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Abstract—Developing autonomous systems requires adaptable
and context aware techniques. The approach described here
decomposes a complex system into service components —
functionally simple building blocks enriched with local
knowledge attributes. The internal components’ knowledge is
used to dynamically construct ensembles of service
components. Thus, ensembles capture collective behavior by
grouping service components in many-to-many manner,
according to their communication and operational/functional
requirements. Linguistic constructs and software tools have
been developed to support modeling, validation, development
and deployment of autonomous systems. A strong pragmatic
orientation of the approach is illustrated by two different
scenarios.
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. INTRODUCTION

Developing massively distributed systems has always
been a grand challenge in software engineering [1,2,3].
Incremental technology advances have continuously been
followed by more and more requirements as distributed
applications grew mature. Nowadays, one expects a massive
number of nodes with highly autonomic behaviour still
having harmonized global utilization of the overall system.
Our everyday life is dependent on new technology which
poses extra requirements to already complex systems: we
need reliable systems whose properties can be guaranteed;
we expect systems to adapt to changing demands over a
long operational time and to optimize their energy
consumption [4,5].

One engineering response to these challenges is to
structure software intensive systems in ensembles featuring
autonomous and self-aware behaviour [6,7]. The major
objective of the approach is to provide formalisms,
linguistic constructs and programming tools featuring
autonomous and adaptive behavior based on awareness.
Furthermore, making technical systems aware of the energy
consumption contributes significantly to the ecological
requirements, namely to save energy and increase overall
system utilization. The focus here is to integrate the
functional, operational and energy awareness into the
systems providing autonomous functioning with reduced
energy consumption. The rationale, expressing power and
practical value of the approach are illustrated on e-mobility
and cloud computing application domains. The two complex
domains appear to be fairly different. However, taking a
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closer look at the requirements of the two scenarios it
becomes noticeable that the problem domains share
numerous generic system properties, especially seen from
the optimized control perspective.

The paper presents work in progress focusing on energy
optimization in complex distributed control systems. It
further elaborates methods and techniques to model and
construct complex distributed systems with service
components and ensembles. The rationale of the approach is
presented through close requirements analysis, system
modeling and development. The deployment is illustrated
by the science cloud application scenario. Finally, the
approach is summarized giving further directions for the
work to come.

Il. REQUIREMENTS ANALYSIS

To explore the system requirements, two complex
application domains are closely examined: e-mobility
control and cloud computing.

E-mobility is a vision of future transportation by means
of electric vehicles network allowing people to fulfill their
individual mobility needs in an environmental friendly
manner (decreasing polution, saving energy, sharing
vehicels, etc).

Cloud computing is an approach that delivers computing
resources to users in a service-based manner, over the
internet, thus re-inforsing sharing and reducing energy
consumption).

At a first glance electric vehicular transportation and
distributed computing on demand have nothing really in
common!

A. Common Characteristics

In a closer examination the two systems, though very
different, have a number of common characteristics.

1) Massive Distribution and Individual Interest

E-mobility deals with managing a huge number of e-
vehicles that transport people from one place to another
taking into account numerous restrictions that the electrical
transportation means imposes.

Each cloud computing user has also his/her individual
application demands and interest to efficiently execute it on
the cloud. The goal of cloud computing is to satisfy all these
competing demands.

Both applications are characterized with huge number of
single entities with individual goals.
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2) Sharing and Collectiveness

In order to cover longer distances, an e-vehicle driver
must interrupt the journey to either exchange or re-charge
the battery. Energy consumption has been the major
obstacle in a wider use of electric vehicles. Alternative
strategy is to share e-vehicles in a way that optimizes the
overall mobility of people and the spending of energy. In
other words: when my battery is empty — you will take me
further if we go in the same direction and vice versa [8].

