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Abstract—Polygon features are of interest in many GEOPro-
cessing applications like shoreline mapping, boundary delineation,
change detection, etc. This paper presents a unique new GPU-based
methodology to automate feature extraction combining level sets, or
mean shift based segmentation together with Voronoi skeletonization,
that guarantees the extracted features to be topologically correct.
The features thus extracted as object centerlines can be stored as
vector maps in a Geographic Information System after labeling and
editing. We show application examples on different sources: paper
maps, digital satellite imagery, and 2D/3D acoustic images (from
hydrographic surveys). The application involving satellite imagery
shown in this paper is coastline detection, but the methodology can
be easily applied to feature extraction on any king of imagery. A
prototype application that is developed as part of this research work.

Keywords-Feature Extraction; Imagery; Segmentation; Level sets;
Voronoi; Mean Shift.

I. INTRODUCTION

Polygon features are of interest in applications like shoreline
mapping, boundary delineation, change detection, etc. This
paper presents a unique new GPU-based methodology to
automate feature extraction on any imagery (not only raster
images) by deformation of level sets or mean shift based
segmentation / Voronoi skeletonization that guarantees the
extracted features to be topologically correct. The features thus
extracted as object centerlines can be stored as vector maps in
a Geographic Information System after labeling and editing.
We show application examples on different sources: scanned
paper maps, digital satellite imagery, and 2D/3D acoustic
images (from hydrographic surveys). This paper presents
new results closely related to previous work of the authors
on Voronoi [26] and level set evolution [25] based feature
extraction.

The application involving satellite imagery shown in this
paper is coastline detection, but the methodology can be easily
applied to feature extraction on any king of imagery. For
example, a coastline is defined as the boundary between land
and water. Coastline mapping is important for coastal activity
monitoring, resource mapping, navigation, etc. A lot of work
on coastline extraction from SAR (Synthetic Aperture Radar)
and multi-spectral imagery has been done. A technique for
coastline extraction from remotely sensed images using texture
analysis is described in [3]. The delineation of the complete

coastline of Antarctica using SAR imagery is shown in [17].
A morphological segmentation based automated approach for
coastline extraction has been suggested in [2]. Di et al. use the
image segmentation algorithm by [8] to segment an image and
detect the shoreline [9]. Our work in progress is an extension
to the work by Gold and Snoeyink [12]. Our boundary (crust)
extraction algorithm converts detected image features into
connected sets of vectors that are topologically equivalent
to the segmented objects. We claim topological equivalence
of the extracted features since these are obtained as subsets
of the Voronoi diagram or the Delaunay triangulation. This
method can be applied on imageries, that have a high signal to
noise ratio (scanned maps, aerial photographs, optical satellite
imagery). For lower signal to noise imagery, we need level
sets or continuous deformations.

The application involving acoustic images shown in this
paper is 3D reconstruction of fishes from large acoustic
datasets. Level set based methods have been shown to suc-
cessfully restore noisy images [24]. Malladi and Sethian [18]
have shown image smoothing and enhancement based on
curvature flow interpretation of the geometric heat equation. In
a more recent approach to use level set methods for acoustic
image segmentation, Lianantonakis and Petillot [16] provide
an acoustic image segmentation framework using the region
based active contour model of Chan and Vese [4]. Here we
focus on using the level set methods for simultaneous sup-
pression of noise and 3D reconstruction of relevant features.
We limit features of interest to fishes from acoustic images
and provide a level set based framework for acoustic image
segmentation. Image restoration techniques based on level set
evolution are generally oriented to segment the image or to
remove noise from it. Work by Lianantonakis and Petillot
[16] is closest to our approach since they use active contours
using Mumford-shah functional for seabed classification, but
together with extraction of Haralick feature set for textural
analysis.

Since acoustic data resulting from marine surveys can
result in gigabytes of information, we employ GPU (Graphics
Processing Unit) based computations for 3D reconstruction.
The GPU is not very suitable for data intensive applications
due to unavailability of large memory on commodity hardware.
A number of publications suggest schemes to circumvent this
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situation by performing computations in a streaming manner
[14], but most of the implementations process 2D sections to
generate a 3D reconstruction. We present a new Level Set
method implementation with computations performed entirely
in 3D using the 3D textures (read only) available to the new
CUDA (Compute Unified Device Architecture) 2.0 framework.

