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Abstract—Moving objects databases are an important
research topic in recent years. A lot of work dealtwith
modeling, querying and indexing objects that moveréely or
in networks. However, a moving object — such as aeficle -
could report some measures related to its state ot its
environment, which are sensed throughout his movemé
Managing such data is of major interest for some gpications
such as analyzing driving behavior or reconstructig the
circum-stances of an accident in road safety, or &htifying, by
means of a vibration sensor, the defects along aiksay in
maintenance. However, this management is not covetdy the
existing approaches. In this paper, we propose a wedata
model and a language to handle mobile location sesrsdata.
To this end, we introduce the concept of spatial pfile of a
measure to capture the measure variability in spacealong
with specific operations that permit to analyze thedata. We
also describe their implementation using object-reitional
paradigm.

Keywords-spatiotemporal  databases;, modeling;
objects; query language; sensor data flows

moving

l. INTRODUCTION

Integrating mobile technology and positioning desgic
has led to producing large amounts of moving objita
every day. A wide range of applications like traffi
management, location-based services (LBS), reliethese
data. Besides, a moving object (MO) can easilycheépped
with sensor devices that report on its state oritsn
environment.
meaningful for many applications such as reconstrg¢he
circumstances of an accident in road safety, itieng
defects from vibration sensors along a railway in
maintenance, or analyzing the exposure to hazagl, (e
pollutant) along a trip. As an example, in thedielf road
safety, the observation of natural driving behavion
normal route for usual journeys) tends to replaestésts on
simulators or those limited to dedicated circuaown as
"naturalistic driving", these studies are based data
collected on a large scale and over a significamtod of
time [12].

However, studies reported in the literature har@tdid
the volume of data and the possibilities of th&pleitation.

As emphasized in a report [12] on a naturalistiwinlg

campaign by the administration of U.S. Highway Safa
large-scale database would be very useful to relseer and
engineers to study the driving behavior and coutebto
improving the vehicle equipment and road plannifige
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challenge of a large-scale study is the managemgrat
large mass of spatio-temporal data. A databasersysiat
supports this type of data and efficient querymgeéeded.
We aim to study and develop such a database maeagiem
system. This subject is closely related to thelfafl moving
objects databases (MOD). However, the moving opgegt,

a vehicle, is associated with additional measuspedd,
acceleration, steering wheel angle, etc.) recotialedighout
his trip. These measures are variable in spac@airde.

For the type of applications we address, the measare
more important than the mere spatio-temporal looati
However, most work on mobile object databases densi
only the location of the moving object and cannet b
generalized to measures ranging along a spatioaeahp
trajectory. Moreover, although these values iditial
correspond to a temporal data stream, their vanias more
dependent on their location in the network tharetifiror
example, the variation of speed is usually constdhby the
geometry of the road and the speed limit. Alsot¢émeporal
analysis of different trajectory data is irrelevaéetause on
one hand they are asynchronous and on the othdr tias
comparison makes sense only if these paths ovénlap
space. Therefore, we must capture the spatialbilityjaof
these measures and allow its manipulation throbghdata
model and the query language.

To our knowledge, there is no such proposal in the
related work. Nevertheless, among the works on MMB,
one proposed in [7] provides a solid basis for nindeand

The generated mobile sensor data arequerying MOs. The idea of representing the temporal

variation of the location or scalar values in atitarous
way permits a good abstraction of moving objecte W
extend this approach to capture the continuousiaspat
variation of scalars. The extension of the existahgebra
consists in a new set of types and several clas$es
operations. The types capture the variation in esgcany
measure, which includes mobile sensor data asteydar
case. New operations are needed to operate onehsunes.
This paper provides the following contributionsrsEi
we present a new concept of "space variant measung”
show its usefulness in the context of a naturalidtiving
study. Second, we create a data model as an edttenisihe
model proposed by Giiting et al. [6]. Finally, weesx the
existing query language with new classes of opmratthat
are necessary in this novel application contexsidkes the
aforementioned application, the proposed model
interesting for other applications that generated/@n
operate geo-localized data streams. This is the ohsalil,
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air or sea transportation. The measures can beveloser is that it limits the representation of the tragegt estimated
calculated and can be related to a trajectory aflgect or a by linear interpolation between the reported posgj while
location. Thus, the proposed model permits to readmut the MO follows in fact the geometry of the netwoth.

the speed of a MO, on the legal speed or inclinatiba addition, the constrained model allows for dimenality

road or on the adherence at each location of tlael ro reduction by transforming the network in a 1D spage
depending on the weather. Also, it allows to mddelfine juxtaposing of all line segments [18]. This leadsbetter
data on the mobility (where, when and at what speéd  storage and query performance than with the figediory
vehicles, freight, or persons and it meets the sesfd model. Finally, in the constrained model the tragges can
management applications for fleets or road trafigjstics be easily described with a symbolic model as aesapiof

and design of mobile networks. traversed lines and time intervals, which is lestgited but
The rest of this paper is organized as follows: we more intelligible and more compact.
summarize the related work in Section Il. Sectidh | In this paper, we focus on managing historical ddta