The processing statistics show that most of the time
computers are idle — waiting for input to do some
calculations. Computers belong amongst the fastest yet
most wasteful devices man has ever made. And they
dissipate energy too. Cloud computing overcomes that
problem by sharing computer resources making them better
utilized. In another words, if my computer is free — it can
process your data and vice versa; or even better, let us have
light devices and leave a heavy work for the cloud [9].

At a closer look “sharing and collectiveness” are
common characteristics of both application domains!

3) Awareness and Knowledge

E-mobility can support coordination only if e-vehicles
know their own restrictions (battery state), destinations of
users, re-charging possibilities, parking availabilities, the
state of other e-vehicles nearby. With such knowledge
collective behavior may take place, respecting individual
goals, energy consumption and environmental requirements.

Cloud computing deals with dynamic (re-)scheduling of
available (not fully used) computing resources. Maximal
utilization can only be achieved if the cloud is “aware” of
the users’ processing needs and the states of the deployed
cloud resources. Only with such knowledge a cloud can
make a good utilization of computers while serving
individual users’ needs.

At a closer look “awareness” of own potentials,
restrictions and goals as well as those of the others is a
common characteristic. Both domains require self-aware,
self-expressive and self-adaptive behavior based on a
knowledge about those “self*” properties.

4) Dynamic and Distributed Energy Optimization

E-mobility is a distributed network that manages
numerous independent and separate entities such as e-
vehicles, parking slots, re-charge stations, drivers. Through
collective and awareness-rich control strategy the system
may dynamically re-organize and optimize the use of energy
while satisfying users’ transportation needs.

Cloud computing actually behaves as a classical
distributed operating system with a goal to maximize
operation and throughput and minimize energy
consumption, performing tasks of multiple users.

At a closer look “dynamic and distributed optimization”
is inherent characteristic of the control environment for both
application domains.
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TABLE I. COMMON CHARACTERISTICS
Common Cloud computing E-Mobility
feature
Single entity Computing Vehicle, driver, park
resource place, charging station
Individual Efficient execution Individual route plan
goal
Ensemble application , cpu | Free vehicles, free
pool, park places, etc
Global goal Resource Travel, journey, low
availability, optimal | energy
throughput
Self- avail-able Awareness of own
awareness resources; state and restrictions
computational
requirements, etc
Autonomous Decentralized Reaching all
and collective | decision  making, | destinations in time,
behavior global optimization | minimizing costs
Optimization | Availability, Destination achieve-
computational task | ment in time, ve-
execution hicle/infrastructure
usage
Adaptation According to avail- | According to traffic,
able resources individual goals, in-
frastructure, resource
availability
Robustness Failing resources Range limitation,
charging battery in-
frastructure resources

B. Common Approach

This set of common features serve as a basis for
modeling of such systems leading to a generic framework
for developing and deploying complex autonomic systems.
The table 1 summarized the common requirements that lead
to four major behavioral principles: adaptation, self-
awareness, knowledge and emergence.

I1l. MODELING

Control systems for the two application domains have
many common characteristics: they are highly collective,
constructed of numerous independent entities that share
common goals. Their elements are both autonomous and
cooperative featuring a high level of self-awareness and
self-expressiveness. A complex control system built out of
such entities must be robust and adaptive offering maximal
utilization with minimal energy and resource use.

Formal specification, programming and controlling of a
complex massively parallel distributed system that features
awareness, autonomous and collective behavior, adaptive
optimization and robust functioning are grand challenges of
computer science. These challenges, present in most of
complex control systems, have served as motivation and
inspiration for this approach [7].
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Figure 1. Service components and their ensebles

A complex system is decomposed in service components
- major individual entities, and service component
ensembles - composition  structures that reflect
communication and joint needs of service components:

e SC - service component are single system entities
that have their requirements and functionality,
usually representing their individual goals,

e SCE - service component ensembles are
collections of service components usually
representing collective system goals (as means to
dynamically structure independent and distributed
system entities).

The system structuring is depicted on Fig. 1.

Both components and ensembles have knowledge
elements used to express their state and requirements. Based
on this declarative knowledge, awareness, emergence and
adaptive behavior can be achieved [7].