This paper is organized as follows. Section II presents
the new methodology for image segmentation and feature
extraction. Section III presents the results obtained with the
new methodology presented in Section II. Finally, Section IV
concludes this paper.

II. IMAGE SEGMENTATION AND FEATURE EXTRACTION

Edge detection produces global edges in an image. This
means that there is no object definition attached to the edges.
Therefore, it is required to somehow define the objects first and
then obtain edges from them. This can be achieved by using
image segmentation. The main goal of image segmentation is
to divide an image into parts that have a strong correlation with
objects or areas of the real world depicted in the image [28,
chap. 5]. Thus, image segmentation divides the whole image
into homogeneous regions based on color information. The
regions can be loosely defined as representatives of objects
present in the image. While edge detection is very sensitive to
noise, level sets based segmentation tolerates noise quite well.

A. Mean Shift Algorithm Segmentation

The segmentation method adopted here is the one provided
by [7] which is based on feature space analysis. Feature space
analysis is used extensively in image understanding tasks.
[7] provide a comparatively new and efficient segmentation
algorithm that is based on feature space analysis and relies
on the mean-shift algorithm to robustly determine the cluster
means. A feature space is a space of feature vectors. These
features can be object descriptors or patterns in case of an
image. As an example, if we consider a color image having
three bands (red, green, and blue) then the image we see as
intensity values plotted in Euclidean XY space is said to be
in image space. Consider a three dimensional space with the
axes being the three bands of the image. Each color vector
corresponding to a pixel from the image can be represented
as point in the feature space.

Given n data points xi, i = 1, . . . , n in the d-dimensional
space Rd, a flat kernel of a location x that is the characteristic
function of a λ-ball in Rd is defined as

K(x) =

{
1 if ‖x‖ ≤ λ
0 if ‖x‖ > λ

. (1)

The mean shift vector at x is defined using the kernel of radius
r as

Mλ(x) =

∑
r∈Rd

xK(r − x)∑
r∈Rd

K(r − x)
− x (2)

Cheng [6] shows that the mean shift vector, the vector of
difference between the local mean and the center of the

window K(x), is proportional to the gradient of the probability
density at x [6]. Thus mean shift is the steepest ascent with
a varying step size that is the magnitude of the gradient.
Further, Comaniciu and Meer use mean shift vector in seeking
the mode of a density by shifting the kernel window by the
magnitude of the mean shift vector repeatedly [8]. The authors
also prove that the mean shift vector converges to zero and
eventually reaches the basin of attraction of that mode.

In their research work, Comaniciu and Meer state a simple,
adaptive steepest ascent mode seeking algorithm [7].

1) Choose the radius r of the search window (i.e, radius of
the kernel).

2) Choose the initial location of the window.
3) Compute the mean shift vector and translate the search

window by that amount.
4) Repeat until convergence.

The mean shift algorithm gives a general technique of cluster-
ing multi-dimensional data and is applied here in color image
segmentation. The fundamental use of mean shift is in seeking
the modes that give regions of high density in any data.

The method described in [7] provides an autonomous seg-
mentation technique with only the type of segmentation to be
specified by the user. This method emphasizes the importance
of utilizing the image space along with the feature space to
efficiently perform the task of segmentation. The segmentation
has three characteristic input parameters:
• Radius of the search window, r,
• Smallest number of elements required for a significant

color, Nmin, and
• Smallest number of connected pixels necessary for a

significant image region, Ncon.
The size of the search window determines the resolution

of the segmentation, smaller values corresponding to higher
resolutions. The authors use square root of the trace of global
covariance matrix of the image, σ, as a measure of the visual
activity in the image. The radius r is taken proportional to σ.
Later, Comaniciu and Meer provide an improvement [8] over
this segmentation algorithm by merging the image domain and
the feature (range) space into a joint spatial-range domain of
dimension d = p + 2, where p is the dimension of the range
domain. This gives an added advantage of considering both
the spaces together and gives good results in cases where
non-uniform illumination produces false contours when the
previous segmentation algorithm is used. Therefore, the new
algorithm is particularly useful to segment natural images
with man-made objects. An added computational overhead
to process higher dimensional space is inevitable here. The
simple mean shift based segmentation algorithm provides
satisfactory results in the case of scanned maps as shown in
the results section.

