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Abstract — We present a new approach for securing the 
wellbeing of elderly people via a smartwatch based personal 
health assistant. On the smartwatch, an app featuring an artifi-
cial neuronal network (ANN) analyzes the activity patterns of 
the smartwatch wearer. The ANN recognizes health relevant 
events and activities of daily living (EDLs, ADL). Especially 
activities associated with body care tasks are considered. From 
the sequence and timing of recognized EDLs, ADLs, an indi-
vidual wellbeing function will be continuously calculated, 
summarizing the specific personal health state. If the wellbeing 
function value falls below a defined threshold, external alerts 
will be issued by the smartwatch. Such alerting will be done 
automatically, if the smartwatch wearer is not able to respond. 
It can be done autonomously via the integrated cellular radio 
module of the smartwatch. The system architecture of the app, 
the data acquisition process, the selection and design of suitable 
data models and the advantages of ANNs versus other recogni-
tion engines are discussed.  

Keywords — smartwatches; automatic recognition of activi-
ties, events of daily living (ADLs, EDLs); artificial neuronal net-
works (ANN); universal recognition model; wellbeing function.   

I. INTRODUCTION 
A self-determined and safe living of elderly people in their 
familiar home, as long as possible, is a desirable objective 
for many of us. Ambient intelligent assistance technologies 
safeguard such a life by regularly monitoring the wellbeing 
and potential health hazards. Programmable smartwatches 
are one of the most promising devices for such health assis-
tance technologies, because i) they carry many of the neces-
sary sensors for monitoring wellbeing and health parameters 
on board, ii) do not require expensive demolition / construc-
tion work at home and iii) can be used at home as well as 
outdoors. Moreover, they are available at reasonable costs. 
In our work, we focus on mainstream smartwatches with an 
integrated mobile cellular radio (like the Samsung Gear™ 
3G, LG Urbane LTE™ 2 or Sport™, Huawei Watch 2™). 
These smartwatches allow to establish a speech connection 
autonomously to clarify the situation on the spot in case of a 
concluded emergency [1]. Moreover, relevant data (e.g., 
current geographic position of the smartwatch wearer, the 
heart rate) can be transferred directly and without the (nec-
essary) additional utilization of a smartphone (as it is the 
case for the Apple Watch 2™).   
    
Current smartwatches directly can only measure the per-
formed steps of the smartwatch wearer and/or the heart rate, 
pulse. All other aspects of the wellbeing and potential health 
hazards for the smartwatch wearer must be concluded form 

condensed sensor data and suitable comparisons with data 
acquired, learned from the past. A common approach is to 
recognize - using the smartwatch sensors - those activities of 
daily living (ADLs) which are present in a healthy life of 
everyone and structure the days and nights. The conclusions 
about the wellbeing will then be based on the presence, du-
ration and intervals between those recognized activities of 
daily living. Direct health hazards – like tumbles/falls, heart 
palpitations – need to be considered and recognized by the 
smartwatch sensors (as events of daily living, EDLs). 
 
After a short description of relevant previous work in Sec-
tion II we present our system architecture in Section III. This 
section also addresses the selection of a suitable set of 
EDLs, ADLs for the purposes of our app. The research ques-
tions around EDL, ADL recognition are described in Section 
IV. For answering the research question regarding the apti-
tude of a universal recognition model, our experiment is 
described in closer detail in Section V. Results of the exper-
iment are presented in Section VI. This section also widens 
up the discussion on critical issues of present smartwatch 
technology and the inherent difficulties of recognizing (the 
EDL) »tumbling«.  

II. PREVIOUS WORK 
ADLs [2] have been a central issue in organizing profes-
sional nursing practice and for determining the independen-
cy status of elderly people, introduced by Sidney Katz more 
than 60 years ago. Automatic EDL, ADL recognition in 
smart homes has been a focal research point for supporting 
the elderly [3].   

