
Coupling an Unstructured NoSQL Database with a Geographic Information System

Amandine Holemans, Jean-Paul Kasprzyk, Jean-Paul Donnay

Geomatics Unit
University of Liege

Liege, Belgium
email: holemans.a@gmail.com, jp.kasprzyk@uliege.be, jp.donnay@uliege.be

Abstract—The management of unstructured NoSQL (Not only
Structured Query Language) databases has undergone a great
development in the last years mainly thanks to Big Data.
Nevertheless, the specificity of spatial information is not
purposely taken into account. To overcome this difficulty, we
propose to couple a NoSQL database with a spatial Relational
Data Base Management System (RDBMS). Exchanges of
information between these two systems are illustrated with
relevant examples involving spatial queries. The spatial data
stored in MongoDB consists of field surveys (points, photos,
etc.) and scanned plans, while reference data (cadastre) is
recorded in PostGIS. The extensions required to allow this
coupling are written in Python.

Keyword- Document-Oriented Database; MongoDB; Spatial
RDBMS; PostGIS; Spatial Queries, Python.

I. INTRODUCTION

Like any Information System (IS), a Geographic
Information System (GIS) uses a relational-type (RDBMS)
or object-relational (O-RDBMS) database management
system to store and manage spatial entities and their
attributes. The database is based on a conceptual data model,
written in UML (Unified Modelling Language) for example,
where spatial entities are modelled by particular classes. In
the physical database model, these classes are converted into
spatial tables. According to the standards, the spatial
footprint of entities is recorded in a dedicated field
(GEOMETRY) in any spatialized table. This structure,
relatively rigid, is suitable for any collection of entities
always having the same fixed properties.

However, it appears in many projects that this inflexible
structure does not lend itself to a large amount of
heterogeneous information while remaining likely to be geo-
located (Google, Facebook, etc.). This unstructured
information, which can be described as documentation, can
take the form of printed plans and diagrams, written reports,
photographs, and so on. Whatever the origin, the
documentation can always be scanned but in the form of a
variable number of files in various formats.

Non-structured database management, known as NoSQL,
has undergone a great development in recent years,
particularly with the raise of voluminous and heterogeneous
digital data (Big Data) [1]. Several recent systems have been
designed for the management of documentation in its most
various forms, even if the specificity of spatial information is
not clearly addressed.

It is therefore possible to implement a GIS, based on an
RDBMS, in parallel to a NoSQL system for the relevant
documentation. The concern for many users is to choose
between these two management systems to store and manage
all the information [2]. However, it would be beneficial to
couple these two systems in order to coherently associate and
exploit the common spatial characteristics of these two types
of information.

Our research objective consists precisely in proposing a
coupling protocol between these systems as part of a pipe
network management application.

In Section II, we describe the context of application that
led us to propose this solution. Then, Section III takes stock
of the specificities of NoSQL - particularly MongoDB
software - compared to the standard RDBMS. Several
scenarios are then presented in Section IV to illustrate the
possibilities of exchanging information between a NoSQL
system and a RDBMS, both in vector and in raster modes,
while limiting data redundancy. Finally, we conclude in
Section V with a discussion of the current capabilities and
limitations of this type of coupling.

II. ABOUT THE APPLICATION

The issue of combining the management of a vector GIS
and a documentation relating to this geographical
information was posed to the AIDE company (Association
Intercommunale pour le Démergement et l’Epuration:
protection against floods caused by mining subsidence and
management of the network of water sanitation, Liege
Province, Belgium).

The company’s geographical objects (pipes, manholes,
zones of intervention, etc.) are defined by vector geometries
collected on the field by surveying techniques. In parallel,
the GIS manages various reference data, such as cadastral
objects and other administrative boundaries imported from
institutional data providers.