describes the proposed model. It presents the y@ee and objects moving in networks. The most comprehensive
the corresponding operations, and demonstrates itgproposal to model the historical MO is, in our vjethe
usefulness by expressing some query exampleso8duti framework of Giting [6]. Indeed, this proposal cevéhe

discusses several aspects of the implementatiorallyi abstract modeling, language and implementation elshaer,
Section V concludes and offers directions for feitwork. it explicitty models the constrained MOs and thiatiee
position on the network. As discussed below, oappsal is
Il RELATED WORK based on this model and extends it with specifim dar
The management of MOD has received particular mobile sensors. Therefore, we summarize this medell
attention in the recent years due to the advanndsttese list the used notations in the rest of this section
omnipresence of mobile and geo-location techno#giech Guting et al. propose an algebra defined by a $et o

as cellular phones or GPS. Many works focus on timgle  specific types (see Table 1) and a collection @frafons on
and language. We mention the work undertaken in thethese types [6][7]. The types are: scalar ty[@&Sg, 2D
project Chorochronos [7][11] and the approach of th space types SPATIAD, network space related types
Wolfson’s team [21]. Giiting's book is a summary of (GRAPH, scalar or spatial types varying in time
progresses in this area [8]. Pelekis et al. sunzedhie data ~ (TEMPORAI. Examples of types areeal, point (2D
models for MOs in [17]. position),gpoint (position on the networkyline (line on the
The target applications impact the model and the network), moving(point)(2D position varying in time) and
language in these proposals. We distinguish twesypf ~ moving(gpoint)(network position varying in time). All the
applications. LBS applications rely on continuous o base types have the usual interpretation. For ebeanfipve
predictive queries, which are evaluated based ertirent ~ note with A, the carrier set (definition domain) for the type
positions of MOs. The pioneers are [21] whose model ¢, then for thereal type the carrier set isy., = RO{0},
MOST (Moving Objects Spatio-Temporal) describes \ pere{r} is null (or undefined). The time is isomorphic to
databases with dynamic attributes that vary cootisly .
over time. They also propose the so-called Futemporal e real numbers. Thangedata types are disjoint intervals
Logic to formulate predictive queries. and_are used to m_ake projections  or selepyons_hen t
The second type of applications concerns the aisadys ~ MOVINg types. Spatial types describe entities in  the
yp bp by Euclidean space, while for tHeRAPHtypes the space is

complete spatio-temporal trajectories, using qserie d b K il
combining temporal and spatial intervals. The wadk  'ePresented by a network space. 2D types mainly
correspond to standard definitions [9].

Guting [7] is an important reference point todayaridus
implementations exist, as in SECONDO [6] and STAY]]

then in HERMES-MDC [15]. STAU is the first TABLEI.  THETYPES DEFINED ING][7]

implementation to be based on object-relationabluzde Set of types Type constructor

extensibility by providing a spatio-temporal datrtddge - BASE int, real, string, bool

for Oracle [13]. ~ SPATIAL point, points, line, region
However, these studies do not take into account the - GRAPH gpoint, gline

specific behavior of MOs, such as vehicles movimgao _ TIME instant

road network or trains on a rail network. This asps BASED SPATIAL moving, intime

essential for many applications, including thosasitered [0 GRAPH - TEMPORAL

here. Indeed, given a network, a constrained t@gcan BASED TIME - RANGE range

be represented by the relative positions on thevorkt
edges (i.e., the road segments). Once more, the mos
comprehensive proposal is the one in [6]. Althotlghnon-
constrained (two-dimensional) model can be appiethe
constrained trajectories, this is unwise for sdvezasons.
The first is that the 2D model does not capture the
relationship between the trajectory and the netvap#ce,
while this information is essential for analysitieTsecond

GRAPH types depend on the underlying network.
Basically, the proposed model defines a networ& ast of
routes and junctions between these routes. A mtati the
network is a relative position on a route. It isc#ed by
the identifier of the route, a real number givihg telative
position and the side of the road. This is directliated to
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the concept of linear referencing widely used in
transportation applications and implemented in esyst
such as Oracle [13]. The typeagpoint and gline are
represented in this manner. Finally, from tBASE
SPATIALandGRAPHTtypes, they derive the corresponding
temporal types, using the type constructooving The
temporal types are functions or infinite sets dfpéinstant,
value). Such an infinite representation conceivablehe
abstract model cannot be implemented directly.@h &
discrete representation is proposed for these tyfeswill
discuss this aspect in more detail in Section Ithefpaper.

A collection of operations is defined on the aboeta
types. To avoid the proliferation of operationse aperator
applies to several types. A set of hon-temporatatfmms is
first defined. Then, a process calléting allows generating
the corresponding temporal operations. Thus, afatpns
on non-temporal types are extended to the tempypak.
Finally, specific operations are added to manage th
temporal types. In the context of constrained ndtwo
trajectories [6], some new operations, suchdetance
have been adapted fgpoint andgline types (e.g., distance
by route). New classes of operations are also added
analyze the interaction between the network and2ibe
space, as well as specific operations such as domgpu
shortest paths in the network. One can refer tf/]6pr
more detail.