 
Suryadevara and Mukhopadhyvay [4] have proposed a 
wellbeing function w based on the components absence and 
excess duration of ADLs. Their approach stems on a rich 
instrumentation of the household by a net of wireless sen-
sors. The wellbeing function w maps the recognized ADLs 
and their characteristics into [0,1] Ì Â. For ideal wellbeing, 
the function value of w is 1; if the function value falls be-
low a defined threshold (e.g., 0.5), a health alert is issued. 
In [5], we have extended the w definition for accounting a 
third independent wellbeing component agility, which 
measures the typically step distribution walked over the 
course of the day by the smartwatch wearer. The nominal 
values for a typical interval between the ADLs, the typical 
execution time of a specific ADL and the typical step sum 
achieved by a specific hour of the day all are individual 
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Figure 1:  Typical agility for a 24-hour period. 

values and specific for a certain day of the week. These 
nominal values have to be acquired by an initial training 
phase of the system with at least a one-week duration and 
will be further adapted by time series analysis [4] [5], tak-
ing into account also seasonal factors. 

When no recognized ADL in the household is taking place, 
ß1, the wellbeing sub-function for inactivity measurement, is 
applied based on the definition in [4] as ß1(t, T) = e –t/2*T, 
where t is the current (time) duration of inactivity since 
completion of the last recognized ADL, and T is the specific 
average inactivity between ADLs learned from the past for 
the current day of the week. On the opposite, as long as a 
recognized ADL is ongoing, ß2, the wellbeing sub-function 
for the measurement of excess duration of this specific 
ADLs will be applied, which has been defined in [4] to 
ß2(TN, ta) = e (TN - ta) / TN, for ta > TN; 1, otherwise where ta 
is the actual duration of the (ongoing) ADL and TN is the 
specific maximum duration of the corresponding recognized 
ADL in a normal situation learned from the past for the cur-
rent day of the week. The agility subfunction ß3 measuring 
the movement profile of a person at current time t is defined 
in [5] to  

        
where stp(t) is the sum of steps performed during the current 
day until actual time t, F(t) is the cumulative distribution 
function of steps over the day, SN is the specific total num-
ber of steps learned from the past for the current day of the 
week and with STP(t) = SN*F(t) estimated from the nominal 
step sum for the current day at time t. ß3 will be calculated 
all over the day, Figure 1 shows a typical distribution of 
daily steps for a 24-hour period based on an  a = 0.1 (giving 
heavy weights for historical values). Left scale denotes the 
accumulated steps (orange: actual steps of the day, blue: the 
estimated accumulated steps for the period, grey: the agility 
value ß3 and yellow: the threshold for ß3). The small subfig-
ure inside denotes the step distribution on a 15 minutes ba-

sis. As can been seen the agility value is far above the 
threshold indicating that no agility problems are present. 
One exception is the period around 6pm. The decline can be 
explained by a later get up in the morning. 

The wellbeing function w: SensoricEvents -> [0,1], [0,1] Ì 
Â,  will be formally defined as: 

w = min {ß1, ß2, ß3} 
This means that whenever the inactivity (missing any recog-
nized ADL) or the excess duration of an ongoing activity 
category or the lacking agility gets critical and the w value 
falls below 0.5, a health hazard alert will be issued.  
Lacking agility, which we added to the Suryadevara and 
Mukhopadhyvay wellbeing definition [4], is often over-
looked in daily nursing activities. It is one of the symptoms 
of dementia, a typical indication of pain and not unusual 
consequence of age related complaints for elderly people 
[6]. In our context, we focus on the subset of basic ADLs, 
which 
• can be recognized by the usual integrated smartwatch 

sensors (3D accelerometers, and gyros, magnetometer, 
barometer, heart rate monitor / pulsometer, GPS for the 
smartwatch class chosen) and communication technolo-
gies (Bluetooth, Wi-Fi, 3G/4G cellular) 

• will be typically carried out each single day and by eve-
ryone, independent from culture and/or sex, ideally inde-
pendent from a dominant hand (on the wrist of which the 
smartwatch has to be worn), 

• will be carried out multiple times within a day and thus 
allow for a preferably equidistant partitioning and struc-
turing of the day / night.  