The documentation includes survey blueprints and plans
at different scales, geo-located digital photos and written
reports that may include geo-located or geo-localizable
information. This data – analogue or digital - is classified by
projects. The projects are defined in time and space but the
volume and the nature of the data constituting the
documentation of a project vary very significantly, making a
rigid data model unsuitable. Moreover, the projects are likely
to interact or to merge in a planned way (e.g., renovation
projects) or not (e.g., failures and various incidents on the

23Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

network). Due to all these considerations, the documentation
associated with the projects appears as an unstructured set of
data that must be related to reference data which, conversely,
is structured according to an invariable scheme.

As part of a reengineering of the AIDE’s GIS, it was
considered desirable to integrate the documentation into the
database. It was at this point that the company asked us to
examine the feasibility to couple NoSQL with a standard
GIS solution.

III. STATE OF THE ART

A. RDBMS versus NoSQL

Among the open source DBMSs that can handle spatial
data, PostgreSQL and its PostGIS geospatial extension have
great advantages. They give efficient functions, both in
vector and in raster models, as well as a community offering
a significant support [3]. In accordance with the OpenGIS
Standard for "Simple Features for SQL", vector geometries
are stored in the GEOMETRY field of spatialized tables. Since
version 2.0, PostGIS can use two ways to store and process
raster data: "in-db" or "out-db". In the first case, the raster
data is stored in the RASTER field of spatialized tables,
according to a principle similar to vector data storage. In the
second case, only the metadata is stored in the database, the
actual raster data being retrieved from the file system.

It is on PostgreSQL and PostGIS that the GIS of our
application rests (version PostGIS 2.3.2 - PostgreSQL 9.6.3
at the time of application). Like all RDBMSs, however, it is
not designed to handle large amounts of data for
transactional processing. Indeed, SQL vertical scalability is
limited with hardware improvement of the server (contrary
to NoSQL horizontal scalability) [4]. In addition, the
unstructured data leads to a considerable drop in
performance (e.g., introduction of null values) or outrights
practical impossibility. It is worth noting that RDBMSs
remain effective in decision-making on large data
warehouses [5].

First, NoSQL has developed to cope with large amounts
of data [6]. Then, the need for simpler and less rigid models
has strengthened the development of unstructured database
models [7]. The term NoSQL groups various unstructured
database families that can be characterized by their schema
type. There are currently 4 families: key-value, column,
graph and document-oriented databases [8]:

 Key-value-oriented: They constitute the simplest
schema where a key refers to a particular type of
value. This type of schema offers quite limited query
capabilities.

 Column-oriented: This is an extension of the key-
value schema by allowing a key to return multiple
values.

 Graph-oriented: The diagram is here in the form of a
graph composed of edges and nodes.

 Document-oriented: These databases are composed
of keys that refer to a document, which can itself
contain multiple embedded documents. Collections
thus gather several documents from the same family,
but their internal structure may vary. They do not
require schemas beforehand and have a structure
able to evolve over time without excessive costs. In
addition, the contents of the document can be
scrutinized by queries.

B. MongoDB

In the AIDE application briefly described above (II) the
problem comes from the management of a variable
documentation in quantity and content, essentially attached
to the point objects (manholes). The network aspect is not
explicitly exploited so that the solution chosen for our
analysis is based on a document-oriented and not a graph-
oriented database as one might have imagined at first glance
with a pipe network management company. The choice of
the document-oriented DBMS focused on MongoDB
(version 3.4; [9]). This DBMS is easy to handle thanks to the
various drivers available and its installation facilities. It does
not have its own query language, but adapts to the chosen
driver. MongoDB also uses standard formats (JavaScript
Object Notation – e.g., JSON), which can be interesting for
the expected manipulations. Currently, this NoSQL DBMS is
the most popular one in the NoSQL category. It offers a large
community making its use easier [10].

Presently, the geospatial domain is not a priority in the
design of a NoSQL DBMS. Systems sometimes have an
extension to manage geographic data while in other systems
these features are natively included [11]. MongoDB is able
to natively manage geospatial data, but dedicated processing
is quite limited as soon as non-point geometries are
concerned [12]. These limits come from the lack of maturity
of this type of DBMS, but it is obviously constantly
evolving.