Besides, sensor data modeling was also consideyed f
the angle of exchange formats [1]. This concerratics
sensors. Recently, a draft has been initiated thange
Moving Object Snapshots including velocity and
acceleration parameters [16]. But, unlike SOS,ogsdnot
cover other measures. MauveDB [2] proposes modsgeba
views in opposition to using raw data, in the centef
environmental sensors. None of the previous worksdo
capture the continuous variability in time and spa€ the
moving sensor measures.

. THE PROPOSEDMODEL

In this section, we present first a real applicativat has
motivated our work (Section IlI-A). Then we intraduthe
new data types (Section Ill-B) and a collectioropérations
(Section 1lI-C). A query scenario is used as annmgla
throughout this paper (Section IlI-A and 11I-D).

A. Motivation and Examples

As indicated in the introduction, naturalistic diniy
studies have become popular in the last years.eT$teslies
are based essentially on data gathered in nornadlirad)
driving conditions. Such studies became econoryicall
possible thanks to the existing equipment in modern
vehicles. Indeed, the large number of in-vehiclesees is
accessible via an interface (CAN bus) to whicls passible
to connect an in-vehicle data logger. The CAN buawvides
access to several measures including speed, attaber
steering wheel angle, the action on the breakingyas
pedals, etc. The recording device can also recdata
streams from other sources, such as a GPS sensadanr
(giving the distance to adjacent vehicles). Thisvjates a
comprehensive data source on natural driving orrdhd.
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The in-vehicle recorded data can provide valuable
information on the use and utility of the driversigtance
systems (ABS, ESP, etc.) and can highlight neaidant
(near-crash) situations. Moreover, according topttieciple

of black boxes on airplanes, it will provide infation prior

to an accident.

INRETS (French acronym for “National Institute for
Research on Transport and Safety”) has developdata
logger (DIRCO) for naturalistic driving campaigr8j.[This
is an on-board recording device connected to thecless
CAN bus. It records measures such as: vehicle sgpedd
of each wheel, longitudinal acceleration, odomedtering
wheel angle, brake pedal (0/1), ABS (0/1), etc. OIR
offers the possibility of connecting other datarsea as
well, e.g., a GPS, an inertial station measuring 8D
acceleration and angle of the vehicle. DIRCO aegugach
data stream as a time sequence. The data fromreesare
stored in a specific file and each record is a eupl
(t,aha?,...a") wheret; is thei™ time instant anda* is
thei™ value provided by th&" sensor. As a detail, DIRCO
allows sampling rates at very high frequencies pta 10
ms cycles. The data flows from different sources ar
asynchronous.

While it may function as a black box for vehicles i
order to reconstruct the circumstances of an antide
DIRCO is primarily a research tool that can helplgazing
the driving behavior, the vehicle safety and diagno
problems related to road infrastructure. Its 16GHlash
memory allows data acquisition, camera off, foresal
months. A simple scenario is to equip several Veisuch
as buses or cars with DIRCO, retrieve and cengraliese
data and then analyze it in order to identify bébray
patterns of driving.

This type of approach is also appropriate to the
evaluation of recently emerged ADAS (Advanced Drive
Assistance Systems). Whether the system is alreadly
known as a GPS or speed control device, or it is an
experimental system such as obstacle detectiomegliire
an accurate and extensive assessment of their ingpac
driving. The European Commission is funding sin€@&
large-scale projects to evaluate mature techndogiehe
category of "intelligent transportation” systemspdticular
aspect of these projects is the recourse to systema
collection of driving data with devices similar RIRCO
e.g.,, the project euroFOT [22]. Given this kind of
application, one can easily understand the impoetanf
developing a database adapted to the charactenidtibese
data, such as the data volume or the geo-localaed
temporal data features. The different types of istud
systems induce a large variability in the methddsnalysis
and often involve a high level of required detagl.g(,
situations of near-accident). Some indicators can b
calculated by using common database managemestisg;st
but sometimes at the cost of heavy programming and
prohibitive computational time. In addition, no ®m
seems at present able to manage speed profilesyather
information) measured at different times and posgi but
on the same road. However, a large number of quémie
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this context need this kind of approach. The conadp
(spatial) profile is introduced in Section 111-B

To illustrate the contribution of our model in this
context, we refer throughout the paper to the talg
typical queries:

Q1. What is the acceleration profile along a givente
segment for a given trip?

Q2. What is the difference between the vehiclezedp
profile and the speed limit along a road segment?

Q3. How many times was the ABS enabled for a given

trip?

of the measures. To this end, we extend the mddgd].o
We introduce a new concept describing the spatddile of
measures. The idea is to have a set of data tipesitow
modeling the evolution of a measure in space. ¢higept
is divided into two categorieSVARIANTto describe the
profile in a two-dimensional space, aB¥ARIANTfor the
profile along the networkSVARIANT(i.e., spatial variant)
andGVARIANT(i.e., graph variant) represent two classes of
data types.

We associate to these two classes of data typesdwo
type constructors callesmovingandgmoving(see Table 2).

Q4. What are the trips where the practiced speed The type construct@movingstands foispatial movingand

exceeds a specified speed profile (e.g., the dpegfiby a
certain value and what is the difference?

allows modeling the evolution of a measure in tBespace,
whereaggmovingdescribes the evolution of a measure in a

Q5. What is the ratio between speed and engine RPMnetwork (graph) space. The type constructm®vingand

for a given trip?