With respect to their eminent negative health consequence 
for the targeted user group, additionally the EDL »tumbling« 
needs to be considered. One third of all elderly persons of 
age of 65 or more tumble at least one time per year [23]. 

III. SYSTEM DESIGN CONSIDERATIONS  

A. System Structure 
The implemented system, smartwatch app, utilizes the Sam-
sung Gear™ S smartwatch device for providing assistance in 
the four dimensions: I) communication (manually and auto-
matically established speech connections to family members 
on duty or a home emergency call center), II) orientation, 
III) localization and IV) health hazard detection. The im-
plemented scope of personal health assistance is described in 
[1] [5] in closer details, Figure 2 shows some screenshots. 
Figure 3 depicts a block diagram of the smartwatch personal 
health assistance app with its layered architecture: layer 0: 
smartwatch HW with sensors, I/O; layer 1: smartwatch OS; 
layer 2: motion analysis via ANN and location analysis via 
GPS monitoring – geofencing; layer 3: simultaneous health 
hazard recognition handling via a multitude of simultaneous-
ly running finite state machines; layer 4: health hazard 
presentation and dialogue control vis a blackboard based 
scheduler more architectural details can be found in [7] [8].  
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The application architecture is based on a hierarchical struc-
ture. On the lower layer the EDL, ADL recognition via a 
ANN takes place (see section III). The recognized EDLs, 
ADLs will evoke actions in a structured description of the 
health hazard handling process executed on the upper layer. 
Health hazard handling is described in a declarative way via 
UML (finite) state machines. This declarative description is 
well suited for maintaining and updating the volatile, best 
practice health hazard handling knowledge [7]. The suitabil-
ity and advantages of utilizing UML for modelling care-
giving and medical processes is pointed out in [9]. 

 

Figure 2: Smartwatch Samsung Gear™ S  
Example: In Figure 2, which shows the app displaying 
communication and orientation information (left), internal 
pre-alert (middle), indication of an external alert with data 
transmission and automatic speech connection (right), the 
health hazard handler »monitoring drinking« consists of two 
states. Upon (re)entering the initial state »normal health«, 
the timer thirst-timer is reset. Thus, the state machine stays 
in this specific state, as long as the ADL »liquid ingestion« 
occurs in sufficient frequency.  

Figure 3: Block diagram of the smartwatch app 

 

Figure 4: Simple state machine for concluding about the health hazard 
resulting from insufficient liquid ingestion 

 
In Figure 4, if the thirst-timer expires because the time peri-
od since last recognized drinking ADL is exceeded, the state 
machine transfers to the new state »insufficient drinking«. 
This new state is of special type critical dialogue section 
and will be posted on a central blackboard (see below). Such 
a posting indicates an execution request with attached priori-
ty “2” for the associated internal dialogue activity flow for 
this state. The intended dialogue sequence with the smart-
watch wearer is described in a corresponding UML activity 
diagram modelling the principal schema of the dialogue. 
This schema systematically covers all necessary dialogue 
steps for: a) informing the smartwatch wearer about the spe-
cific situation (“pre-alert”), b) requesting a decision from 
the smartwatch wearer, c) responding with the dialogue in 
case of an affirmative or rejecting user reaction, as well as a 
non-reaction of the user. In addition, the potential data 
transmission of relevant health data, which takes place in the 
background of the dialogue, will be covered by the schema 
as well as the follow-up clarification call (“external alert”). 
See [8] for the details of the model based dialogue manage-
ment.       
 