Segmentation provides us with definite boundaries of ob-
jects that are used to extract sampling points around an object.
This methodology does not allow one to guarantee that the
topology of the segmented objects matches the topology of
the imaged objects.
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B. Feature extraction after mean shift algorithm

Anton et al. [1] suggest a new algorithm for skeleton ex-
traction. This is based on the concept of Gabriel Graph [10].
A Gabriel graph G (highlighted in Figure 1) is a connected
subset of the Delaunay graph D of points in set S such that
two points pi and pj in S are connected by an edge of the
Gabriel graph, if and only if, the circle with diameter pipj
does not contain any other point of S in its interior. In other
words, the edges in G are those edges from D whose dual
Voronoi edges intersect with them.

Fig. 1. Gabriel graph highlighted in a Delaunay triangulation.

Given the Delaunay triangulation D and the Voronoi dia-
gram V of sample points S from the boundary of an object, the
algorithm for centerline extraction in [1] proceeds by selecting
all the Gabriel edges in graph G. Each dual Voronoi edge v
of the Gabriel edge g from G is inserted in the skeleton K if
the following condition is met:

g.Origin.Colour 6= g.Destination.Colour
Or

g.Origin.Colour 6= v.Origin.Colour
Or

g.Origin.Colour 6= v.Destination.Colour
And

‖g.Origin.Colour − g.Dest.Colour‖ ≥
‖v.Origin.Colour − v.Dest.Colour‖

(3)

Here, Origin.Colour and Destination.Colour are color
values from the gray scale image corresponding to the location
of the origin and the destination of an edge respectively.

Fig. 2. Anti-crust from the crust.

1) Obtaining Anti-crust from the Voronoi diagram: The
anti-crust of an object, as described above, forms a tree like
structure that contains the skeleton. Once all the Delaunay
edges belonging to the border set or the crust are identified
using the condition given by Gold [11], it is easy to identify the
Voronoi edges belonging to the anti-crust. In Figure 2, consider
the Delaunay triangulation (dashed edges), the corresponding
Voronoi diagram (dotted edges) and the crust edges (solid red
edges).

Navigation from a Delaunay edge to its dual Voronoi edge
can be achieved by using the Rot() operator in the quad-
edge data structure [15]. A Voronoi edge e.Rot() of the dual
Delaunay edge e is marked as an edge belonging to the anti-
crust if the following conditions are satisfied:

1) e /∈ Crust
2) e.Rot().Origin ∈ I
3) e.Rot().Destination ∈ I ,

where e.Rot().Origin is the origin of the edge e.Rot(),
e.Rot().Destination is the destination of the edge e.Rot()
and I is the selected object. This marks all the Voronoi edges
belonging to the anti-crust that fall inside the selected object.
Negating conditions (2) and (3) so that the points do not fall
inside the object will give us the exterior skeleton or the
exoskeleton. Once the anti-crust is identified, an appropriate
pruning method can be applied to get rid of the unwanted
edges.

2) Pruning: Gold [11] also discusses the “hairs” around
the skeleton that result due to the presence of three adjacent
sample points whose circumcircle does not contain any other
sample point - either near the end of a main skeleton branch or
at locations on the boundary where there is minor perturbation
because of raster sampling. Gold and Thibault [13] suggest
a skeleton retraction scheme in order to remove the hairs
that also results in smoothing of the boundary of the object.
Ogniewicz [20] presents an elaborate skeleton pruning scheme
based on various residual functions. Thus, a hierarchic skeleton
is created which is good for multi-scale representation. Sharma
et al. [27] suggest the use of ratio based pruning in order to
simplify a network of skeletons for extracting linear features
from satellite imagery.

The problem of identifying skeleton edges now reduces to
reasonably prune the anti-crust. We next present an optimal
criterion for pruning by successively removing leaf edges from
the anti-crust.

3) Pruning by Removing Leaf Edges: Gold and Thibault
[13] present a retraction scheme for the leaf nodes in the anti-
crust. The skeleton is simplified by retracting the leaf nodes
of the skeleton to their parent nodes. Gold and Thibault [13]
recommend performing the retraction operation repeatedly
until no further changes take place. An observation reveals
that an unwanted branch in a skeleton may be composed of
more than one edge (see Figure 3). Therefore, single retraction
may not be sufficient to provide an acceptable skeleton.

