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Abstract—This paper presents a new geographically
weighted regression analysis tool, based upon a mfbed
version of a General Regression Neural Network (GRN).
The new Geographic General Regression Neural Network
(GGRNN) tool allows for local variations in the regession
analysis. The algorithm of the GRNN has been extendeo
allow for both globally independent variables and dcal
variables, restricted to a given spatial kernel. Th8 mimics
the results of Geographically Weighted RegressionGWR)
analysis in a given geographical space. The GGRNMNdl
allows the user to load geographic data from the Sipefile
into the underlying neural networks data structure. The
spatial kernel can be either a fixed radius or adajve, by
using a given number of neighboring regions. The Hdout
Method has been used to compare the fitness of avgn
model. An application of the tool has been preserdeusing
the benchmark working-age deaths in the Tokyo
metropolitan area, Japan. Standardized residual map
produced by the GGRNN tool have been compared with
those produced by the GWRA4 tool for validation. Thetool
has been developed in the .Net C# programming langge
using the DotSpatial open source library. The toold valuable
because it allows the user to investigate the infuce of
spatially non-stationary processes in the regressioanalysis.
The tool can also be used for prediction or interpaition
purposes for a range of environmental, socioeconomiand
public health applications.
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l. INTRODUCTION

variables. Additionally, because of its structurés easier
to incorporate spatial parameters as one of

independent variables to support local variationthe
regression analysis.

The paper is organised as follows. Section Il cever
the structure, empirical formulation and algoritbmi
details of the training of the GRNN. Section llisgdebes
the nature, operation and different variations NS
analysis. Section IV presents the GGRNN introduiced
this research. Section V highlights the developnserd
operation of the GGRNN tool used here to carry thet
GGRNN analysis. Section VI covers the validatiorthaf
proposed GGRNN tool. Results obtained using the
proposed GGRNN tool, are provided in Section VII
together with a comparison of its results agairst t
GWR4 tool. Section VIII summarizes conclusions and
future work.

the

Il GENERAL REGRESSIONNEURAL NETWORKS

GRNNSs have the capability to predict, interpolatel a
undertake regression analysis. It is a useful tdwn the
relationship between dependant and independergblas
is unknown and complex. It supports both linear aad-
linear relationships.

GRNNs have been used in a number of applications.
For example, a GRNN has been used to predict ragmwa
runoff in two small sub-catchments of Tiber Riveash
in Italy using rainfall and soil moisture informati at

The GGRNN tool is part of a Spatial Decision Suppor different soil depths [4]. The GRNN prediction wasnd

System (SEREN-SDSS) developed by
Geoenvironmental Research Centre of Cardiff Unitsers

theto be satisfactory in relation to the actual runofith

coefficient of determination, Requal to 0.87 [4].

SEREN-SDSS has been designed and developed for Similarly, three different types of neural networks

geoenergy and geoenvironmental applications.

lhave been used to predict and classify the petaapi

facilitates the decision making process by comiginin Ecological Footprint (EF) of 140 nations [5]. Thesural
several Multicriteria Decision Analysis (MCDA) and networks are Multi-layer Perceptron Neural Networks
Artificial Neural Network (ANN) techniques [1]. The (MLPs), Probabilistic Neural Networks (PNNs) and

GGRNN tool utilises and extends the capabilities ofGRNNS.

GRNN in order to facilitate local spatial variatgrin
regression analyses.

GRNN was first presented by Spetch [2]. GRNN are

powerful function approximations, capable of moidgll
linear and non-linear relationships in data despi@ng
very simple in their structure and operation [3].

The results reveal that neural networks
outperform traditional statistical methods used fois
application [5].