MongoDB can spatially index and process vector
geometries in 2 coordinate systems, labelled 2D and
2DSphere. In 2D, the coordinates (x, y) are local (not
attached to a spatial reference system) and are described as
legacy coordinate pairs in JSON. In 2DSphere, the
coordinates are expressed in the geodetic system WGS84
(EPSG: 4326) and are described in GeoJSON. Elementary
spatial predicates (within, near) are applicable to both
domains, but the intersection is only possible in 2DSphere.

Raster geospatial data is not explicitly recognized by
MongoDB. However, images can be manipulated in many
ways by this software [13]. The image file can either (1) be
managed by the file system, out of the database, or (2) be
embedded in binary form in a MongoDB document if it is
not too large (16 Mb maximum, and it is even recommended
not to exceed 1 Mb), or (3) be incorporated into a document
managed by the GridFS method.

24Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

With GridFS, the files, written in BSON (Binary JSON)
format, can be much bigger, and a larger number of files can
be managed in one directory [13]. The files are actually
divided into several chunks, gathered in one “fs.chunk”
collection, while the document metadata, notably allowing
grouping the chunks, are the subject of a separate “fs.files”
collection [14]. GridFS processes files and their metadata at
the same time [15]. The facilities offered by GridFS are
implemented in all official MongoDB drivers and a GridFS
management tool, called Mongofile, is also available [16]. It
should be noted in passing that the document management
method via GridFS is particularly well suited to the
classification of project-based documentation as carried out
by the company AIDE.

It should be noted further that any image in MongoDB
can be geo-located by a point in WGS84 coordinates (e.g., a
geo-located photograph). But except for this location point,
the image geospatial data are not necessarily geo-referenced
in the WGS84 datum.

C. Drivers and Interfaces

Several extensions exist to interface MongoDB but they
are not yet fully satisfactory. For a quick check, Compass for
example, can be handy. But for maximum interactivity, it is
desirable to work directly with a server language. C++, Java,
Python, Perl or PHP, for example, may be perfectly suitable.

For visualizing geospatial data from MongoDB, an Open
Source GIS application should be a good solution. For
instance, QGIS has a long history of extensions to PostGIS
and is currently offering four extensions dedicated to
MongoDB. But they do not seem to be perfect yet [17].

In this application, we have retained Python language. It
is enough to import the drivers PyMongo and Psycopg2 in
the same routine to provide a common interface to the couple
of databases. Note that it is also in Python that the QGIS
extensions can be written.

IV. EXAMPLES OF SPATIAL INTERACTIONS

In order to illustrate the coupling of the two systems,
MongoDB and PostGIS, we have selected some types of data
contained in the application of the AIDE company. The
spatial data likely to feed MongoDB is either scanned plans,
georeferenced (Geo-TIFF format) or not, and field data:
manholes in point form (vector format) and photographs
(image/raster format) geo-located on a point. The spatial data
stored in PostGIS are reference data, from which we have
selected the cadastral data [18] in vector form. It should be
mentioned that the cadastre does not cover the public domain
and that, consequently, the vector entities surveyed by the
AIDE (manholes and pipes) are not located on the cadastral
territory.

A. Vector interactions

The interactions will be done in both directions: from
MongoDB to PostGIS and vice versa.

1) From MongoDB to PostGIS:
A simple query example consists in identifying the

cadastral parcels (preserved in PostGIS) that are located in

the vicinity of a point (e.g., manhole) whose coordinates are
stored in MongoDB (Figure 1).

The Python routine first selects the point using a
MongoDB request. Its WGS84 coordinates are received in
GeoJSON format and are associated to a PostGIS point after
conversion in the user’s reference system (recorded in the
parcel metadata). Python interrogates the user on the search
radius and launches the PostGIS request to select the parcels
(to reduce the listing size (Table I), the interactive data entry
is replaced by predefined constants).

TABLE I. PYTHON SCRIPT LOOKING FOR PARCELS IN POSTGIS
WITHIN A CERTAIN DISTANCE OF A POINT RECORDED IN MONGODB.

