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Abstract - Land-use classification of urban environments is 

usually limited by the number and complexity of the 

considered classes and the capability of the selected 

methodology for the efficient discrimination of these classes. 

Thus, this paper analyses and assesses the performance of a 

contextual object-based classification methodology in urban 

environments considering a comprehensive land-use legend, 

including several complex urban land-uses –historical 

buildings, urban buildings, open urban buildings, semi-detached 

houses, detached houses, industrial/warehouse buildings, 

religious buildings, commercial buildings, public buildings, 

gardens and parks–, and agricultural classes –arable lands, 

citrus orchards, irrigated crops, carob-trees orchards, rice crops, 

forest, greenhouses–. Object-based approach was achieved by 

using cadastral plot limits for object definition. An exhaustive 

set of object-based descriptive features were computed 

informing about the spectral, texture, structural, geometrical, 

three-dimensional and contextual properties. Classification 

was performed by means of decision trees algorithm combined 

with boosting multi-classifier. The overall accuracy reached 

classifying the urban area of Valencia reached 84.8%, which is 

a significantly high value when considering a large number of 

complex urban classes. 
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I.  INTRODUCTION 

Urban areas are dynamic and changing environments 
both in land covers and land uses. This entails that 
cartographical information referred to cities becomes rapidly 
obsolete. An efficient urban management requires an 
accurate and up-to-date knowledge about the land cover 
situation and evolution in urban and surrounding areas. This 
enables a wide range of applications including physical 
planning –viewshed analysis, impact assessment, 
environmental issues–; economic planning –accessibility, 
location analysis, transport studies –; social planning –
population and other socio-demographic distributions, urban 
structures–; or forecasting models –diffusion and urban 
growth– [1]. 

Traditionally the process of creating land-use/land-cover 
(LU/LC) maps of urban areas involves field visits and classic 
photo-interpretation techniques. These methodologies are 
expensive, time consuming, and also subjective, requiring 

skilled operators. Remotely sensed data and digital image 
processing techniques help to reduce the volume of 
information that needs to be manually interpreted, satisfying 
current demands for continuously precise data for an 
automatic, systematic and efficient territorial and urban 
management. 

Image classification processes to produce land-cover 
maps in urban areas can be considered straightforward when 
compared to the complex process of deriving information on 
urban land use [2], since the land use is an abstract concept 
that represents a socio-economic criterion referring to the 
dominant activity of a place, and may include category 
subdivisions with differing levels of detail [3]. The definition 
of an extensive land-use legend enables a deeper and better 
knowledge of the “actuality” of the urban scenario, but it 
also entails additional difficulties in the discrimination of 
classes, since a large number of complex land-use classes 
generally lead to reach limited results. 

When considering high spatial resolution imagery, 
object-based approaches are generally used to classify land 
uses in urban areas, where objects can be defined using 
automatic segmentation methods or –most commonly– by 
means of urban blocks or plot limits derived from existing 
cartography. Moreover, plot-based image classification 
allows to directly relate the information extracted from the 
remotely sensed data to LU/LC geo-spatial database objects. 

Reference [4] considered eleven complex land use/land 
cover classes, but without assessing the quality of the 
methodology. Reference [5] obtained discrete accuracy 
values when classifying eight different urban land uses; [6] 
obtained an accurate result considering five classes of urban 
development, and [7] differenced six land uses reaching 
medium accuracy values. The definition of a contextual 
framework through a multi-resolution analysis permits to 
increase the classification accuracy of urban environments 
considering several classes, as demonstrated in [8]. 

The addition of three-dimensional information using 
LiDAR (Light Detection and Ranging) data allows to 
increase the number of classes in the legend, and to reach 
higher accuracy values. Therefore, [9] obtained high 
accuracies when classifying a suburban area distinguishing 
between land uses and other additional land-cover classes to 
fully complete the area. Reference [10] considered nine 
different complex urban land uses reaching unbalanced 
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accuracies due to the extreme differences in the number of 
per-class samples. In the same sense, [11] defined ten land 
use classes to completely classify the city of Brussels 
including different housing typologies, but no accuracy 
assessment was presented. Combining three-dimensional 
information and context-based descriptive features [12] 
attained accurate results distinguishing between five complex 
urban classes plus two agricultural classes.  