A similar simplification can be achieved by pruning the leaf
edges instead of retracting the leaf nodes. Leaf edge pruning
produces satisfactory results and requires only two or three
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Fig. 3. Hair around the skeleton composed of multiple edges.

levels of pruning. Before pruning the leaf edges, they must be
identified in the anti-crust. An edge e from a tree of edges
T ∈ V , where V is the Voronoi diagram, is marked as a leaf
edge if the following condition is satisfied:

e.Oprev() /∈ T And e.Onext() /∈ T
Or

e.Sym().Oprev() /∈ T And e.Sym().Onext() /∈ T
. (4)

This condition essentially selects all the Voronoi edges
belonging to the anti-crust that have at least one end point
free (i.e., connected to an edge not belonging to the anti-crust).
This condition is used to locate leaf edges followed by their
removal from the skeleton. Experiments show that removing
leaf edges two to three times simplifies the skeleton to a major
extent for linear features. We find an optimal criterion for
removal of extraneous hair from the skeleton by pruning the
leaf edges (see results in next section).

C. Level sets based segmentation

Let an image I(x, y) be defined on a bounded open subset
Ω : {(x, y)|0 ≤ x, y ≤ 1} of R2, with ∂Ω as its boundary.
I takes discrete values between 0 and (2n − 1) where n is
the number of bits used to store intensity. The basic idea in
active contour model is to evolve a curve C(s) : [0, 1] → R2

by minimizing the following energy functional [21]:

E(C) = α

∫ 1

0

|C ′|2 ds+ β

∫
0

|C ′′| ds− λ
∫ 1

0

|∇I(C)|2 ds,

where α, β, and λ are positive parameters, and ∇I denotes
the gradient of I . In the above energy functional, the evolution
of curve C is controlled by the internal energy (first two
terms that define the smoothness of the curve) and the external
energy (the last term that depends on the edges present in the
image). More intuitively, the curve evolves to minimize the
differences of intensity between the points in the interior of the
curve, and at the same time maximizes the differences between
the points in the interior and the points in the exterior of the
curve, thus, clustering the image. The curve C can be repre-
sented by an implicit function φ, C = {(x, y)|φ(x, y) = 0},
where the evolution of C is given by the zero level curve at
any time t of the function φ(x, y, t).

With this formulation, an edge detector is defined as a
positive decreasing function g(∇I) based on the gradient of
image [23] such that

lim
|∇I|→∞

g(∇I) = 0

Therefore, the zero level curve evolves in the normal direction

and stops at the desired boundary where g vanishes.

Evolving the curve C in normal direction amounts to
solving the partial differential equation (PDE) [22]

∂φ

∂t
= |∇φ|F (5)

with the initial condition φ(x, y, 0) = φ0(x, y), where φ0(x, y)
is the initial contour. Motion by mean curvature allows for
cusps, curvature and automatic topological changes [22], [5].
This results in the speed function F = div

(
∇φ
‖∇φ‖

)
in terms

of the curvature of φ

∂φ

∂t
= |∇φ|div

(
∇φ
|∇φ|

)
, φ(x, y, 0) = φ0(x, y)

where div(·) is the divergence operator.

1) Minimising the Mumford-Shah Functional in Image:
Chan and Vese [5] provide an alternative approach to the edge
based stopping criterion. The authors suggest the stopping
term based on Mumford-Shah segmentation techniques [19].
The motivation behind using this alternative stopping term is
that in many cases, the edges in an image are not very well
defined. Either it is ambiguous to position the edges across the
gradient due to smoothly varying intensities [5] or it is difficult
to select prominent edges due to presence of noise (as in the
case of acoustic images). The method of Chan and Vese [5]
is minimization of an energy based segmentation. Assuming
that the image I is composed of two regions of piecewise
constant intensities of distinct values Ii and Io, and that the
object of interest is represented by Ii, we define the curve C
to be its boundary. Using the Heaviside function H , and the
Dirac-Delta function δ0,