Isolated health hazards are typically modelled and described 
by a separate handler, in order to alleviate an independent 
representation and maintenance of the incorporated pragmat-
ic handling knowledge. This is the case for the »monitoring 
drinking« state machine. But, more frequent in practice are 
joint hazard handlers for contextually combined security 
and/or health hazards. A state machine for jointly handling 
all hazards associated with the ADL »absence from home« is 
depicted in Figure 5 which handles security and health haz-
ards resulting from an absence from home, including the 
health hazards for a runaway situation and an excessive ab-
sence from home. In a single state machine, only one of the-
se hazards can be present at a time.  
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Figure 5:  Complex state machine  
 
The implemented app gains its complexity by the fact that a 
multitude of potential hazards have to be monitored by the 
smartwatch app simultaneously. This is done by executing 
the set of finite state machines describing all hazard han-
dling simultaneously. Hazards from insufficient drinking, 
absence from home, tumbles, … may occur all at the same 
time. Thus, the situation may arise that more than one finite 
state machine or health hazard handler wants to communi-
cate to the smartwatch wearer at the same time. This situa-
tion will be dealt with a priority – or exactly: severity – 
based health hazard communication management. The I/O 
devices of the smartwatch (touchscreen, bezel, mic, buzzer / 
loudspeaker) may be attached to at most one health hazard 
handler at time and for a short time interval. In order to real-
ize this, we have introduced the concept of a critical dia-
logue section [8]. As soon as the smartwatch I/O resources 
have been granted to a selected health hazard handler, the 
handler will use them exclusively until termination of the 
execution of the corresponding critical dialogue section. The 
selection of the suitable health hazard handler for executing 
a dialogue sequence with the smartwatch wearer is support-
ed via a central blackboard, on which all current communi-
cation requests are posted by the different handlers. From all 
current requests on the blackboard, a central scheduler se-
lects the most appropriate health hazard handler for execu-
tion based on the medical or situational severity of the post-
ed request and all other present requests on the blackboard 
(see [7] [8] for details of the scheduling algorithm).      

B. Determining a Suitable Set of ADLs   
A tradeoff has to be made between the plenitude of ADLs, 
which shall be recognized, and the reliability of the recogni-
tion results. The more ADLs the system knows and is look-
ing for, the more fine-grained the course of the day can be 
partitioned into different ADLs and periods of time in be-
tween. The shorter these periods of time are, until the next 
ADL will typically occur, the earlier a deviant behavior in-
fluencing wellbeing and / or indicating potential health haz-
ards can be detected. But, the more ADLs need to be discrim-
inated by the recognition engine, the less reliable the recogni-
tion result will typically be.     

Based on the aforementioned criteria, we have decided to 
recognize the following seven ADLs: 

1. Nightly sleep 
2. (midday) nap, rest 
3. absence form home (for social activities/visits, 

strolling, shopping, etc.)  
4. liquid ingestion, drinking (see [10] [11] [12] for de-

tails) 
5. hand washing / drying (typically carried out after 

toilet activity, before eating)  
6. teeth brushing 
7. shaving 
8. combing 

ADL no. 1 »nightly sleep« can only be observed indirectly, 
in that the smartwatch is typically not worn during this period 
due to nightly battery recharging and usual sleeping habits. 
But, placing down the smartwatch when retiring to bed at 
night and reattaching the watch in the morning after rising 
can be reliably detected via movement analysis and the heart 
rate sensor, pulsometer.  

Assuming that the smartwatch will be worn all over the day, 
ADL no. 2 »(midday) nap, rest« can be directly observed and 
easily detected by the smartwatch app via its characteristic 
non-movement pattern. Also, ADL no. 3 »absence from 
home« can be directly followed by the smartwatch app via 
loss of the known home Wi-Fi signal and GPS. (GPS will be 
further used for tracking and geofencing outdoor activities 
(see Figure 6 and [1] [5] for details). The process of 
recognizing the ADL from the delimiting EDLs »leave 
home« and »enter home« is described in the state machine of 
Figure 4.      