GRNNSs can also be utilised in finding the most ukef
set of variables that can be used in an analysis. F
example, GRNNs have been used in [6] for the
determination of the most appropriate variablefotecast

GRNNSs have been considered in this research becaugblorine in preventing the spread of waterborneatss.
unlike some of the other type of ANNs, GRNNs do NOty  gructure of GRNN

operate as a “black box”. Rather, they predicthlees at

an unknown location on the basis of its proximity t

GRNNSs are very simple in their structure and hénee t

known location in terms of the selected independenfollowing four layers of neurons: a) Input Layer) b
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Pattern Layer, ¢) Summation Layer, d) Output Layer.
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these four layers, as originally suggested byA2ERNN  difference of zero. A larger value of this term meahe
can approximate a function and estimate the vafua o known value of dependent variable at this trairsagiple
dependent variable from a set of independent viesab il have more influence in the calculation of the
The Input Layer contains as many neurons as tirere agependant variable at the prediction point. If digtance
variables in the input dataset. The input data tgoare is large, the value of the termp(‘DiZ/zoz) decreases
presented to the Input Layer which simply feedsrtieto tending’to zero for very large distances. Such Mrﬁp

tEe lIZattern tayer. EﬁCh |anE)t dat? point is t_her:dt;?r; points will provide no contribution to the estinmati of
the Pattern Layer. The number of neurons in thécRat dependent variable at the prediction location. The

Layer is equal to the tota_l number of data P_Oi!“f_‘e predicted output is bounded between the maximum and
value of the dependent variable (Y) at the prediicpoint minimum known values of the dependent variable [2].
is calculated based on the difference betweendahees of

independent variables at the prediction point amegirt B. Smoothing parameter sigma (o)

respective values at other points at which thepedeent The o parameter can have single or multiple values for
variables are known. The Summation Layer computes t gifferent variables (dimensions) in an input datatfea
numerator and denominator terms for Equation 1, byingle value is used, it is very important to steise the
using the difference factor of the independentaldéas (at independent variables so that they have a meareraf z
known and unknown location) and the dependent biria and a standard deviation of one. Without standatidis
(at known location). The last layer is called thetiit  of the independent variables, a singlevalue will cover
Layer where the value of functin= f(x) is computed jfferent distances in each dimension and the vafiD,?
using (). will not represent the actual difference betweee th
) : : training sample and the prediction point [2]. A derac
value will result in a localised regression anaysie.,
only the sample points that are very close to tlegliption
point in terms of their distances on different axis
(domains) will contribute to the calculation of @smgent
variable. A largero value results in a more globalised
regression where almost the entire set of data lesmp
contributes to the calculation of the dependeniaisde. In
Pattern Layer this latter case, results are very close to thenmvatue of
the dependent variable for the entire set of sampiets.

C. Holdout Method for training of GRNN

Summation Layer GRNNSs require supervised training and the selection
of the most suitable value for the smoothing patame,

is very important to obtain reliable results [2]heT
Holdout Method is a useful and common method fer th
selection ofo [2]. Figure 2 explains the Holdout method
algorithm in a flow chart.

InputLayer

Output Layer

Y = f(X)

- Inputdataandtarget RMSE
value from the user.

Figure 1. Structure of General Regression Neuraivbid [2] - Normalize the data

The mathematical formulation to implement GRNN is
straightforward and similar to probability distriimn
function. The output function of the GRNN is givas

RMSE >

Target RMSE
2 i (-D?/20%) ‘
n i -D;“/20
V= f =2 2P @
i expiTh
whereY is the estimated value of the dependent variable —
at the unknown locationy* is the value of dependent Use Sigma (0) for
variable at known locations ang} is a scalar term that Calcalate error o PR
accounts for the differences between the predigtioint ReE [ ] sl poin
and the training sample for all independent vaesb T ‘
(dimensions) and is calculated as[2]: | Predictat °
DF= (X—-XHT(X-XH 2 e orediction at
The distance between the prediction point and a 1 ——
training sample defines the influence of that frain smple Potat
sample in the calculation off(x) (the dependent
variableY). If this distance is small, the term
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Figure 2. Flow chart of the Holdout Method for gedection of sigma

In the Holdout Method, only one training sample is
selected from the training set at a time and theevaf Y
is predicted at this sample point using the resthef
samples [2]. The predicted value is compared whih t
actual value and the difference is used in theutation
of mean squared error [2].