######################### INIT
import json
import pymongo
from pymongo import MongoClient
import psycopg2 #PostGIS connection
import sys
######################### MONGODB
client = MongoClient() #User Data Entry
db=client.geoprocess
collection=db.manholes #Define source collection
collection_2=db.manholes_array #Define target collection
id="64056-02CA007430" #Define id source
distance="10" #Define search radius
point_rech=collection.find_one({"_id":id},{"geometry":1,"_id":0})

#Display corresponding
document

geom=point_rech['geometry'] #Geometry extraction
coord=geom['coordinates'] #Point coordinates

extraction
######################### POSTGIS
connection =
psycopg2.connect(database="geoprocessing",user="postgres",
password="***")
cursor = connection.cursor()
lat=str(coord[1])
lon=str(coord[0])
query="select cadasterparcelkey from b_cadasterparcel
where st_distance(geom,
st_transform(st_setsrid(st_makepoint("+lon+","+lat+"), 4326),
st_srid(geom))) <"+distance
cursor.execute(query)
results = cursor.fetchall()
for line in results:
 cadasterparcelkey=line[0]
 print(cadasterparcelkey)
cursor.close()
connection.close()

Figure 1. Selection of parcels in PostGIS in the vicinity of a selected
point from MongoDB (search radius provided by the Python routine).

25Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

2) From PostGIS to MongoDB:

The reverse query should identify the point(s)
(MongoDB) located near a cadastral parcel (PostGIS).

The notion of proximity is easily translated by the
definition of a buffer around the cadastral parcel. However,
this simple operation cannot be achieved in MongoDB. It is
then entrusted to a POSTGIS request and the coordinates of
the obtained polygon are converted into WGS84 in
GeoJSON format to query MongoDB. In this example, the
MongoDB request (within operator) will have to identify the
geo-location points of the photographs taken within the
buffer polygon (Figure 2).

Figure 2. Selections of photographs (point georeferenced in MongoDB)

falling in a buffered parcel in PostGIS.

B. Raster interactions

The documentation of AIDE company is essentially
composed of scanned plans and it is essentially around these
that the interaction is sought. However, it must be
remembered that scanned plans are available at multiple
scales: small-scale assembly plans, large-scale detail plans.
This multi-scale cover can be organized as embedded
documents in MongoDB. In addition, the plans cover areas
of interest that are not necessarily rectangular, so the scanned
images likely incorporate portions without data (No-Data).
Finally, the plans are not systematically georeferenced after
scanning. As a result, the edges of the image are generally
not parallel to the axes of the reference coordinate system.

1) Raster / Vector interactions:
A priori, for general queries concerning the presence of

geographical objects within the plan, in one way or the other,
it suffices to define the neatline (according to the OGC
encoding best practices [19]) defining the border of the raster
file and to confront it with the geometry of the vector objects
preserved in PostGIS. The neatline is made of a series of
point coordinates in clockwise order. The minimum of two
points is considered as the diagonal of the minimum
bounding rectangle (MBR), which assumes that the sides of
the raster are parallel to the axes of the projected coordinate
system. The coordinates of the neatline and the user's Spatial
Reference Identifier (SRID), are provided to PostGIS to
build a polygon in the GEOMETRY field of a spatial table
(Figure 3). It is then possible to easily check the occurrence
of vector objects within the polygon via a general purpose

2D clipping algorithm, such as the Weiler’s algorithm [20] in
the PostGIS environment.

On the other hand, if the query involves the value of the
pixels of the scanned plan (to avoid the No-Data values for
example), it is necessary to make the georeferenced scanned
plan accessible to PostGIS or to replicate it in a RASTER field
of a raster table. These cases are discussed below and
because the image neatline can be obtained by the raster
function “st_enveloppe” in PostGIS, it will be no longer
necessary to store the neatline in a vector spatial table.