Fig. 2 illustrates an abstract view of modeling massively
distributed systems with service components and ensembles.
At the first level the real system entities are presented with
different symbols representing different types of
components. At the upper levels, different groupings are
illustrated where components can be linked in ensembles,
according to their requirements. There may be different
ways of grouping, represented by different ensemble levels.
One component can be a member of different ensembles at
the same time. Ensembles are not fixed, during the system
life time and according to the on-going states, re-grouping
happens as a system response to dynamic changes.

A. Modeling e-Mobility with Ensembles

Applying the general modeling strategy as depicted on
Fig. 2 to e-mobility scenario, the different symbols at the
first level could be interpreted as (1) users, (2) e-vehicles,
(38) charging stations and (4) park places service
components, where each component has knowledge on its
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Figure 2. Modeling with components and ensebles

own state and needs. A user component knows the route
plan having a goal to reach different places in a given time.
A vehicle component has knowledge about its occupancy
and battery state. Park places and charging stations maintain
their availability/reservation plan. These major service
components of the e-mobility scenario build the individual
types with a huge number of instances. The Eland E2
ensemble levels show grouping according to the service
component types, allowing users with nearby destinations to
form an ensemble (with a common goal to reach the same
destination and a possibility to share the vehicle) or vehicles
with fully charged batteries at the same location to form an
ensemble of available vehicles. The “En” ensemble level
shows the e-mobility application with one user planning to
use two vehicles, one parking place and a number of
possible charging stations.

B. Modeling Cloud Computing with Ensembles

In a similar manner, the same model shown on the Fig. 2
may represent an abstract cloud computing scenario. The
major system elements represented by different symbols at
the first level (E1) could be interpreted as (1) user
applications, (2) remote computer CPUs, (3) local memory
and (4) local application service components. Thereby, each
component has knowledge about its own state and
requirements. A user application component knows the
requests for execution (in terms of CPU, minimal space,
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etc.). A remote computer component has knowledge about
its processing capabilities and a current utilization. Disk
components have knowledge of their capacity. Appi
components have descriptions of the available appis at the
local computer.

The Eland E2 ensemble levels show grouping according
to the service component types, allowing e.g. grouping of
appis of the same type with similar requests to form an
ensemble or different CPUs to form an ensemble of
available CPUs. The “En” ensemble level shows the cloud
application with one user appi running at one remote CPU
with a possibility to migrate to another CPU (with similar
configuration), using one memory resource with a
possibility to access a number of local applications.

Table 2 summarizes major service components within
both application scenario mapping.

TABLE II. MAJOR SERVICE COMPONENTS

Symbols

&
©
&)
@

C. SCEL Language Programming Abstractions

The challenge for developers of complex distributed
systems is to find proper linguistic abstractions to cope with
individual vs. collective requirements of system elements
and their need to respond to dynamic changes in an
autonomous manner. A set of semantic constructs has been
proposed [10,11] that represent behaviors, knowledge and
composition supporting programming of awareness-rich
system.

The basic ingredient of SCEL - Software Component
Ensemble Language is the notion of autonomic component

I[K;TT; P] that consists of:

E-Mobility Cloud computing

Users User applications

Electric vehicles Remote computer CPUs

Charging stations Local memory

Park places Local application services

e An interface | in a form of attributes — visible to
other components.

e Knowledge repository K managing information
about component interface, requirements, major
state attributes etc. Managing such knowledge
allows for self-aware behavior and dynamic
interlinking with other system components.

e A set of policies TT that manage the internal and
external interaction.

e A set of process P defines component functionality
specific to both the application and internal
management  of  knowledge, polices and
communication.