Q6. What is the average profile of acceleration &tir
vehicles passing through a certain road sectiorg.(e.
curve)?

Q7. Calculate the maximal speed profile of all ceds
passing through the indicated road section.

Q8. Find the practiced speed profile (85th perdentif
the passing vehicles) on a road before and after th
installation of a speed camera.

Q9. What is the average profile of the fuel congionp
on a road before and after the installation of affic
calming device (e.g., a speed cushion)?

Q10. What is the minimum and maximum profile df fue
consumption on a road, and what is its differendth the
profile of the studied driver?

Modeling temporal sequences is feasible by using

functions over time [7], but it is not useful fdret above
type of analysis. Indeed, the measures from thes taire
collected at different times and comparing thesefilps
makes sense only if they were measured in the gdame.
What matters is not the time at which the measuas w
recorded, but rather where it took place on thel.rGde
concept of spatial profile of a measure (e.g., @pee
acceleration) reflects the relationship betweenntigasure
and the space. However, this notion of profileas aefined
and cannot be derived in the model of Glting or atier
model. It is therefore necessary to extend theiegisnodel
with new data types. Moreover, the above queriesael
specific operations on the measure profiles.
operations, which were not necessary in the contéxt
analyzing only the MO trajectories, are of majopartance
in this context.

B. Introduction of New Data Types
Like the algebraic model in [6] described abovet ou

model includes a spatio-temporal type to model the Partial function. Each valuef

trajectory of the MO, and temporal types to motiel data
generated by sensors. A temporal type is a funaidime
to base types (e.geal, int). It expresses the variability of
sensor measures from the temporal point of view.
However, the temporal view is not sufficient to rabd
the data from mobile sensagrsince the measures are often
closely related to space. For completeness, thehsbduld
describe beside the evolution over time, the spatialution
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These

gmoving apply to BASE data types, i.e.int, real, string,
bool Hence, SVARIANT contains data types such as
smoving(int) smoving(real) and, similarly, the class
GVARIANT regroups data types such gmoving(real)

gmoving(bool)etc.

TABLE II.

NEW DATA TYPES

Set of types
BASE —» SVARIANT

Type constructor
smoving, inpoint
gmoving, ingpoint

BASE —» GVARIANT

The definitions of these type constructors are rgive
below using the notation of [7]:
Definition 1: Given a a BASEtype having the carrier

set A, , then the domain of definition fosmovinga) is
defined as follows: Agyoyinga) :{f|f :Kpoim S A, is a

partial function andr(f) is finite}, where A; = Az \{T}
and I(f) denotes the set of maximal

components of the functiof .

Definition 2: Given o a BASEtype having the carrier
set A, , then the domain of definition fogmovinda) is

defined as follows:Aymovinga) :{f|f Agpoint — Ay s a
partial function and-(f) is finite}, where A, = A; \{C}
and I (f) denotes the set of maximal
components of the functiofi .

Since this paper focuses on constrained movemeant, w
only detail the second category of types in theise@hese

definitions state that a spatial profile of a measis a
in the domain of

gmovinda) is a function describing the evolution in the

network (graph) space of BASEvalue. Thegmovingtype
constructor describes an infinite set of paipos{tion,
valug, where the position is gpoint The inpoint and
ingpoint type constructors represent a single padsition,
valué. Figure 1 presents a spatial profile of a reahsnee
on a given road. The x-axis represents the relgtbsgition
on the road that can vary between 0 and 1.

continuous

continuous
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Figure 1. Example of spatial profile of a real value

The condition T(f) is finite" means thaf consists of

only a finite number of continuous components. For hold
the profile in Figure 1 has 3 continuous
components. This condition is needed as a predondid

make the design implementable.
projections ofgmoving objects (e.g., on the spatial axis) th

example,

It also ensures that

have only a finite number of components.

The spatial and the temporal profile of a measure
represent two complementary views of a measuréngiy
space and in time. The temporal profile is usefulddmpare
data from different sensors (on the same vehidetha
same time, e.g., Q5 in the query scenario in SedtleA.

The spatial profile is useful to compare data fritbie same
sensors on different vehicles at the same locatmgs, Q6-

Q10 in the query scenario in Section IlI-A.

Note that it is not practical to model the sensaldes as
a function on both time and space, since these two
dimensions are not independent. Indeed, spacéuisction
of time, which is captured in the spatio-temporajectory
of the MO holding the sensors. At the same time statial
profile of a measure is necessary as motivate@@ti Ill-

A and by the query scenario, yet there are no tyaes in
the existing data models [6][7] for such profiles.

Note also that the definition of spatial profilesposes
that for a given MO trajectory there is no overiagp
between trajectory portions. This constraint isested to
in most cases. However, the self-overlapping
trajectories have to be split into non-overlapppagts so
that the associated sensor values fit the proposet|.