. GEOGRAPHICALLY WEIGHTED REGRESSION

(GWR)

Geographically weighted regression (GWR) models

can be used to understand and analyse spatialjyngar
relationships between dependent and
variables [7]. A conventional GWR regression moigel
represented by the following equation [7]:

Y, = Zkﬁk(uiuvi)xk,i te; 3)
where Y;, Xi; and g are the dependent variabl&th
independent variable, and the error term at lonafig v)
respectively.g, is locally varying coefficient at théh
location. Another variation of GWR model is whemre
of the independent are treated as global whilersthee
restricted to vary locally. In such models a usarg
spatial kernel defines the area in which the loeaiables
are analysed. Such models are called semi-para@nuetri
mixed GWR are normally represented by [7]:

(4)

Y, = Z Bie (wiyv) xp; + 6 +
where z;; is the [*" independent variable that is treated
globally and has a fixed coefficiept

GWR or mixed GWR functions can be applied using
Gaussian, Poisson, and logistic regression moddis.

izt &
1

calculated in the normal manner from the entiredgtu
area.

B. Spatially adaptive kernel

If the spatially adaptive kernel technique is usie,
user selects the number of neighbouring areas finede
the kernel, within which the influence of the local
parameters is calculated. Since the geometrieshef t
administrative boundaries (e.g. districts) are anginic, a
fixed number of neighbouring areas will result in a
varying spatial kernel, hence the naming of thiiteque.

Soatial distance as independent variable

independent The use of an appropriate neighbourhood size is

important for the model to fit the data properlyff&ent
iterations and comparison of the standardised evaor
help in the identification of the appropriate ndighrhood
size. However, if it is not clear what type andesiaf
kernel is to be used, the GGRNN tool also provides
mechanism to use spatial distance between diffeneyats
as one of the independent variables for the priediatf
the dependent variable. As discussed earlier iti@®eg,
the neighbouring areas of the prediction locatidhhave
a greater influence in the calculation of the deleen
variable. The distance between two geographicaufea
(areas) is calculated using (5) based on the destraf
either feature [7]:

Dspatial = \/(Xi - Xj)2 + (Y — Y})Z

(5)

V. GGRNNTOOL

The GGRNN tool has been developed in the .Net C#
programming language using the DotSpatial opencsour

models give better regression results and enhancefl ary Figure 3 shows the user interface of tHeNS
understanding of the relationship between differeni;gaq prediction tool.

parameters, whether global or local [7].

V. GEOGRAPHICALGENERAL REGRESSION

NEURAL NETWORK (GGRNN)

The GGRNN presented in this study extends the basi
GRNN model described earlier in Section 2. This
extension of the original GRNN algorithm allows focal
variation in the relationship between differentgraeters.
The influence of local and global variables are pated
separately and then summed together. The differisnice
the calculation of the term D (Distance) if spatiatance
is used as independent variable as explained eakliso
for the locally independent variables, the influenis
calculated only within the given neighbourhood
contrast to the global variables for which the taoss are
involved.

In order to define the neighbourhood for local
variations, two different techniques are used:

A. Fixed spatial kernel
In this technique, a user defined spatial kerngg,, e

in

GEOGRAPHIC GENERAL REGRESSION NEURAL NWTWORK - REGRESSION AND PREDICTION TOOL S | E S

SELECT VARIABLES FOR GRNN SPATIAL PARAMETERS

Nakaya SELECT LAYER X.CENTROD ~ XCoord

Y.CENTROID v YCoord
SELECT DEPENDENT VARIABLE
Incomporate Spatial
Parameters in Analysis?

2564 DEPENDENT VARIABLE o YES NO

TASKS
. SELECT INDEPENDENT VARIABLES
AND ADD IN THE LIST BELOW

SELECTALL

{} ADD x REMOVE

OCC_TEC
UNEMP

LOAD INDICATORS INTO
GENERAL REGRESSION
NEURAL NETWORK

{} ADD x REMOVE

......

LAUNCH GRNN
TUNING WIZARD

EXIT

GLOBAL INDEPENDENT VARIABLES LOCAL INDEPENDENT VARIABLES

Figure 3. GUI of GGRNN based prediction and regozsanalysis tool

The user first selects the GIS layer (Shapefile)
containing the indicators. The user identifies the

15km, is used to select the neighbouring geographic dependent, glopal and local independent varialdes),
regions (features). These features are used for tH@ads the data into the GRNN tool. The user camcsel
computation of the influence of the local dependentvhetherornotto use spatial distance in the aaly

variables only. The influence of global variables i
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GGRNN TUNING WIZARD
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[0z
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15000 Distance {meters)
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174+
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015 02 025 03 035 04 045 05 055 06 085 07