2) Georeferenced scanned plan:
The scanned plan can be georeferenced and available

e.g., in Geo-TIFF format. If it is managed by the MongoDB
file system, it allows an immediate sharing solution with the
PostGIS environment because of its ability to access, from
the RASTER field, to external files (out-db alternative –
Figure 4). If the image file is managed by GridFS in
MongoDB, it is desirable to export it from the database in
order to share it with PostGIS. This is achieved by a Python
script listed below (Table II).

Figure 3. Preservation of the neatline (polygon) of a scanned plan
(MongoDB) in the GEOMETRY column of a spatial table (PostGIS).

######################### INIT
import pymongo
from pymongo import MongoClient
from bson import objectid
import gridfs
from os.path import basename
import os
from bson.objectid import ObjectId
from io import BytesIO
######################### EXPORT
conn = MongoClient() #Connection to MongoDB & GridFS
db = conn.geoprocess
fs = gridfs.GridFS(db, "plan") #Connection to image file in DB
gridout = fs.get(ObjectId("5a1ee153a9e79f1934cdf3a1"))

#Read file with objectId
fout = open('plan_mongo.tiff', 'wb')

#Open TIFF file
fout.write(gridout.read() #Write TIFF file
fout.close()

TABLE II. PYTHON SCRIPT EXTERNALIZING AN IMAGE MANAGED BY
GRIDFS AS A TIFF FILE.

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

3) Un-referenced scanned plans and World File:
If the scanned plan is not georeferenced, it is necessary to

proceed to this geo-registration under PostGIS. This
involves, on the one hand, communicating to PostGIS the
necessary parameters and, on the other hand, transmitting the
image file itself, exported from MongoDB.

Regarding the registration parameters, the proposed
solution is to enrich the metadata of the plan with the
corresponding World File resuming the 6 parameters of the
affine transformation between the image-coordinates and the
user’s projected coordinates [21] (Table III).

TABLE III. WORLD FILE PARAMETERS.

Line Parameter Meaning
1 A x-scale
2 D y-skew
3 B x-skew
4 E y-scale
5 C x-translation
6 F y-translation

Parameters used in equations :
x’ = Ax + By + C
y’ = Dx + Ey + F

At the choice of the user, the World File parameters can

be computed from the neatline coordinates by the Python
script (the neatline is generally easier for the user to specify
than the 6 parameters of the transformation matrix). In
addition, the destination SRID must be specified to PostGIS.

Figure 5. A Python routine uses World File parameters to create a
georeferenced raster in PostGIS (TIFF/TFW format is an example).

As in the previous example, the image in MongoDB can
be managed as an external file or more likely, to meet the

company's project-based management, managed by the
GridFS method. In the latter case, it is still necessary to
reconstitute the image in a file which is external to the
database. The Python script transmits it to PostGIS which

Figure 4. MongoDB and PostGIS share an external GeoTIFF File.

######################### INIT
import psycopg2
import os
import subprocess
import pymongo
from pymongo import MongoClient
from bson import objectid
import gridfs
from os.path import basename
import os
from bson.objectid import ObjectId
from io import BytesIO
######################### MONGODB
conn = MongoClient() #Connection to MongoDB &