The presented model is abstract modelwhich means
at in general the domains or carrier sets ofid types
are infinite sets. To be able to implement an abstmodel,
one must provide a correspondimiscrete model i.e.,
define finite representation for all the data typdsthe
abstract model. This is done by thlced representation
introduced in [6]. Thus, a time dependent or spatia
dependent value is represented as a sequenceed &iee
Figure 4) such that within each slice the evolutanthe
value can be described by some “simple” functiomy.(e

TABLE IIl. EXAMPLES OF OPERATIONS FOR THE NEW DATA TYPES
Class Operation Signature
trajectory gmoving(a) - gline

Projection to

rangevalues

gmoving(a) - range(a)

Domain/Range

pos

ingpoini - gpoint

val

ingpoint - a

atpos gmoving(a) x gpoint — ingpoint
atgline gmoving(a) x gline -~ gmoving(a)
gmoving(a) x gpoint — bool
present gmoving(a) % gline - bool
:;;en:"’;?rt]ig'a\ggg at gmoving(a)xa - gmoving(a)
gmoving(a) xrange(a) — gmoving(a)
atmin gmovinga) — gmoving(a)
atmax gmoving(a) - gmoving(a)
passes gmoving(a)x S8 - bool
Basic Algebraic | sum, sub, moving(a) x moving(a) -~ moving(a)
Operations mul, div gmoving@) x gmoving(@) —» gmovinga)
mean[avg], moving(a) - real
) min, max gmovinga) - real
Calculations - moving(inh) = int
no_transitions gmoving(int) — int
mgﬁggé‘ {moving(a)} -~ moving(a)
sum_agg, {gmoving(a)} - gmoving(a)
avg_agg
Aggregates _ {movinga)} x real . movinga)
percentile {gmoving(@)} x real - gmoving(a)
{moving(@)} ~ moving(int)
count_agg

{gmoving(@)} — gmoving(int)
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linear functions or quadratic polynomials). Mordails on
the sliced representation are given in Section fvthe
paper.

C. Introduction of New Operations

As for the type system definition, we use the ofiema
in the algebra of Giting et al. [6] as a startir@np By
introducing new types, we have to (i) extend thistig
operations and (ii) add new specific operationgHertarget
application type.

In order to extend the existing operations to tlegv/n
types, we use a similar process with teenporal lifting
described in Section Il. The temporal lifting petsni
generating from a non-temporal operation with igeature
a xa, x..xa, - B, the temporal equivalent operation

having the signaturea, xa,x...xa, - movindB) Where
a; 0{a,,movinga;)} . Each of the arguments can become

temporal, which makes the result temporal as wat
adopt this principle to generate the equivalentspariant
operations. We proposespatial lifting for the non-gvariant
non-temporal operations. The operation induced My t
spatial  lifting is available for a  signature
mxa,x..xa, - gmovingB), Wherea, o{a;, gmoving(a;)} -

We have also defined new operations that apply to
GVARIANT and TEMPORAL set of types, which are
necessary in this context. Table 3 presents a rbatstive
list of the new operations, i.e., extended from éesting
ones or newly introduced. We describe in this sactiome
operations. Other operations are explained withet@ample
queries in the next section. There are five classks
operations. The first two classes correspond texension
of existing operations (i.e., spatial lifting), Whithe last
three classes are new types of operations. Morgtheefirst
four groups represent conventional operations, tlese
who take as input one or more objects (values) in
accordance with their signature and return an obfjac
value). The last class includes aggregate opegtian, that
return a single result based on a group of objsatsilar to
aggregates in the relational model).

The first class of operations comprises the prigedn
the network or value (range) domains. Thtrajectory
returns the network path of a trip. The operation
rangevalues performs the projection in the range and
returns one or several intervals of base valuegr&dipns
val and pos return respectively the value or the network
position for aningpoint type, which is defined as a pair

Therefore, they become subject to temporal andiadpat
lifting. We use named functions, i.esum, sub, mul and
div, as for all defined operations. These operatiors
useful for the analysis of sensor measures. Fompbea
they can calculate the difference between the spesfdes
of two MOs on the common part of their trajectories
return the difference between the practiced speedtiae
speed limit on a route. These operations take @s itwo
functions of the same type5VARIANT or TEMPORAI)
and calculate a result function of which the défmi
domain is the intersection of the input objectandins. For
the division, the parts where the operation isdedined, are
also eliminated from the domain of the result fiorct

val

a

profile 2 profile 1

val

val

min profile

T

pos

Figure 2. Example of using max_agg (second grapthyr@n_agg (thirc
graph) on two profiles (first graph).

The fourth class of operation addresses the same
categories of types, i.eGVARIANTor TEMPORAL The
specified functions are: mean min, max and
no_transitions. Each of these operations takes as input a
function of time or space and returns a value sspréng
the aggregate of the input function. Their utility to
calculate an average or an extreme value for argsuone,
given a temporal or spatial interval.

The last class of operations concerns the aggegate
Aggregate operations return a single object reguitn a set

(gpoint, valug. The second class of operations concerns theof objects of the same type (see Figure 2). Untike

interaction with the domain (network space) andgean
(values). They make selections or clippings acogrdio
criteria on one of the axes of variation (netwopace or
values). Thuspresentis a predicate that checks if the input
object is defined at a given position in the nekvéiinally,
the predicatepassesallows one to check whether the
moving value ever assumed one of the values gigena a
second argument.

previous class, these operations define aggregatiéra
group of objects. Some of these aggregates retuobgect
of the same type as the input type, e.g., the geera
(avg_agg, the minimum ihin_agg and maximum profile
(max_agg. The aggregateount_aggreturns the number of
profiles in the definition domain in the form of a
moving(int) or gmoving(int) object. Finally, the function
percentile computes the profile below which is found a

The third class of operations considers the basic certain percentage of profiles in the input see @kfinition

algebraic operations ('+', -, ".
non-gvariant non-temporal

and '/"), whigh include in
collection of operations.
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domain of the result function for an aggregate aten is
the union of the domains of the aggregated funstidme
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usefulness of aggregate operations is shown imtiegies
Q6 to Q10.