H(z) =

{
1, if z ≥ 0
0, if z < 0

, δ0(z) =
d

dz
H(z)

the energy functional is formulated as

E(c1, c2, C, t) =µ

∫
Ω

δ0(φ(x, y, t))|∇φ(x, y, t)| dx dy

+ ν

∫
Ω

H(φ(x, y, t)) dx dy

+ λ1

∫
Ω

|I(x, y)− c1|2 dx dy

+ λ2

∫
Ω

|I(x, y)− c2|2 dx dy (6)

where, µ ≥ 0, ν ≥ 0, λ1, λ2 > 0 are fixed parameters. c1
and c2 are average intensity values inside and outside C. The
constants c1 and c2 can also be written in terms of I and φ

c1 =

∫
Ω
I(x, y)H(φ(x, y, t)) dx dy∫

Ω
H(φ(x, y, t)) dx dy

, (7)

c2 =

∫
Ω
I(x, y)(1−H(φ(x, y, t))) dx dy∫

Ω
(1−H(φ(x, y, t))) dx dy

(8)
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The variational level set approach gives the following Euler-
Lagrange equation [5]

∂φ
∂t = δε(φ)

[
µ∇ · ∇φ|∇φ| − ν − λ1(I − c1)2 + λ2(I − c2)2

]
(9)

with the initial condition, φ(x, y, 0) = φ0(x, y) and

δε(z) =
∂

∂z
Hε(z) = π−1ε−1

(
1 +

z2

ε2

)−1

(10)

where, the regularised one-dimensional Heaviside function is
given by:

Hε(z) =
1

2

(
1 +

2

π
tan−1

(z
ε

))
.

The acoustic images considered by Lianantonakis and Petil-
lot [16] are of the seabed. Such images show strong textural
variations of the bottom surface of the sea. In this paper, we
restrict ourselves to acoustic images of freely swimming fishes.
While such images are also corrupted by speckle noise, they do
not show specific textural patterns. Figure 4(a) shows part of
such an image where the fish cross sections are discriminated
by very high intensities compared to the background. The
presence of reflectance from air bubbles mixing into water,
also contribute to the noise. While working with level sets, a
standard procedure is to keep φ to a signed distance function
[21]. A direct application of the level set equation given
by equation (9), with φ(x, y, 0) = 0 initialized to set of
squares regularly distributed over the image, shows that the
evolution of the level set eventually stops at the wrong place
(see Figure 4(b)). We used specific multi-beam acoustic noise
removal techniques.

Iteration:0+1i/100

(a) Initialization contour.

Iteration:50/100

(b) Result at convergence.

Fig. 4. Application of the level set equation (9).

2) Noise suppression model: Considering the image I to
be time varying, the basic idea behind noise suppression is to
solve the following equation as an update step to the level set
equation resolution in a single pass:

∂I(x, y, t)

∂t
= k ·max(0, ĉ− I(x, y, t)) (11)

where k is a constant and ĉ is a scalar parameter that is
computed as an optimal threshold at any time step t based
on φ(x, y, t).

The computation of ĉ is based on the bounded subset Ii

given by

Ii(x, y, t) = I(x, y, t) ·Hε(φ(x, y, t)).

The values given by the set Ii are used to compute the
weighted median [29] as shown in algorithm 1 which is used
as ĉ at that particular time step t.

Input: I(x, y, t), Hε(x, y, t)
Output: ĉ
V = {vi : vi = I(x, y, t), x ∈ [1, l], y ∈ [1,m],

i ∈ [1, n], n = l ·m}
W = {wi : wi = Hε(x, y, t), x ∈ [1, l], y ∈ [1,m],

i ∈ [1, n], n = l ·m}
Sort V in ascending order
W ←W\{wz} ∀wz = 0
V ← V \{vz} , {vz : vz ∈ V, ∀z where wz = 0}

S ←
n∑
k=1

wk, wk ∈W

Find index i such that
i∑

k=1

wk ≤
S

2
, wk ∈W

Find index j such that
n∑
k=j

wk ≤
S

2
, wk ∈W

Median M = {vi, vj}
ĉ← min(vi, vj)

Algorithm 1: Computation of weighted median

We now show that the estimate of ĉ based on the weighted
median is a good approximation for the grey-level threshold
that separates the noise from the signal, and is robust in a way
that the evolution of the level set converges with increasing t.
Hε(z) attains values close to zero for regions outside C

and values close to one inside C. In fact, lim
z→∞

Hε(z) = 1.0

and lim
z→−∞

Hε(z) = 0.0. At the start of level set evolution,

Ii covers most of Ω and therefore, Hε(z) attains values
close to one for most of the intensity values. This results in
computation of ĉ which is equivalent to an unweighted median
for values in Ii. A median is the central point which minimizes
the average of absolute deviations. Therefore, a median better
represents the noise level when the data contains high intensity
values that are fewer in number, and a majority of intensity
values that correspond to the noise. As a result, the initial
iterations of the solution suppress the intensity values that are
less than the median to a constant level (the median itself).
One should expect the median value to increase as the level set
contracts, but since we use a regularized Heaviside function as
weight for the intensity values, the weighted median converges
to zero since most of I contains intensity values of zero with
near-zero weight.