The aim of this paper is to analyse and assess the 
performance of a contextual object-based classification 
methodology using high spatial resolution multispectral 
imagery and LiDAR data when classifying urban 
environments considering a comprehensive land-use legend 
containing a large number of classes, including several 
complex urban land-uses and agricultural classes. This paper 
is organized as follows. Section 2 describes the area where 
the study was performed and the data employed. Section 3 
describes the object-based classification methodology and 
the accuracy assessment followed. Section 4 reports and 
analyses the results. Section 5 presents the conclusions. 

II. STUDY AREA AND DATA 

This study was performed in the administrative area of 
the municipalities of Valencia and Paterna, located in the 
Mediterranean coast of Spain (see Figure 1. ). Valencia is the 
largest city and capital of the Valencian Community, having 
809,267 inhabitants in 2010 [13]. Valencia is a compact city 
composed by a central historical area surrounded by 
buildings of different typologies, depending on the date of 
construction. The northern area is covered by citrus orchards 
and horticulture crops, while the natural park of l’Albufera 
presents extensive rice crops and forests, and is located in the 
southern zone. Paterna is a contiguous municipality located 
in the metropolitan area of Valencia with a population of 
about 65,921 inhabitants [13], presenting large extensions of 
low-density suburban housing and several industrial and 
commercial areas. 

The limits of the plots were provided by vectorial 
cadastral cartography in shapefile format, produced by the 
Spanish General Directorate for Cadastre (Dirección 
General de Catastro). This cartography presents a scale of 
1:1,000 in urban areas and 1:2,000 in rural areas. 

 

 
Figure 1.  Location of Valencia in Spain (a) and representation of the two 

municipalities considered in this study: Valencia and Paterna (b). 

 
Figure 2.  Detail of a high spatial resolution image in colour infrarred 

composition (a), and digital surface model created with the LiDAR data 
(b), depicting a zone in the urban centre of Valencia. 

 
Imagery and LiDAR data were acquired in the frame of 

the Spanish National Plan of Aerial Orthophotography 
(PNOA). The images were collected in August 2008 and 
they have 0.5 m/pixel spatial resolution, 8 bits radiometric 
resolution and four spectral bands: red, green, blue and near 
infrared. The images are distributed orthorectified and 
georreferenced, panchromatic and multispectral bands fused, 
mosaicking and radiometric adjustments applied, as part of 
the PNOA project. An example of the multispectral imagery 
employed is show in Figure 2. a. 

LiDAR data were acquired in September 2009 with a 
nominal density of 0.5 points/m

2 
using a RIEGL LMS-Q680 

laser scanner device. A normalised digital surface model 
(nDSM), i.e., the difference between the digital surface 
model (DSM) and the digital terrain model (DTM), 
representing the physical heights of the elements present 
over the terrain, was generated from LiDAR data. The DTM 
was computed by means of an algorithm that iteratively 
selects minimum elevation points and eliminates points 
belonging to any aboveground elements, such as vegetation 
or buildings [14]. Figure 2. b shows an example of the 
nDSM of the centre of Valencia. 

III. METHODOLOGY 

Land use classification was carried out in five steps: class 
definition; sample selection; descriptive feature extraction; 
object classification; and evaluation. Object definition was 
done using cadastral plot limits, and these objects were 
exhaustively described by different types of image derived 
features: three-dimensional features computed from LiDAR 
data, structural features derived from the semivariogram 
graph, geometrical features, and context-based features. 
Classification was performed by means of C5.0 decision tree 
algorithm combined with the boosting technique. The 
classification accuracy was assessed by analyzing the 
confusion matrix. 