For the recognition of ADLs no. 4 to 8, these ADLs can only 
be discriminated from each other by their characteristic 
movement pattern. This holds also for the recognition of 
tumbles. Based on literature research we have decided to do 
this recognition process via data mining and artificial neu-
ronal networks (ANNs). Input layer of the feed forward ANN 
are the (condensed) specific signals from the smartwatch 
sensors. The ANN has one hidden layer and each ADL no. 4 
to 8 will be represented by a specific output neuron, with the 
EDLs »tumbling«, »heart palpitations« as additional 6th and 
7th output neuron of the ANN and a 8th output neuron for any 
other unclassified activity. ANNs have been chosen with 
respect to their favorable recognition quality and renunciation 
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of additional runtime packages in comparison to logistic re-
gression and other tested methods (see [11] for details). An-
other strength of ANN is their suitability for incremental 
training with the backward propagation algorithm (see [13], 
especially chapter 5.2).  

ANN have successfully been used for detecting tumbles with 
quite a high precision, [16] reports an accuracy of 91%. [17] 
gives an overview about various sensor based implementa-
tions, most of them with an accuracy rate about 90% using 
various data mining techniques like multilayer perceptrons, 
support vector machines or naïve Bayes approaches.  A good 
discussion about the challenges of tumble detection is given 
in [18], focusing not only a wearable system but also on 
camera bases approaches. It is important to note at least in 
Europe any detection techniques based on video is not ac-
cepted because of privacy concerns. Thus, only foot mat re-
lated sensor technologies which require expensive hardware 
investments remain as an option or any kind of wearable sen-
sor. Lisowska et al. [19] show that Convolutional Neuronal 
Network (CNN) perform best for supervised learning tech-
niques, while overall the differences to other approaches like 
SVM are not very high. Our work differs from those as we 
aim for detecting several different ADLs in one model, and 
not just the binary decision between tumble and not not-
tumble. Weiss et al. [20] compare smartwatch based ADL 
detection with smartphone based detection showing that 
smartwatches can detect a wider variety of ADLs. Smart-
watches gain their strength in tumble detection in that they 
are reliable worn at the wrist and will be on duty during the 
whole course of a day. In contrast, smartphones are typically 
put aside from time to time, especially during accident sus-
ceptible activities like showering. 

C. Handedness and Relevance of ADLs.  
ADL no. 4 »drinking« and no. 6 »teeth brushing« will be 
typically carried out only with the dominant hand. It turned 
out for the test persons that it is not a problem to wear their 
smartwatches on the wrist of their dominant hand (see Sec-
tion IV). This is alleviated by the fact that smartwatches can 
rotate their display so that sideward control elements always 
remain at the familiar location pointing towards the hand of 
the wearer.  ADL no. 4 »drinking« has been selected with 
respect to the dangerous effects of dehydration for elderly 
people caused by the decreasing natural thirst sensation at 
higher age [5]. 

ADL no. 5 »hand washing / drying« and the EDL »tumbling« 
are typically independent from the arm or wrist, on which the 
smartwatch will be worn. The ADL has been primarily in-
cluded for technical reasons because they are typically exe-
cuted several times a day and provide a good partitioning of 
the day into shorter time spans between those ADLs.       

The importance of ADLs no. 5 »hand washing / drying« and 
6 »teeth brushing« is not only given by the fact, that they 
have a characteristic movement pattern, which makes it suit-
ed for automatic activity recognition, but also for their social 
relevance. Regular teeth brushing and hand washing are sig-
nificant symptom for a well-managed life. Stopping these 
activities typically indicate a loss of self-esteem / self-control 

and might be symptoms of progressing mental disorientation 
or dementia [14].  