The proposed collection of operations is only aidas
however rich, of functionality. Other operations ymae
added to meet specific needs of some applicatibimanks
to the advances in the extension capabilities efetkisting
DBMS, these types and operations can be easilgretid
into the DBMS. Then, it becomes possible to usamthe
through the standard SQL language. Besides, tt@gomoof
query optimization must be addressed. This is &xalae
plan we followed to implement our data server fo©$
with sensors.

D. Query Examples

The great interest of using the extension capegsilitf a
DBMS is to easily integrate new types and operatiarthe
SQL standard interface. The query examples inghition
are based on a relational schema with one tabledmains
information on vehicle trips as follows:

vehicle_trip(mo_idint, trip:moving(gpoint)
g_speedimoving(real)t speednoving(real)
g_acceleratiogmoving(real) t acceleratiomoving(real)
g_RPM:gmoving(real)t RPM:moving(real)
g_odometegmoving(real) t odometemoving(real)
g_ABSgmoving(bool)t ABSmoving(bool)
g_breakSwitclumoving(real) t breakSwitch:
moving(real)

In addition to the spatio-temporal trajectory, ,i.the
"trip", the table contains sensor data reporting $ipeed,
acceleration, RPM, odometer, ABS and brake pedaé.st
These data are modeled by functions of space Xpckfivith
g_) and of time (prefixed with t ). The parametare
prefixed with the symbol "&" and could be eitheven by
the user at runtime, or existing from previous gkitons.

Q1. What is the acceleration profile along a giventeou
segment for a given trip?

SELECTatgline(g_acceleration, &aGline)
FROM vehicle_trip
WHERE mo_id = &anID

The operationatgline returns the acceleration profile
restricted to the sub-space specified by the gegra&line
given as parameter.

SELECTno_transitions(g_ABS)/2
FROM vehicle_trip
WHERE mo_id = &anID

This query simply illustrates the userd_transitions,
which is applicable to discreASEtypes (e.g.bool, int)
and returns the number of transitions for a givestrdte
function.

Q4. What are the trips where the practiced speed
exceeds a specified speed profile (e.g., the sié)iby a
certain value and what is the difference?

SELECT mo_idsub(g_speed,&legalSpeed)

FROM vehicle_trip

WHERE intersectdtrajectory (&legalSpeed),
trajectory (g_speed)) = 1 AND
max(sub(g_speed,&legalSpeed)) > &threshold

There are two new operations in this query. Fitss,
predicatentersectsis similar toinside, the only difference
being that it only searches for an intersectiorwbeh the
two gline parameters and not for inclusion. Second, the
operationmax is an aggregate of a function. We use it to
verify if the maximal value of the function givens a
parameter is above a certain threshold value. Ashén
previous query, the parameter foax is represented by the
difference between the practiced and legal spesfigs.

Q5. What is the ratio between speed and engine RPM
for a given trip?

SELECTdiv(t_speed, t RPM)
FROM vehicle_trip
WHERE mo_id = &anID

This query shows the usefulness of basic algebraic
operations for comparing temporal profiles of tame MO.
The profile obtained by dividing the vehicle spdedthe
engine RPM can be used to detect the behavior dieggar
the gear shifting of a driver.

Q6. What is the average profile of acceleration fdr al
vehicles passing through a certain road section, @irve)?
SELECTavg_agdg_acceleration)

FROM vehicle_trip
WHERE nside(trajectory (&aCurve),trajectory (trip))=1

We determine with this query the average acceterati
profile of all vehicles passing through the indezhtroute
section. The function avg_agg generates a new

Q2. What is the difference between the vehicle's speed gmoving(real)object from the set of objects of the same

profile and the speed limit along a road segment?
SELECTsub(g_speed, &legalSpeed)
FROM vehicle_trip
WHEREInside(trajectory (&legalSpeed),
trajectory (g_speed))=1

type, passed as a parameter, i.e., all tupleseofatble that
match the predicate in the WHERE clause.

Q7. Calculate the maximal speed profile of all vetscle
passing through the indicated road section.
SELECTmax_agdatgline(g_speed, &aRoad))

The difference between two functions describing FROM vehicle_trip

measure profiles is calculated using the operatign An
indexed predicate amside could accelerate the query
response time. This operation has wlioae parameters and
checks if the first is included in the second. Tain the

WHERE intersectqtrajectory (g_speed), &aRoad) = 1
First we find all the trips that intersect the givead.

For these trips, we select by the functaigline the speed

profile that corresponds to the road. Then we aggecthe

projection in space of a measure profile, we use th resulted profiles in order to obtain the maximadfite, by

operatiortrajectory .