Other variations of estimation of ĉ are certainly possible,
but we find that a weighted median based approach results
in effective noise removal with very small information loss.
For instance, a value of ĉ taken to be c1, the mean intensity
inside C, does a similar suppression but with a high signal
loss compared to the former.

3) CUDA Implementation for 3D Reconstruction: Equa-
tion (9) can be solved by discretization and linearization in
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φ [5]. Discretization of equation (11) in I gives

In+1(x, y)− In(x, y)

∆t
=k ·max (0, ĉ− In(x, y))

=

{
0, if In(x, y) ≥ ĉ
k · (ĉ− In(x, y)), otherwise

(12)

with k = 1
∆t , and tn+1 = tn + ∆t. The above time

discretization yields the following

In+1(x, y) =

{
0, if In(x, y) ≥ ĉ
ĉ− In(x, y), if In(x, y) < ĉ

(13)

Acoustic images captured by echo-sounders are generally
taken as planar image scans by moving the echo-sounder
in one direction, thereby sweeping a volume. Let us denote
individual images as I(x, y, τ) for images taken after every
δτ time interval. A volume is constructed by stacking these
individual images in sequence and applying geometric cor-
rection for distance δτ(v) between individual slices, where v
is the instantaneous speed of the instrument (the current data
was captured with constant unidirectional instrument velocity).
It must also be noted that the individual acoustic images
are obtained from a set of acoustic intensity signals along
beams by a polar transformation. The level set equations for
curve evolution in R2 extend uniformly to surface evolution
in R3. The second differential equation also holds true for
noise suppression in a volume. Therefore, it is possible to
reconstruct 3D moving fishes with the level set evolution of
these equations combined.

Processing a huge dataset demands that a minimum of
memory is consumed. We propose to keep two volumes in
the host memory, one for the intensity values (I) and the other
for the signed distance function (the implicit function, φ). The
CPU manages the memory scheduling by dividing the volumes
into small subvolumes that can be processed on the GPU. We
keep two small 3D textures of size 128 × 128 × 128, IGPU
and φGPU . A complete level set update is divided into a set
of subvolume updates. Each subvolume in the two volumes
is fetched to the GPU via 3D textures (read only, but with
good cache coherence). Results of computations are written to
CUDA memory and then transferred back to the CPU volumes.
A simplified diagram of this is shown in Figure 5.
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Fig. 5. Parallelization using the GPU.

CUDA exposes a set of very fast 16KB shared memory
available to every multi-processor in a GPU. However, a 16
KB memory chunk is shared only between a thread block,
and thus to make use of it the application must load different

data for different blocks. Furthermore, the 16 KB limit poses
a restriction on the amount of data that can be loaded at
any point of time. Here, we use 3D textures for reading the
data. Since we do not want to write back to the same texture
(before a single step of filtering is complete), using the read-
only 3D textures available to CUDA is a natural choice. 3D
texturing has hardware support for 3D cache which accelerates
any texture reads in succession. To load a 3D data (a small
subset of the volume) from the global memory into the shared
memory could be a little tricky and might not result in the
same performance as provided by the specialized hardware
for 3D texture cache. In our application, data writes are made
to the global memory.

Signed distance transform is a global operation and cannot
be implemented in a straightforward manner. We compute
a local approximation of the Euclidean distance transform
using the Chamfer distance. A narrow band distance transform
is computed layer by layer using, what we call a d-pass
algorithm. Every pass of the method adds a layer of distance
values on the existing distance transform. The distance values
are local distance increments computed in a 3 × 3 × 3
neighborhood. Therefore, every single pass needs only local
information to compute the distance values except at the border
of the sub-volume. We therefore support every sub-volume
with a one voxel cover from other adjoining sub-volumes,
thereby reducing the computational domain to a volume of size
126× 126× 126. The CPU scheduler takes care of the voxel
cover. At the beginning, the interface (zero level) is initialized
to a used specified bounding cuboid or a super-ellipsoid.