GridFS
db = conn.geoprocess
fs = gridfs.GridFS(db, "plan")
gridout = fs.get(ObjectId("5a1ee153a9e79f1934cdf3a1"))
filelist=fs.list() #List all files in the collection
print (filelist)
fout = open('plan_mongo.tiff', 'wb') #Open TIFF file
fout.write(gridout.read()) #Write TIFF file
fout.close()
world= open("C:/Projets/geoprocessing/donnees/plans/world/02014-
01-I003_01_ech1000-V1(1).wld",'r') #Open World File
read_data=world.read() #Read World File
world_list=read_data.split("\n") #Create parameters list
######################### POSTGIS
xscale=world_list[0] #A # Read georegistration parameters
yskew=world_list[1] #D
xskew=world_list[2] #B
yscale=world_list[3] #E
xtranslate=world_list[4] #C
ytranslate=world_list[5] #F
srid="31370"
db_name = 'geoprocessing' # Connection to PostGIS
db_host = 'localhost'
db_user = 'postgres'
db_password = '***'
connection = psycopg2.connect(database=db_name,user=db_user,
password=db_password)
cursor = connection.cursor()
query="drop table if exists public.test" #Delete previous test table
cursor.execute(query)
connection.commit()
 #Import raster in test table
os.environ['PGPASSWORD'] = db_password # Set pg password
environment variable
cmd = 'raster2pgsql plan_mongo.tiff public.test | psql -U {} -d {} -h
{} -p 5432'.format(db_user,db_name,db_host)
subprocess.call(cmd, shell=True)
 # Georegistration of the test table
query="update test set rast=st_SetGeoReference(rast,'"+xscale+"
"+yskew+" "+xskew+" "+yscale+" "+xtranslate+" "+ytranslate+"',
'GDAL') where rid=1"
cursor.execute(query)
 #Assign SRID to the test table
query="update test set rast=st_setsrid(rast, "+srid+") where rid=1"
cursor.execute(query)
cursor.close()
connection.commit()

TABLE IV. PYTHON SCRIPT TAKING A TIFF FILE FROM MONGODB
AND USING WORLD FILE PARAMETERS TO GEO-REFERENCE A RASTER IN

POSTGIS.

27Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

stores the temporary image in a raster table. Then the script
invokes the PostGIS function "st_setgeoreference" with the
World File parameters to update a georeferenced version of
the image with its proper metadata (Figure 5). The process is
detailed in the last listing (Table IV).

V. CONCLUSION

As soon as a language offers drivers for PostGIS and
MongoDB, which is the case of Python used here, it is
technically easy to couple the two databases with a single
interface. However, the sharing of geospatial data is not
immediate because MongoDB introduces some limitations.

 In vector mode, the 2DSphere coordinate system implies
the use of geodetic coordinates WGS84, which is impractical
and confusing in calculations on non-point geometries. It is
likely a corollary that the facilities offered for geometries
other than points are so undeveloped. However, the
combined functionalities offered by MongoDB and PostGIS
are enough to obtain a fast and satisfactory result for simple
queries on points. But if objects with complex geometries are
included in the MongoDB database, it is clear that currently,
their replication in PostGIS is the best or the only solution to
allow serious spatial processing.

MongoDB does not explicitly recognize geographic
raster data. The proposed solution is to manage a
georeferenced file (e.g., GeoTIFF) by the MongoDB file
management system. If it is managed by GridFS, it is first
necessary to reconstitute an external image file through
MongoDB commands. Then, the file can be shared without
replication by PostGIS which will take care of all the
required spatial processing. On the other hand, if the raster
data is stored in a non-georeferenced image file in MongoDB
it will be necessary to entrust this geo-registration to PostGIS
using enriched metadata, which significantly increases the
operations and creates unnecessary redundancy.

 Geo-visualization is also problematic in MongoDB. Our
proposal is to assimilate the Python interface common to
both databases, to an extension of QGIS. However, the
investment in the development of a general extension is
jeopardized by the rapid evolution of the NoSQL systems in
general, and MongoDB in particular. But the fast and
multiple updates experienced by these systems are in
themselves a good thing that should progressively remove
the locks registered today on geospatial information.

ACKNOWLEDGEMENT

AIDE is thanked for allowing us to carry out this study
and for providing the necessary data and documents. The
digitized cadastral plans (version 01/01/2016) were provided
for educational purposes by the General Administration of
Heritage Documentation (AGDP) as a manager of the
authentic source.

REFERENCES
[1] A. B. M. Moniruzzaman and S. A. Hossain, “NoSQL

Database: New Era of Databases for Big data Analytics –
Classification, Characteristics and Comparison”, International
Journal of Database Theory and Application, Vol. 6, No. 4,
2013.

[2] S. Agarwal, and K. S. Rajan, "Performance analysis of
MongoDB versus PostGIS/PostGreSQL databases for line
intersection and point containment spatial queries,” Spatial
Information Research, 24 pp. 671-677, 2016.