IV. RESEARCH QUESTIONS 
A central question is whether a universal, person independent 
model of the ADL / EDL recognition process is sufficient or 
if an individually trained model will be necessary, at least for 
personal activities like teeth brushing. The additional effort 
for processing and building an individual model will be 
counter-balanced by the prospect to utilize this individual 
model for an authentication of the smartwatch wearer.  

From this central question, several follow-up research ques-
tions have been derived: 

1. Which is the best prediction model? Candidates are 
neuronal networks, regression models or decision trees 
[15]. 

2. Is one universal neuronal network model sufficient to 
recognize the relevant ADLs/EDLs based on a target 
recognition rate of at least 90%? 

3. Are there differences in the acquired sensor data between 
the various smartwatch types (operating systems like 
Android Wear or Tizen)? 

4. Are there differences based on the ADLs with regard to 
universal / individual model, thus while one ADL just 
requires a universal model, another ADL requires 
individual training? 

5. How many training data have to be collected per person? 
6. How many different persons are required to create a 

stable model? 
In the analysis of this paper, we concentrate on research 
question 2 and neuronal network models. Research question 
1 has been tested in [21], results show that neuronal net-
works perform at least as good as logistic regression, while 
decision trees perform much worse. To answer questions 3 
to 6 the number of data currently available are not sufficient 
for a definite answer. First results show that at least 20 – 30 
activity instances have to be collected per person for stable 
trainings models with a high recall and precision. Question 6 
is partially answered by the results for hypothesis 2. 

V. EXPERIMENT 
An experiment was run over a period of one and a half year 
between spring 2015 and year’s end 2016. The experiment 
included multiple test cycles of 2 to 3 weeks with different 
test objectives (especially ADLs to be recognized) and dif-
ferent sets of test persons of various ages. Between the test 
cycles, the smartwatch application software has been con-
tinuously improved by the authors based on prior test re-
sults. Test persons were of age between 25 and 63, predomi-
nantly males. One test group are students of one the authors, 
the other group are friends and family members of both au-
thors. All test persons have been informed in advance about 
the capabilities of the smartwatches, especially the applica-
tion software installed and the purpose of the specific tests. 
After being informed about the intended test objectives, the 
test persons agreed to the intended utilization of their col-
lected anonymized data for research purposes. From their 
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personal background, all test persons were fluent in utilizing 
digital devices in their daily life. In this paper, we present 
the results of the experiment in the area of personal health 
and body care, one of the most promising application area 
learned from our tests. 
 
1) In a first step, we developed a sensor data gathering app 

where we collected about 2375 different activity instanc-
es starting from the above-mentioned core ADLs and 
EDLs like drinking, brushing, tumbling, combing, shav-
ing, washing, etc. The data were collected using several 
different smartwatches running Android Wear (Sony 
Smartwatch 3, Samsung Gear Live) and Tizen (Samsung 
Gear S). For this analysis, we only used the data from the 
Gear S (overall 1394 activities). The Gear S based col-
lection tool is depicted in Figure 6 and the distribution of 
the collected ADLs is shown in Tables I and Table II. 
For this analysis, ADLs, which did not fit into the cate-
gory analyzed (like tumbling, walking etc.), were 
mapped into Other ADLs. Users are denoted by Ui, 1 ≤ i 
≤ 5. The user selects the ADL (Figure 5), enters a user 
name, pushes Collect (1) and from (2) he can start the 
data collection process. (3) shows a pre-countdown start, 
informing the user that the data collection will start in 1 
second. (4) indicates that data collection has started and 
will last for 10 seconds. (5) indicates data collection will 
be finished in two seconds. (6) informs the user that now 
a second data collection will start. This step (6) depends 
on the type of activity recorded. In case of a short activi-
ty like tumbling or drinking just one ten second interval 
is recorded at once, in case of tooth brushing as an ex-
ample of a longer activity up to five ten second interval 
are recorded at once. 