Computing average intensities (c1 and c2) is an operation
that cannot be easily computed in a parallel fashion, and a
reduction like method is required for the same. We employ a
slightly different scheme to compute averages by using three
accumulator sub-volumes on the GPU. These accumulators are
essentially 3D sub-volumes of the same dimensions as of the
textures. Every voxel in the accumulators accumulates (adds
up), the values for H , I ·H , and I · (1−H) for all the sub-
volumes in the CPU volume(s). We then sum up the small
sub-volume on the CPU to get the final sum and compute
c1 and c2 values from it. Using a mixed mode CPU-GPU
computation not only reduces the complexity of an inherently
non-parallel operation, but also performs better by moving less
expansive parts of the computation to the CPU.

Computing median on the GPU is not very straightforward
since it is an order statistic and requires that the data be
sorted. Therefore the computation of weighted median is very
different than the one for average intensity value. Since sorting
values of order of millions in every iteration of the solver is not
a computationally good solution, we resort to the alternative
definition of the median. A median is a value that divides the
data-set into two sets of equal cardinalities. This definition is
generalized for a weighted median. Therefore, for a data-set
V with weights W associated with each value in the set, the
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median value Vk is the value for which the following holds:
k∑
i=0

Wi =

n∑
i=k+1

Wi

This equation can only be solved iteratively, starting with a
guess index value k0. In our CUDA implementation, we start
with Vk0 to be the mean value c1 and iteratively reach the
weighted median. In every iteration, the increment 4i for the
index k0 is computed as:

4i =



k∑
i=0

Wi −
n∑

i=k+1

Wi

k∑
i=0

Wi

, if
∑k
i=0Wi >

∑n
i=k+1Wi

n∑
i=k+1

Wi −
k∑
i=0

Wi

n∑
i=k+1

Wi

, if
∑n
i=k+1Wi >

∑k
i=0Wi

The increment 4i can be adaptively controlled to give results
as precise as desired.

4) Solver update: A PDE update in the level set method
comprises of computing the curvature energy and the external
energy. In order to compute the curvature term (involving dou-
ble derivatives) for a voxel in a sub-volume by centered dif-
ferencing, we need information from a 5×5×5 neighborhood
with the current voxel at its center. Therefore, the sub-volume
size needs a cover of two voxels on all sides, thus reducing
the computational domain further down to 124 × 124 × 124.
The memory schedular performs additional computations to
effectively cover the whole volume with the new setup. Once
the energy terms are computed, the PDE solver kernel updates
φGPU and uses c1 to update IGPU . These sub-volumes are
then updated to the CPU main volume. It is often convenient
to perform anisotropic diffusion on the input image so that the
evolution of the level curve is smooth and φ is well behaved.
Finally, the zero level surface is extracted from the evolved φ
using the Marching Cubes method.

III. RESULTS

We observe that using the GPU for the parallelization of
the processing of the imagery induces an overall speed-up that
ranges between 10 and 20 times over CPU algorithms.

A. High signal to noise ratio imagery

In this section, we show results of our new combined GPU-
based methodology on high signal to noise ratio imagery
(scanned maps and satellite imagery).

The extraction of a road network from a scanned map is
shown in Figure 6.

In the following example, the coastline is extracted as the
boundary of the selected object. The accuracy of the coastline
rendition depends on the spatial resolution of the imagery. The
beach of Seychelles shown in Figure 7(a) is mainly sandy and

(a) Scanned map.

(b) Dark blue class in the segmented image
(corresponding to dark blue segments from the
scanned map.

(c) Medial axis of the polygons represented in
(c).

Fig. 6. City Map of Moncton, New Brunswick, Canada.

shows a wide variation in the ocean color. The color variation
is primarily due to the depth of water. Figure 7(b) shows
the result of the segmentation using mean shift and Voronoi
skeletonization on Figure 7(a). Regions in Figure 7(b) that
form the ocean are combined to extract the ocean boundary
(see Figure 7(c)). The extended coastline representing the
boundary of the sand beach is shown in Figure 7(d). The
extended coastline shows the presence of a number of small
polygons, since the roads connecting the beach have the same
color value in the image, and are included in the selection.