[3] Postgis-users – PostGIS Users Discussion. [Online].
http://lists.osgeo.org/mailman/listinfo/postgis-users [retrieved
01, 2018].

[4] C. Birgen, H. Preisig and J. Morud, “SQL vs. NoSQL”. Norwegian
University of Science and Technology, Scholar article, 42 p., 2014.

[5] R. Kimball, and M. Ross, “The Data Warehouse Toolkit: The
Definitive Guide to Dimensional Modeling,” New York: John
Wiley & Sons, 3d ed., 2013.

[6] A. Oussous, F.-Z. Benjelloun, A. Ait Lahcen, and S. Belfkih,
"Comparison and Classification of NoSQL Databases,"
International conference on Big Data, Cloud and Applications
(Tetouan, Morocco), pp. 1-6, May 2015.

[7] S. Gupta, and G. Narsimha, "Efficient Query Analysis and
Performance Evaluation of the Nosql Data Store for
BigData," Proceedings of the First International Conference
on Computational Intelligence and Informatics (Singapore), S.
C. Satapathy et al. (eds.), pp. 549-558, 2017.

[8] P. Amirian, A. Basiri, and A. Winstanley, "Evaluation of Data
Management Systems for Geospatial Big Data,"
Computational Science and Its Applications (ICCSA),
Springer International Publishing, pp. 678-690, 2014

[9] MongoDB, “MongoDB Documentation”. [Online].
https://docs.mongodb.com/ [retrieved 01, 2018]

[10] L. Bonnet, A. Laurent, M. Sala, B. Laurent, and N. Sicard,
"Reduce, You Say: What NoSQL Can Do for Data
Aggregation and BI in Large Repositories", Proceedings of
22nd International Workshop on Database and Expert
Systems Applications (DEXA), IEEE, pp. 483-488, 2011.

[11] C. de Souza Baptista, C. E. Santos Pires, D. Farias Batista
Leite, M. Guimares de Oliveira, and O. F. de Lima Junior,
"NoSQL Geographic Databases: An Overview," E. Pourabbas
(ed.), Geographical Information: Trends and Technologies,
CRC Press, pp. 73-103, 2014.

[12] MongoDB, “Migration Guide from RDBMS to MongoDB
(Guide de migration d’un système RDBMS vers MongoDB).”
2015. [Online]. https://www.mongodb.com/collateral/rdbms-
mongodb-migration-guide/ [retrieved 01, 2018].

[13] K. Banker, P. Bakkum, S. Verch, and T. Hawkins,
“MongoDB in action,” Manning Publications Co, 2016.

[14] W. Xin, “Design and Implementation of CNEOST,” Chinese
Astronomy and Astrophysics, 38, pp. 211-221, 2014.

[15] G. Kloss, “MataNui – A Distributed Storage Infrastructure for
Scientific Data,” Procedia Computer Science, 18, 2607-2610,
2013.

[16] C. Dasadia, and A. Nayak, “MongoDB Cookbook,” 2d
edition, Packt Publishing, 2016.

[17] QGIS, QGIS Python Plugins Repository [Online].
https://plugins.qgis.org/ [retrieved 01, 2018].

[18] Service Public Fédéral Finance, “CadGIS”. [Online].
http://ccff02.minfin.fgov.be/cadgisweb/ [retrieved 01, 2018].

[19] Open Geospatial Consortium, “PDF Georegistration Encoding
Best Practice Version 2.2, OGC 08139r3,” G. Demmy, and C.
Reed, (eds), 2011.

[20] J. D. Fooley, A. van Dam, S. K. Feiner and J. F. Hughes,
“Computer Graphics. Principles and practice,” Addison-
Wesley, 2d ed., 1992.

[21] Library of Congress, “ESRI World File,” Sustainability of
Digital Formats: Planning for Library of Congress
Collections,” 2015. [Online]. https://www.loc.gov/
preservation/digitalformats/fdd/fdd000287.shtml [retrieved
01, 2018].

28Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