Figure 6: Samsung Gear S GUI for collecting ADLs 
 

TABLE I: DISTRIBUTION OF FREQUENCIES OF THE COLLECTED 1394 ADLS 
(WITH SAMSUNG GEAR S SMARTWATCH) USED FOR THE TRAINING OF THE 
NEURONAL NETWORK MODEL. 

ACT U1 U2 U3 U4 U5 Sum 
Other 0 0 634 78 18 730 
Comb 0 0 39 0 0 39 
Shave 0 0 126 0 0 126 
Tooth 59 40 261 0 100 460 
Wash 0 0 15 0 24 39 
Sum 59 40 1082 78 142 1394 

TABLE II: DISTRIBUTION OF FREQUENCIES OF THE COLLECTED 66 TEST 
ADLS USED FOR THE TESTING THE NEURONAL NETWORK MODEL. TEST 
DATA WERE GENERATED BY USER U3. 

ACT TEST U3 Other Comb Shave Tooth Wash 

Distribution 6 33 11 10 6 

 

The next steps are based on a standard CRISP (Cross Indus-
try Standard Process for Data Mining) process [22]. 

2)  In the second step, the gathered sensor data are normal-
ized: 

 a) All sensor data are standardized and interpolated into a 
fixed time interval (20 milliseconds). This was 
achieved by applying some filters, e.g., a high/low 
pass filter. 

b) A core set of statistical attributes (39 attributes like 
means, standard deviations, minimum, maximum, in-
ter quartiles…) are computed for each ADL. Depend-
ent variable is ADL type (Activity), independent vari-
ables are the 39 statistical attributes. 

c)  For each ADL (experiment) a data record is written 
into a new csv summary file together with the infor-
mation which type of ADL is performed and the user 
name. This resulted in several ADL summary files 
depending on the hypothesis. 

3) In a third step, the data were checked for missing values 
(e.g., sometimes the smartwatch did not collect 
gyrometer or magnetometer data for whatever reason). 
Those cases were ignored from the analysis. 

4) In a fourth step, we applied several data mining tech-
niques using R and Rapid Miner (Figure 7): multinomial 
logistic regression, clustering, decision trees and for the 
results presented in this paper neuronal networks using 
the normalized sensor data. For the data mining process, 
we grouped the ADLs in two categories: a) drinking, 
teeth brushing, and tumbling and b) all other activities 
recorded like walking, running, washing, sitting etc. into 
a common ADL category called other.  
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ACTIVITY TEST U3 true Other true Comb true Shave true Tooth true Wash class precision
pred. Other 6 1 0 0 0 85,71%
pred. Comb 0 28 0 0 1 96,55%
pred. Shave 0 0 10 0 0 100,00%
pred. Tooth 0 3 1 10 0 71,43%
pred. Wash 0 1 0 0 5 83,33%
class recall 100,00% 84,85% 90,91% 100,00% 83,33% 66

TABLE III: TRAINED GENERAL MODEL: RECALL AND PRECISION 

 
TABLE IV: TEST DATA: RECALL AND PRECISION 

 

VI. RESULTS UND DISCUSSION 
Our above hypothesis 2 stated that one universal model is 
sufficient to recognize the relevant ADLs/EDLs based on a 
target recognition rate of at least 90%. Considering the lim-
ited number of test persons and the specific test environment 
different from a real field test, our results seem to affirm this 
hypothesis 2. 
 
The results of training the neuronal networks model are 
shown in Table III. Neuronal networks performed best com-
pared to other data mining methods applied which is in line 
with the results in [10] [21]. It shows that all relevant recog-
nition rates are above 90%. Table IV shows the results when 
this general model is applied to data the system has not seen 
before. The data were generated by user U3. User U3 was 
part of the training set. Combing and washing are not recog-
nized perfectly, anyway the distinction between “hygienic 
ADLs” and other ADLs is nearly perfect. As one can con-
clude from the results, the recognition gets much better if a 
test person is part of the training set, which per se is not 
astonishing. For real world application, this could induce 
that before using the smartwatch as an ADL recognizing 
device users should be encouraged to train typical activities 
and use an improved neuronal network model. 