Spread Factor (sigms)

075 08 GRNN
PREDICTION

= Fitness O Spread Result

Figure 4. GRNN sigma tuning and prediction tool

Once the data is incorporated in the neural netwerk In either case the smoothing parameter, sigma (
tuning wizard is launched helping the user to debest  used for each independent variable computes thesimfe
sigma ¢) parameters for the analysis. The tuning wizardof each neighbouring area on the calculation of the
utilises the Holdout Method for the calculationtioé Root  independent variable at the prediction point. I§igma
Mean Square Error (RMSE). parameter is assigned to the spatial dimensionn the

The user can give upper and lower bounds for théeatures closer to the prediction point will havgraater
sigma parameters and a step (interval) to calculae influence on this calculation. Large values of sigm
RMSE using the Holdout method. The system plots th@arameters cause the prediction to tend to the welae
RMSE values against the corresponding sigma spreaaf the dependent variable in the entire study arfethe
factors as shown in Figure 4. given neighbourhood.

Either the actual, scaled or normalised data vata@s Once a set of sigma parameters has been seledted wi
be used for the calculation of RMSE for a given cfet an acceptable RMSE value, the user can selecetthem
values. The user can assign the samparameters for all for the actual prediction at an unknown locatidrspatial
the independent variables if the data is normalised parameters were not used in the analysis, only the
scaled. However, if the original data values of theindependent variables need to be provided by tee ais
independent variables are used for the estimatfothed  the unknown location, where prediction is to be enéat
dependent variable, then it is important to asdigg the dependent variable. If however, spatial pararset
sigma values with care. This is important as sofmth@ were used, then the user must also provide thedXYan
variables may have a different spread and rangdatff coordinated of the centroid of the geographicaiuies for
values as compare to the others and using a sisigara  which the dependent variable is to be predicted.
value can adversely affect the results.

Adopting spatial parameters in the regression aialy
in GRNN is similar to the Geographically Weighted
Regression (GWR) suggested by [7]. If spatial patens
are included in the analysis then the tool provites A semi-parametric GWR model application has been
different methods to identify a specific number of presented to analyse the relationships between the
neighbouring geographical features to be used Hier t working-age mortality and socio-economic conditions
prediction analysis. These two methods are a) Fixedokyo metropolitan area, Japan [8]. The same datase
Spatial Kernel and b) Adaptive Spatial Kernel. used in this research for two reasons:

If an Adaptive Spatial Kernel is selected, onlyieeg a. The dataset is known to have local spatial vanetio
number (N) of neighbouring geographical features ar found in parts of the study area, as explaine®Jn [
selected for the analysis. The system first catesldhe b. The standardised error resulting in the applicatibn
distance of each geographical feature from theigtiod GWR and the GGRNN tool can be mapped, analysed
point. Then only N closest neighbours are selected and compared for benchmarking purpose.
used in the process. However, if a fixed spatiahé&kis The Tokyo mortality data covers the 262 municiyalit
used then all neighbouring geographical featuresxdo zones of the Tokyo Metropolitan area, Japan. Tlaerol
within the spatial kernel are selected. age population and rate of house-ownership are bged

VI. VALIDATION

An application of the GGRNN tool is presented to
compare its results with those produced by the Q@R
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[8] as the global independent variables, whereasother
two variables are controlled locally in the regress
analysis. The description of dependent and indeg@nd
variables are given in Table 1 below.

TABLE 1. TOKYO MORTALITY DATASET

Variable Description Relationship
Working age Standard mortalit Dependen
mortality rate rates for the 25-64 Variable

age group

Older Proportion of eldery  Independen

population people (aged over 64) (Global)
within each zone

Own house Rate of hous- Independer
ownership in each (Global)
zone

Professiona Proportion of Independen

and technical professional and (Local)
workers technical workers in
each zone.