Q3. How many times was the ABS enabled for a given

trip?
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using the aggregataeax_agg

Q8. Find the speed profile actually practiced (85th
percentile of the passing vehicles) on a road kedod after
the installation of a speed camera.
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SELECTpercentile(atgline(g_speed,&aRoad),85)
FROM vehicle_trip

WHERE intersectdtrajectory (g_speed),&aRoad) = 1
AND inst(initial (trip)) < &instalationDate

The query finds the speed profile {88ercentile) before
installing a speed camera. A similar query shod@dbsed
to find the same profile after the installationtieé camera.
As for the query Q7, we filter the trips by retaigionly
those that intersect the given road, and that blegjiore the
installation date of the camera. To do this we tse
combination of functionmst andinitial that return the start
date of a trip. Finally, we apply theercentile function on
all selected profiles. The second parameter offtinstion
is then™ percentile.

As we can see from this section, the new data tgpéds
operations are needed to express these querieskihti of
queries cannot be supported by the existing mailete the
concept (the abstract data type) of spatial prdflenot
considered, nor the operations that allow handijpefial or
temporal profiles of a measure.

IV. IMPLEMENTATION
In this section, we address some of the implemientat

Oracle Data

Server I
Extensibility Interface
DBMS
Extensions
— [ ——
Type Query Data I

System Processing Indexing

Database and Extensibility Services

Figure 3. Database System Architecture

model is needed in order to be able to implemeriat all
movingtypes, the so-calledliced representatiomas been
proposed in [6]. Amovingobject in the abstract model is a
temporal partial function. The sliced representatio
represents the MO as a set of so-catldporal unitsor
slices Figure 4 shows a simple example of a temporal
profile that is composed of founits

val

issues of the presented model and language that we
currently implement as an extension of a DBMS. The
objective is to offer a general view regarding some

implementation aspects, rather than a thoroughgildét
presentation. Thus, Section IV-A presents the da@b
system architecture. Section
representation of the abstract data types. Secfi:®s and
IV-D deal with the optimization of the aggregateergiions
and the operators.

A. Database System Architecture
Currently, the support for spatio-temporal datathe

IV-B details the dlice

t

Figure 4. Example of sliced representation of a tenapprofile.

A temporal unit for a moving data type is a time
interval where values taken by an instancecof loan
described by a “simple” function. The “simple” fuions
used for the representations are the linear fumctio
quadratic polynomials. The motivation for this awiis a
trade-off between the richness of the represemntatia the

existing DBMS is limited. However, most DBMS today simplicity of the representation of the discreteetand of its

offer possibilities for extensions to meet the rseeficertain
application domains. Rather than developing a pyp®

from scratch, we chose to implement the proposedeino

under such an existing system, i.e., the Oracle BBMus,
all types are implemented as new object types atlerllg.

The operations are implemented in Java (Oracle DBMS

integrates a Java Virtual Machine) and stored package

in the database. These operations can be used in SQ

queries along with the existing operations in thiM>.
Finally, some filtering operations, i.e., operaiarsed to
identify the MOs that verify a certain spatial, {moral or
on-value predicate, are indexed in order to acatgdethe
query response time and to provide a system sealsith
the dataset size (see Section IV-D). To this ersl,have

proposed PARINET, a novel partitioned index for in-

network trajectories [20]. We integrated the indexsy
using the data cartridges in Oracle. The genecdlitecture
of the system is given in Figure 3. Notice thateotbBMS
systems that allow DBMS extensions can be used.

B. Data Type Representation

The model in [6][7] that we extended in SectionBlis
an abstract model. A finite representation of tistract
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operations. For example, a unit fom@ving(real)object is
represented as a tufle, b, c, t1, t2)wherea, b, care the
coefficients of a quadratic polynomial atid t2 is the unit
time interval. The moving value at a time instaimside the

unit time interval is computed asxt? +bxt+c . More
complex function for unit representation can begmed
but are not considered in this paper. Also, for $hke of
simplicity we ignore that the unit intervals ardt-ldosed
and/or right-closed. For allgmoving types that we
introduced in Section 1lI-B, we adopt the sliced
representation as proposed in [6]. This is stréagiverd as
the sole difference is to replace the unit's timéerval,
which is the support for temporal profiles, withspatial
interval, which is the support for spatial profilés spatial
interval given a network space has the followingnents:
(rid, posl, posp whererid is a road identifier angos1,
pos2 are relative positions on the road. For example, a
gmoving(real) object will contain a set of units with the
following attributesya, b, c, rid, posl, pos2Jo calculate a
value for a given position, we first locate theresponding
unit, i.e., where the spatial interval includes fiesition,

then we calculate the value ask pos® +bx pos+c.
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C. Handling Aggregation Functions max_agg in order to generate the values of the resulting

Unlike the functions on one or two profiles, aggieg ~ Profile on the same limits of the intervals.
functions operate on a set containing a (possikzyye Overall, this approach to implement the aggregate

number of profiles. This can lead to a fragmentabthe ~ functions produces approximate results, but in rreti
result profile in a large number of small units aad Offérs a good optimization of this costly type gfecation.
degradation of the query performance. Consider theThe analysis of the result quality depending on the
example in Figure 5. The first graphic shows twofifes granularity of slicing is left for future work.

with their decomposition into units and the secame

represent the maximum aggregate of these profietice val
that the units of the two profiles do not have Hmme _
spatial distribution. The units’ space intervalstoé two I g p—
profiles overlap partially. This is common becatlse unit
slicing is unique to each profile and depends oa th / \ """ f
variability of the observed measure at the obsiemadime. .
Therefore, the result of an operation on a setrofilps is
another profile that contains more units that théiai pos
profiles. This process of fragmentation of the kesunot val
disturbing when the calculation is done only on pwfiles.

