application domains. 

 

TABLE I.  COMMON CHARACTERISTICS 

Common 
feature  

Cloud computing  E-Mobility  

Single entity Computing  
resource 

Vehicle, driver, park 
place, charging station 

Individual 
goal 

Efficient execution Individual route plan 

Ensemble  application , cpu 
pool,  

Free vehicles, free 
park places, etc 

Global goal  Resource 
availability, optimal 
throughput 

Travel, journey, low 
energy  

Self-
awareness  

avail-able 
resources; 
computational  
requirements, etc 

Awareness of own 
state and restrictions  

Autonomous 
and collective 
behavior  

Decentralized 
decision making, 
global optimization  

Reaching all 
destinations in time, 
minimizing costs 

Optimization  Availability, 
computational task 
execution  

Destination achieve-
ment in time, ve-
hicle/infrastructure 
usage  

Adaptation  According to avail-
able resources  

According to traffic, 
individual goals, in-
frastructure, resource 
availability  

Robustness  Failing resources  Range limitation, 
charging battery in-
frastructure resources  

 

B. Common Approach 

This set of common features serve as a basis for 
modeling of such systems leading to a generic framework 
for developing and deploying complex autonomic systems. 
The table 1 summarized the common requirements that lead 
to four major behavioral principles: adaptation, self-
awareness, knowledge and emergence. 

III. MODELING 

Control systems for the two application domains have 
many common characteristics: they are highly collective, 
constructed of numerous independent entities that share 
common goals. Their elements are both autonomous and 
cooperative featuring a high level of self-awareness and 
self-expressiveness.  A complex control system built out of 
such entities must be robust and adaptive offering maximal 
utilization with minimal energy and resource use.   

Formal specification, programming and controlling of a 
complex massively parallel distributed system that features 
awareness, autonomous and collective behavior, adaptive 
optimization and robust functioning are grand challenges of 
computer science.  These challenges, present in most of 
complex control systems, have served as motivation and 
inspiration for this approach [7]. 
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also on the load generated by the application itself or other 
applications running on the SCPIs. 

C. Application Deployment 

Currently, a prototype of a science cloud platform is 
being developed and tested in a physical network 
connecting two universities [7]. The experimental platform 
does feature ad hoc and voluntary behavior supporting 
dynamic re-configuration of physical layers and application 
migration on an upper level. High-level SCEL modeling and 
model checking provide formal means for properties proofs 
while a prototype implementation offers pragmatic means to 
test deployment and effectiveness of autonomous and self-
aware behavior. 

V. CONCLUSION 

The paper presents a unified approach to model, validate 
and deploy complex distributed systems with massive 
number of nodes that respect both individual and global 
goals. Non-centralized character of the approach allows for 
autonomic and self-aware behavior, which is achieved by 
introduction of knowledge elements and enrichment of 
compositional and communication primitives with 
awareness of both system requirements and individual state 
of the computing entities.  

The essence of the approach is to de-compose a complex 
system into a number of generic components and to further 
compose the system into ensembles of service components.  

The inherent complexity of ensembles is a huge 
challenge for developers. Thus, the whole system is 
decomposed into well-understood building blocks, reducing 
the innumerable interactions between low-level components 
to a manageable number of interactions between these 
building blocks. The result is a so-called hierarchical 
ensemble, built from service components, simpler 
ensembles and knowledge units connected via a highly 
dynamic infrastructure. Ensembles exhibit four main 
characteristics: adaptation, self-awareness, knowledge and 
emergence, yielding a sound technology for engineering 
autonomous systems [5,7]. A number of linguistic 
constructs and validation and programming tools are under 
development and are being tested in different application 
scenarios. 

This paper presents an integrated view (from high level 
modeling to application deployment) of a complex approach 
which has been described by a number of referenced papers, 
each focusing on different aspects of the work: SCEL 
modeling [10,11] and system validation [13], adaptation 
aspects[8], knowledge management and deployments [8,9] 
and engineering aspects [5,7].  Further contribution of this 
paper is in optimized control based on awareness and 
autonomous behavior.  

Optimized distributed control with improved throughput 
and utilization of the cloud and e-mobility frameworks 

contribute significantly to the overall strategy to reduce 
energy consumption. Sharing principle instead of exclusive 
use of the computing and transportation means represent a 
significant challenge (requiring significant changes in our 
perception of vehicles and computers) in the application 
domains under consideration. This principle will 
undoubtedly play an important role in extending the 
application domains. 
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