Unemploymer  Rate of Independen
unemployment in each (Local)
zone

VII. COMPARISON OF RESULTS

structure of its underlying neural network. In bathses
the independent variables are standardised. Bxal find
adaptive kernels have been used to run the model in
GWR. The recommended fixed kernel for this datéset
15km and, for an adaptive kernel type, 50 neighbaue
recommended [8]. In order to compare the resulth wi
those produced by the GGRNN tool, the most suitable
sigma parameter is identified using the Holdout et
and RMSE. A sigma value of 0.4 was obtained fohbot
adaptive and fixed spatial kernel techniques. Stedided
residual maps are produced in ArcMap; the resuttzays
obtained using the GWR tool, are shown in Figure 5
below.

Figure 5 shows the standardized residual maps
produced by the GGRNN tool and GWR4 tool by using
an adaptive kernel. The results show that the GGRMN
has produced very similar results to the GWR4 tmihg
the adaptive kernel. A slight difference can beeobsd
between the two results in the south-eastern fatheo
region which needs to be further investigated. Asgide
reason is the difference between the locally varyin
coefficient used in the GWR tool and the sigma peatzr

GWR version 4 has been used to analyse thesed inthe GGRNN tool.

Geographically Weighted Regression of working age

In the second process, both the tools have beeto set

mortality rates with socio economic conditions. A use a fixed spatial kernel of 15 km. The Holdoutthdel

Gaussian Model has been used for the kernel asalysi

used in the GGRNN tool suggests that a network inode

both the GWR and GGRNN tools. The introduction of a with sigma parameter of 0.4 exhibits the best ditthe

offset and a local intercept variable in the GWRlgsis
is recommended [8]. Therefore, the two variablaseh

dataset. The results are shown in Figure 6. IthEageen
that the two tools have again produced very simdaults

been included in the GWR tool; however, the GGRNNIn the case of fixed spatial kernel.

tool doesn’t have a provision for this because lué t

Standardized Residual
I < -25 Std. Dev.
B 25--1.551d. Dev.
-1.5--0.5 Std. Dev.
-0.5 - 0.5 Std. Dev.
0.5- 1.5 Std. Dev.
| 15-2.551d. Dev

B - 25 st Dev

Map A

Standardized residual maps of GWR and GGRNN
analysis of Tokyo mortality data N

A

Map B

30 60 Kilometers
L

Figure 5. Standardised residual maps using ada@tuessian with 50 neighbours. Map A: GGRNN toabgng parameter: 0.4 (for all independent
variables). Map B: GWRA4 tool
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Standardized Residual

B <25 Std. Dev.
-2.5--1.5 Sid. Dev.
-15- 0.5 Sid. Dev.
-0.5-0.5Std. Dev.
0.5- 1.5 Std. Dev.
1.5 - 2.5 Std. Dev.

I - 25 Std Dev

Map A

0 15 30
T VO T S |

Standardized residual maps of GWR and GGRNN
analysis of Tokyo mortality data N

A

Map B
80 Kilometers
I

Figure 6. Standardised residual maps using fixedetef 15kms. Map A: GGRNN tool. Sigma paramefes: (for all independent variables). Map B:

GWR4 tool

VIII.

This paper presents a new regression analysis to
based upon a modified version of the General Regres
Neural Network (GRNN). The Geographical General
Regression Neural Network (GGRNN) tool can be used [1]
perform to Geographically Weighted Regression (GWR)
analysis. It can be useful in understanding theetyihg
spatially varying relationships between dependemd a
independent variables and for prediction analySise
GGRNN tool can be used in a number of environmental
socio-economic and public health applications.

The tool provides options to select the independeniSl
variables as globally fixed or locally varying. Thpatial
kernel can either be assigned as a fixed radiasiaptive,

i.e., by assigning a given number of neighbourggjons. 4]

The Holdout Method has been used to compare thL}
fitness of a given model. The GGRNN tool allows the
user to compare the fitness of different modelsubing
the Holdout Method. The Holdout Method helps in[5]
selecting the most appropriate network parameters,
essential for the working of a neural network. Aidation
of the tool has been carried out using the benckmar
Tokyo mortality dataset and using the GWR4 toole Th [6]
validation results demonstrate that the GGRNN ol
be used with confidence to carry out geographically
weighted regression analysis.

In future work, the performance of the tool will be [7]
tested against the GWR tool. Also, it will be test®
assess its prediction of dependent variable at amkn
locations for impact assessment.

CONCLUSIONS AND FUTURE WORK

(2]

(8]
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