A. Definition of classes 

Land-use class definition was performed based on the 
specifications of the Land Cover and Land Use Information 
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System of Spain (SIOSE) database. The legend was 
composed of seventeen classes, discriminating between ten 
urban land use classes and seven agricultural classes. The 
samples (plots) were collected by using a restricted 
randomization scheme [15], consisting on a random 
sampling selection, to ensure the spatial homogeneity of the 
samples, followed by a redistribution and addition of some 
samples in order to maintain the appropriate number of 
samples according to the variability into each class. The 
urban classes defined were: historical buildings (264 
samples), urban buildings (225), open urban buildings (142), 
semi-detached houses (90), detached houses (153), 
industrial/warehouse buildings (139), religious buildings 
(30), commercial buildings (24), public buildings (173), 
including schools, universities, sport facilities and civic and 
governmental buildings, and gardens and parks (57). The 
agricultural classes defined were: arable lands (92), citrus 
orchards (141), irrigated crops (81), carob-trees orchards 
(63), rice crops (74), forest (39) and greenhouses (43). 
Examples of the defined classes in colour infrared 
composition are shown in Figure 3.  

B. Object-based descriptive feature extraction 

Object-based features describe each object as a single 
entity based on several aspects that reflect the variety of 
information used, and these were computed using the object-
based image analysis software FETEX 2.0 [16]. The 
computed features provided information regarding spectral, 
texture, structural, geometrical, three-dimensional and 
context based properties. 

Spectral features provide information about the intensity 
values of objects in the different spectral bands. Statistical 
descriptors were computed for each plot in the available 
bands and in the NDVI image. Texture features quantify the 
spatial distribution of the intensity values in the analysed 
objects. Texture was characterized by means of kurtosis and 
skewness, the descriptors derived from the grey level co-
occurrence matrix proposed by [17], and the edgeness factor 
[18]. Structural features provide information of the spatial 
arrangement of different elements in the object, in terms of 
randomness, and these were derived from the semivariogram 
graph [19] [20]. Geometrical features describe the 
dimensions of the plots and their contour complexity. Three-
dimensional features were derived from the nDSM computed 
using LiDAR data. 

Context was described by characterizing the higher and 
lower aggregation levels of the plots. Thus, internal context 
features describe an object attending to the land cover types 
of the elements contained within the object (denoted as sub-
objects). In this case, buildings and vegetation, which were 
extracted by applying a multiple-threshold based approach, 
as described in [21]. External context is defined 
characterizing each object by considering the common 
properties of adjacent objects that combined create an 
aggregation higher in hierarchy than plot level, such as urban 
blocks in urban areas. This context is described by means of 
specific building-based, vegetation-based, geometrical and 
adjacency features [12]. 

 
Figure 3.  Examples of the considered classes: historical buildings (a), 

urban buildings (b), open urban buildings (c), semi-detached houses (d), 

detached houses (e), industrial/warehouse buildings (f), religious buildings 

(g), commercial buildings (h), public buildings (i), gardens and parks (j), 

arable lands (k), citrus orchards (l), irrigated crops (m), carob-trees 

orchards (n), forest (o), rice crops (p), and greenhouses (q). 

 

C. Classification and accuracy assesment 

Classification was performed using decision trees 
constructed with the C5.0 algorithm [22] combined with the 
boosting technique. The process of building a decision tree 
begins by dividing the collection of training samples using 
mutually exclusive conditions. Each of these sample 
subgroups is iteratively divided by using the gain ratio as a 
splitting criterion until the newly generated subgroups are 
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homogeneous, i.e., all the elements in a subgroup belong to 
the same class or a stopping condition is fulfilled. The gain 
ratio criterion employs information theory to estimate the 
size of the sub-trees for each possible attribute and selects 
the attribute with the highest expected information gain. The 
algorithm is based on searching partitions to obtain purer 
data subgroups, which are less mixed than the previous 
group from where they were derived. This is iterated until 
the original data set is divided into homogeneous subgroups. 

The evaluation of the classification was based on the 
analysis of the confusion matrix [23], which compares the 
class assigned to each evaluation sample with the reference 
information, defined by photointerpretation. The overall 
accuracy of the classification and the kappa index were 
computed, as well as the producer’s and user’s accuracies for 
each class, that respectively expose the classification errors 
of omission and commission. In order to maximize the 
efficiency of the evaluation process, in terms of the number 
of samples, the leave-one-out cross-validation technique was 
employed. This method uses a single observation from the 
original sample set as validation data, using the remainder 
observations as training data. This is iterated 1590 times, 
until each observation in the sample set is used once as 
validation data. 