The structure and organization of the SCEL notation is
illustrated in Fig. 3,
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Figure 3. SCEL elememnts

Systems:
S:=C |S1l S2| (1m)S

Components:
Cu=IIK]IP]

Processes:
P:=nil |a.P| P1+P2| Pi[P2] | X|A(p)

Actions:
a:=get(T)@c| qry(T)@c | putt)@c | new(LK,/7P)

Targets:
c:x=n|xself|P| Ip

The code above shows a fraction of SCEL syntax (with
notation for S - systems, C - components, P - processes, a -
actions and c - targets); a fully detailed presentation of
SCEL syntax and semantics can be found in [10, 11].

The SCEL aggregates both semantics and syntax
power to express autonomic behavior. At one side, being
abstract and rigorous SCEL allows for formal reasoning
about system behavior, at another, it needs further
programming tools to support system development and
deployment. Formal reasoning, modeling and validation are
covered in referenced articles about SCEL. Here, the focus
is more on pragmatic orientation on a given application
scenario.

IVV. DEVELOPING AND DEPLOYING AUTNOMOUS SYSTEMS

A way from high level modeling to development and
deployment of software intensive systems is a complex
endeavor. Reasoning and validation often require high-level
abstractions, while implementation calls for detailed
programming and low-level deployments. To bridge this
gap a number of intermediate tools are being developed that
assist in the engineering process [7,12].

A. Java Framework for SCEL Programming and Model
Checking

To execute SCEL programs, the jRESP framework has
been developed. This is a Java runtime environment
providing means to develop autonomic and adaptive
systems programmed in SCEL [13]. By relying on the
JREESP API, a programmer can embed the SCEL paradigm
in Java applications.

24



ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

A prototype statistical model-checking running on top of
JRESP simulation environment has been implemented.
Following this approach, a randomized algorithm is used to
verify whether the implementation of a system satisfies a
specific property with a certain degree of confidence. The
statistical model-checker is parameterized with respect to a
given tolerance t and error probability p. The used algorithm
guarantees that the difference between the computed values
and the exact ones is greater than t with a probability lower
than p.

The model-checker included in JRESP can be used to
verify reachability properties. These properties allow one to
evaluate the probability to reach, within a given deadline, a
configuration where a given predicate on collected data is
satisfied [13].

B. Developing Science Cloud

Cloud computing is a modern paradigm for
programming and utilizing distributed infrastructure
resources in a dynamic way. Cloud-based systems are
safety- and security-critical systems; they need to satisfy
time-critical performance-based quality of service properties
and to dynamically adapt to changes in the potentially
hostile and uncertain environment they operate in. These
aspects make distributed cloud-based systems complex and
hard to design, build, test, and verify. The cloud scenario
taken here is the cloud as a platform with voluntary peer-to
peer configuration, meant to execute scientific applications
[9]. It closely followed the modeling approach described in
previous sections.

1)  Service Components

Each instance of the Science Cloud Platform (SCP),
running on a physical or virtual machine is considered to be
a service component in the previous described sense. Fig. 4
shows the functionality required by a Science Cloud
Platform instance. Two major characteristics of SCPs are
further explored: knowledge and connectivity.

2) Knowledge

Each SCPi has knowledge consisting of (1) its own
properties (set by developers), (2) its infrastructure (CPU
load, available memory), and (3) other SCPis (acquired
through the network). Since there is no global coordinator,
each SCPi must build its own view and act upon the
available knowledge. The SCPi may acquire knowledge
about its infrastructure using an infrastructure sensing plug-
in which provides information about static values, such as
processor speed, available memory, available disk space,
number of cores etc. and dynamic values, such as currently
used memory, disk space, or CPU load.

SCPi properties are important when specifying
conditions (Service Level Agreements, SLAs) for the
applications. For example, when looking for a new SCPi to
execute an application, low latency between the SCPs might
be interesting. Other requirements may be harder: For
example, an application may simply not fit on an SCPi

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-257-8

because of the lack of space whereas another may require a
certain amount of memory.
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Figure 4. Science Cloud Framework

3) Connectivity

Each SCPi has a connectivity component which enables
it to talk to other SCPs over the network. The protocol
followed by these communications must enable SCPs to
find one another and establish links, for example by
manually entering a network address or by a discovery
mechanism. Furthermore, SCPs must be able to query others
for knowledge and at the same time distribute their own
knowledge. Finally, the protocol must support exchange of
data and applications.