However, in the case of the aggregation it canifogmtly TN e
slow down the computation time.

min profile
val

profile 2 profile 1

pos

Figure 6. Example of calculating the max_agg (firstphig and min_ag
(second graphic) on the two profiles of Figure Bigs regular slicing.

‘ D. Operators
pos

val In the field of spatio-temporal databases, the ximip
techniques that permit processing efficiently thmatisl,
temporal and on-value queries are complementary to
modeling the moving objects. Our prototype uses RER
'\ [20] for querying trajectories. A discussion on thdexing

i ! methods is out of the scope of this paper. Insteesl,

§ present in this section the mechanism through witieh

"~ pos indexes are linked to the algebra, i.e., objecesyand

max profile

Figure 5. Example of fragmentation after using thexnagg (second operations. This mechanism is based on the opsrator
graphic) on two profiles (first graphic). Operators are a subset of the algebra operatioostlym

predicates such agresent or passes that benefit of an
index based evaluation in addition to the basicction
implementation. The functional implementation isedis
when the operator is invoked in the select lisa FELECT
command or in the ORDER BY and GROUP BY clauses.
However, when the operator appears in the condiifoa
WHERE clause, the DBMS optimizer chooses between th
indexed implementation and the functional impleragan,
taking into account the selectivity and the costewh
generating the query execution plan.

The operators that we implement are spatial, teatpor
and on-value predicates, or predicates that comtiineof
the three possible dimensions (i.e., spatio-tenipam-
value spatial and on-value temporal). For exanplsglect
of the interval. Thus, for the first profile (indewe find the only the proﬂ.les that spatially intersect a giveatwork

luesvt andrt the first interval vt andvi for the second ~ €9ion: one will use thpresent operator. In the same way,
valuesy V2 V2 Va the passesoperator is used to select only the objects for
interval, andv; and v} for the third interval. From these which a certain measure assumes a given value, (e.g.

values computed for all profiles, we apply the esponding ~ acceleration is above 10r?)lsFin§IIy, the two-dimensional
scalar aggregate function (e.g., the aggregate foax  predicates verify that the conditions in each disiem are

To accelerate the aggregate operations, we propose
regular temporal or spatial slicing of profilesdépendent
of the initial slicing. This method offers a comprise
between efficiency and the quality of the resufisus, for
aggregates ommovingtypes for example, we uniformly
divide the space, beginning with the start pointath road
in intervals of a given length, e.g., 10 meters.alfan
intervals will produce higher quality results butacost of a
slower performance, and vice versa.

Figure 6 presents an example of using uniformrsglici
for computing aggregates on two spatial profildse Tirst
graphic shows the profile decomposition by regintervals
(represented by the vertical dotted lines). Foheaterval,
we compute or extrapolate first the values on tigk lenits
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simultaneous verified. For example, a spatio-tempor [3]
operator ensures that the trajectory of a MO ietss(or is
included) a (in) spatial network region at a giviame
interval. Similar reasoning can be applied for rtbgt of the
operators.

V. CONCLUSIONAND FUTUREWORK 5]

The use of sensors embedded in vehicles leadswo ne
applications, which give rise to new research mold. In
this paper, we addressed the problem of modelimd) an
querying mobile sensor data. In this context, tkistieag
work in moving objects databases is limited. A DBMS [7]
capable of managing in a unified manner the mowinjgct
data and the (embedded) moving sensor data is chdede
these applications.

The contribution of this paper is to propose a rhéole
such a DBMS by extending an existing frameworkMids.

We first analyzed the limitations of modeling mebslensor
data. Indeed, existing models can represent tree ftiavs
from a temporal point of view. We have shown threse
measures are equally dependent of the object'sigrosind
a representation relative to the space is needeetefore,
we have extended the existing type system with tfons
that describe the evolution of measures in spaa.hdve
also proposed a collection of operations in viewtlod
enhanced system. We introduced the concepspatial
lifting inspired by the idea of the existitgmporal lifting
We have redefined all the temporal operations drashged
the semantics of some of them for the new datastype
Finally, we proposed a collection of operationsrapgated
for analyzing moving sensor data. An illustratidnuse of
the DBMS is given by query examples involving thewn
defined types and operations. The current protoitygledes
a partial implementation of the algebra as a dataidge in
Oracle DBMS.

This work is part of a Ph.D thesis. Further detedsld
be found in the report [19]. As future work, weeindl study
proper indexing techniques for the new types. Altfothis
is a similar to the query optimization problem ifOl, the
distribution of sensor values may lead to specific
optimizations in our system. We also investigate th
problem of mining such databases [10]. Finally, ptidg
the data resolution to the application needs (some
applications need data of all sensing points wisecthers
need just a summary) raises new challenges
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