A. ADL Recognition and Smartwatch System Support 
Continuous monitoring of EDL, ADL recognition in the 
smartwatch app requires an ongoing execution and adaption 
of the ANN, as soon as there will be new sensor signals. 
This requires a reliable background operation of the smart-
watch app, even when the user is not looking at the smart-
watch screen and the display therefore will be shut off. Un-
fortunately, and for energy saving purposes, smartwatch OSs 
tend to hibernate the app execution in situations, were the 
display is shut off. Smartwatch OS like Tizen™ or Android 
Wear 2.0™ are featuring such (background) service opera-
tions in their most advanced versions. Reliable background 
operations are mandatory and of crucial importance for a 
wide acceptance and trust in assistance apps for the elderly.   

B. EDL »Tumbling« 
This EDL entails a lot of difficulties. First of all, the detec-
tion of the EDL requires a barometric sensor in the smart-
watch. This sensor typically is only present in “high-end” 
smartwatches. Second, the training of the EDL is inherently 
dangerous for the test persons with respect to potential inju-
ries. Trained stuntmen or young people would be no alterna-
tive because their tumbling behavior will deviate too much 
from tumbles of elderly people. For the same reasons, crash 
dummies from the automotive field also would be no alter-
native, in that they would remain passive and would not 
show the characteristic last fraction of a second active (pan-
ic) reaction against the ongoing tumble, which is typical for 
humans. Therefore, we used “young elderly” of about sixty 
years of age for our tumble tests. But, it is still an open issue 
whether our trained tumbles –  as planned, conscious event – 
really are representative for the majority of everyday acci-
dents, sudden tumbles in the household. Unfortunately, prac-
tically no video sequences are available for such real tum-
bles as objective illustrative evidence.  

VII. CONCLUSION AND FUTURE WORK 
EDL, ADL recognition based on an ANN works on today 
commercial smartwatches and delivers the necessary input 
for calculating the wellbeing of the smartwatch wearer. Con-
tinuous reliable detection of the EDL »tumbling«, the ADLs 
described requires durable background operations of the 
smartwatches, which only now will be supported by the 
most advanced smartwatch operating systems (OSs).    
 
Universal models collected from different smartwatches, 
OSs and test persons are sufficient for achieving the targeted 
minimal 90% precision and recall rate for EDL, ADL detec-
tion. Best rates could be achieved by an individual model 
trained for a specific smartwatch. Such an individual model 
could be used even for user identification (e.g., in the scope 
of a benefit plan for good teeth brushing practice). But, the 
sensitivity of the individual model will require a substantial 
retraining even in cases of a smartwatch model change or 
even a major OS update.  
 
A future application of the ANN based motion analysis will 
be dedicated to the combined analysis of the motion pat-
terns, heart rate and blood glucose data from continuous 
glucose monitoring (CGM) systems. This will allow to con-
clude whether a change of glucose measurement data can be 
explained by the agility patterns of the smartwatch wearer. 
CGM systems like DEXCOM G5™ and Abbott’s FreeStyle 
Libre™ already are or will be capable to deliver these data 
via Bluetooth or NFC to smartwatches. The unobtrusive 
presence of those data on the wrist will support better self-
management of the widespread diabetes mellitus type 2. 
  

ACTIVITY TRAIN true Other true Comb true Shave true Tooth true Wash class precision
pred. Other 718 0 0 6 0 99,17%
pred. Comb 1 39 0 0 0 97,50%
pred. Shave 2 0 123 4 0 95,35%
pred. Tooth 9 0 3 450 0 97,40%
pred. Wash 0 0 0 0 39 100,00%
class recall 98,36% 100,00% 97,62% 97,83% 100,00% 1394
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Figure 7: The Rapid Miner models used for training and testing 
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