Fig. 4 illustrates an instance of a science cloud platform
as a part of a rich virtual framework for executing scientific
applications. Through awareness of its own properties and
those of others it offers maximal utilization of available
computing resources within the cloud.

As already indicated an SCPi is adaptive and can react to
conditions such as overload, shutdown of other SCPs, etc.
Furthermore, it must watch over the apps executed and
guarantee their SLAs (Service Level Agreement) [7,9]. This
functionality is performed in an adaptivity logic component.
The adaptivity logic is exchangeable, application-
independent, and has a direct relation to the SLAs of
applications. The adaptivity logic itself can be written in a
standard programming language or custom domain-specific
languages or rules.

Finally, each SCPi provides the application execution
service to upper levels. The applications run on the platform
must implement some API for the platform to be able to
work with them (i.e. starting, stopping, working with data,
etc.). One example of an app is the data storage service
which allows users to store data in the cloud.

4) Ensembles

A Science Cloud Platform Ensemble (SCPe) consists of
individual SCPs based on a set of properties of the SCPs
and/or the SLAs of applications. In another words, an
ensemble consists of SCPs which work together to run one
application in a fail-safe manner and under consideration of
the SLA of that application, which may require a certain
number of SCPs, certain latency between the parts, or have
restrictions on processing power or on memory.

At runtime, an ensemble may gain new SCPs or lose
them depending on the behavior of the SCPIs themself and
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also on the load generated by the application itself or other
applications running on the SCPIs.

C. Application Deployment

Currently, a prototype of a science cloud platform is
being developed and tested in a physical network
connecting two universities [7]. The experimental platform
does feature ad hoc and voluntary behavior supporting
dynamic re-configuration of physical layers and application
migration on an upper level. High-level SCEL modeling and
model checking provide formal means for properties proofs
while a prototype implementation offers pragmatic means to
test deployment and effectiveness of autonomous and self-
aware behavior.

V. CONCLUSION

The paper presents a unified approach to model, validate
and deploy complex distributed systems with massive
number of nodes that respect both individual and global
goals. Non-centralized character of the approach allows for
autonomic and self-aware behavior, which is achieved by
introduction of knowledge elements and enrichment of
compositional and communication primitives  with
awareness of both system requirements and individual state
of the computing entities.

The essence of the approach is to de-compose a complex
system into a number of generic components and to further
compose the system into ensembles of service components.

The inherent complexity of ensembles is a huge
challenge for developers. Thus, the whole system is
decomposed into well-understood building blocks, reducing
the innumerable interactions between low-level components
to a manageable number of interactions between these
building blocks. The result is a so-called hierarchical
ensemble, built from service components, simpler
ensembles and knowledge units connected via a highly
dynamic infrastructure. Ensembles exhibit four main
characteristics: adaptation, self-awareness, knowledge and
emergence, yielding a sound technology for engineering
autonomous systems [5,7]. A number of linguistic
constructs and validation and programming tools are under
development and are being tested in different application
scenarios.

This paper presents an integrated view (from high level
modeling to application deployment) of a complex approach
which has been described by a number of referenced papers,
each focusing on different aspects of the work: SCEL
modeling [10,11] and system validation [13], adaptation
aspects[8], knowledge management and deployments [8,9]
and engineering aspects [5,7]. Further contribution of this
paper is in optimized control based on awareness and
autonomous behavior.

Optimized distributed control with improved throughput
and utilization of the cloud and e-mobility frameworks
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contribute significantly to the overall strategy to reduce
energy consumption. Sharing principle instead of exclusive
use of the computing and transportation means represent a
significant challenge (requiring significant changes in our
perception of vehicles and computers) in the application
domains under consideration. This principle  will
undoubtedly play an important role in extending the
application domains.
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