IV. RESULTS AND DISCUSSION 

The cartographic representation of the classification, 
depicting the centre of Valencia is shown in Figure 6. where 
the different urban structures are distinguished: historical 
centre, planned areas, industrial, civic and transportation 
facilities, parks, etc. The overall accuracy of the 
classification was 84.8%, and the kappa coefficient 0.83. 
These are sound results, especially considering the large 
number of classes defined (17) and the structural similarities 
between some classes, e.g., semi-detached houses and 
detached houses. 

Analysing the per-class user’s and producer’s accuracies 
(see Figure 4. ) it is remarkable the high performance 
achieved for agricultural classes, presenting values higher 
than 90% in the case of arable lands, citrus orchards, carob- 
trees orchards, rice crops, forest, and slightly lower for 
irrigated crops (with values around  88% for both 
accuracies) and the user’s accuracy of the class greenhouse 
(84%). Among the urban classes, the lowest accuracies and 
the most unbalanced values were obtained for classes 
commercial buildings and religious buildings. The stu 
confusion matrix –graphically represented in Figure 5. – 
shows that commercial buildings had a poor performance 
and presented several misclassifications with 
industrial/warehouse and public buildings classes. Religious 
buildings class producer’s accuracy reached a very low value 
(37%) due to the confusion with classes urban and public 

buildings. Medium user’s and producer’s accuracy values 
(70%) were achieved for public buildings and semi-detached 
houses. Public buildings presented a high degree of 
confusion with most of the building-related classes, due to 
their heterogeneity, and the fact that these buildings usually 
have significant morphological differences, producing 
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Figure 4.  Classification user’s and producer’s accuracies for each defined 

class. 

 

 
Figure 5.  Graphic representation of the confusion matrix of the 

classification. Rows represent reference class and collums show classified 

data. 

 
misclassifications. Some particular public building plots 
containing covered sport facilities were erroneously assigned 
to industrial/warehouse buildings and viceversa. Semi- 
detached houses were especially confused with detached 

houses, due to their obvious structural similarities. Gardens 
and parks presented unbalanced accuracies, due to the 
misclassification with citrus orchards and public buildings. 
Other building-related urban classes achieved better 
classification performances with slight confusions between 
them, being especially significant for the pair of classes 
historical and urban, as shown in the confusion matrix 
(Figure 5. ). 
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Figure 6.  Thematic map composition showing the classes assigned to each plot of the urban centre of Valencia (a) and colour infrared composition of the 

same area (b). 
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V. CONCLUSIONS 

In this paper, the performance of a contextual object-
based classification methodology in urban environments was 
analysed and assessed, when considering an exhaustive land-
use legend that includes several complex urban land-uses. A 
set of object descriptive features was extracted to 
characterise intrinsic properties of the plots –spectral, 
texture, geometrical, and three-dimensional–, and their 
context attending to two levels: internal –referred to internal 
covers in the plot–, and external –related to common 
properties of plots contained in the same urban block–. 

The results showed the high potential of the proposed 
methodology to correctly and accurately discriminate and 
assign land use to a large number of different building 
typologies, and simultaneously a variety of agricultural land 
uses. Most of the agricultural classes were satisfactorily 
assigned. In general, urban classes were accurately classified. 
However, very heterogeneous building typologies 
concerning commercial, religious and public uses obtained a 
low performance, since the difficulty found to distinguish 
these classes from other urban building typologies. 
Additionally, due to the similarity of some classes, they 
presented minor mutual misclassifications, for example 
different typologies of suburban buildings, or planned urban 
areas and historical areas. 

The proposed object-based classification methodology 
provides new tools that may increase the frequency, 
efficiency and detail level of urban studies, being useful for 
systematically mapping cities, urban landscape 
characterisation, automatic land-use change detection and 
updating LU/LC geospatial databases. 
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