B. Low signal to noise ratio imagery

We present experimental results on 2D multi-beam echo
sounder (acoustic) images to show that the suppression scheme
works well on such images. Figure 8 shows evolution of the
level set. The parameters for this evolution were chosen to be:
µ = 0.0005, ν = 0, λ1 = λ2 = 1, and ε = 2.5. It can be seen
that the original image suffers from speckle noise and that the
final zero level contour approximates the fish boundaries very
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(a) Satellite image of Seychelles. (b) Over-segmented image.

(c) Extracted ocean boundary. (d) Extracted beach boundary.

Fig. 7. Feature polygon extraction from the satellite image of Seychelles.

well.

(a) Initial image.

Iteration:4/100

(b) Zero level set and image
after four iterations.

Iteration:16/100

(c) End of evolution after 16
iterations.

(d) Final contour
shown on part of the
original image.

Fig. 8. Level set evolution on sample image, ε = 2.5.

We next show results of application of the level set equation
and the noise suppression scheme on a small 3D multi-beam
echo sounder (acoustic) volume of size 150× 100× 50. Fish
intensities can be identified in dark green against a noisy
background. The level set equation was initialized with the
zero level set of φ0 as the bounding box of the volume.
The level set is then allowed to evolve with parameters,

(a) Initial zero level surface, φ0. (b) Zero level surface after four it-
erations.

(c) Zero level surface after six iter-
ations.

(d) End of evolution after nine iter-
ations.

Fig. 9. Level set evolution on sample volume, ε = 1.0.

µ = 0.0005, ν = 0, λ1 = λ2 = 1, and ε = 1.0. Figure 9
shows the evolution at different time steps and the final level
surface.

We test the CUDA solver on a larger volume of size
686 × 1234 × 100. This volume uses about 470 MB of CPU
memory along with the same amount of memory consumed
by the signed distance field. We test our implementation
with the mobile GPU, GeForce 8600M GT (NVDIA CUDA
compute capability of 1.1) with 256 MB of memory on a
Mac OS X notebook with 2 GB of host memory. The total
number of iterations required until convergence were 29, with
a compute time of about 52 seconds per iteration (32 seconds
without median computation). The signed distance field was
reconstructed in a narrow band of width 20 voxels in every
iteration.

In order to compare the 2D and 3D reconstructions, we
show an overlay of 2D curves over the extracted 3D surface.
This is shown in Figure 10. The results agree very well when
the 2D image contains high intensity objects. The acoustic
images were taken by scanning fishes in an aquarium and
the images corresponding to the bottom of the aquarium (time
slices with higher depth, 30 to 50 in Figure 10) contain almost
no fishes. Therefore, these images contain very little useful
information. The 2D level set evolution fails to detect fishes
in these images. Therefore, the 3D results should be trusted
since the 2D reconstruction does not consider information
present in other image planes. We would like to comment
that a ground truth segmentation is not practically possible
for open sea. Evaluation of the extracted fish trails/schools by
domain experts is under process because of marine surveys.

IV. CONCLUSIONS

This research work succeeds in achieving its primary goals
by designing an effective GPU-based highly parallel method-
ology for automated vectorization of imagery. Based on the
methodology, an interactive software application has been
developed. It incorporates object extraction from input images
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Fig. 10. Comparison of zero level 2D curves with the zero level 3D surface.

using color image segmentation or level sets evolution. The
application allows either automated extraction of all features
or manual selection of multiple objects for semi-automated
extraction of targeted feature classes. It is worth noticing here
that the extracted feature might not be a complete map object
in the scanned image. This is due to labels and other features
drawn over the feature of interest on a paper map.

Applicability of the Voronoi-based methodology to satellite
imagery has been shown by extracting natural features like
coastlines. Experiments done with satellite imagery show
acceptable results too. Coastline delineation, snow cover map-
ping, cloud detection, and dense forest mapping are a few
areas where satisfactory results can be obtained. Applicability
of the level set evolution methodology has been shown on
underwater acoustic images. Current work focuses on level
set evolution based Digital Terrain Model (DTM) generation
from Light Detection And Ranging (LIDAR) data sets. Any
imagery can be processed using the above methodology: not
only raster images, but also 2D and 3B beam-formed datasets
like Computer Tomography or multi-beam echo sounder data.
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