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Abstract—Recently published experimental work on evolution-
in-materio applied to nanoscale materials shows promising re-
sults for future reconfigurable devices. These experiments were
performed on disordered nano-particle networks that have no
predefined design. The material has been treated as a black-
box, and genetic algorithms have been used to find appropriate
configuration voltages to enable the target functionality. In order
to support future experiments, we developed simulation tools for
predicting candidate functionalities. One of these tools is based
on a physical model, but the one we introduce in this paper is
based on an artificial neural network. The advantage of this newly
presented approach is that, after training the neural network to
match either the real material or its physical model, it can be
configured using gradient descent instead of a black-box optimisa-
tion. The experiments we report here demonstrate that the neural
network can model the simulated nano-material quite accurately.
The differentiable, neural network-based material model is then
used to find logic gates, as a proof of principle. This shows that the
new approach has great potential for partly replacing costly and
time-consuming experiments with the real materials. Therefore,
this approach has a high relevance for future computing, either
as an alternative to digital computing or as an alternative way
of producing multi-functional reconfigurable devices.

Keywords—nanoparticle network; neural network; simulation;
unconventional computation; evolution-in-nanomaterio.

I. INTRODUCTION AND MOTIVATION

Within the EU-project NASCENCE [4], disordered networks
of gold nano-particles have been successfully used to produce
reconfigurable logic with a very high degree of stability and
reproducibility [3]. This breakthrough presents a proof of
principle that indicates very promising prospects for using
this material to perform more complicated computational
tasks. In order to predict candidate computational tasks, but
avoiding the waste of scarce and expensive resources involved
in experimentally exploring these nano-particle networks, we
developed simulation tools for examining the capabilities of
these material systems. One of them [7] is an extension of
existing tools for simulating nano-particle interactions, like
SPICE [11]] or SIMON [[18]]. The latter tools are all based on
Monte-Carlo simulations, using a physical model, and have
been validated for designed systems with small numbers of
particles. Although these methods can, in principle, handle

arbitrary systems of any size, their scalability is a serious issue.

Moreover, nano-particle networks like the ones used in [3] to
date cannot be produced according to a predefined specific
design. Therefore, due to their disordered nature, it is not
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possible to use an accurate physical model for such material
systems.

In this paper, an alternative approach is introduced. This
novel approach is based on training artificial Neural Networks
in order to model and investigate the nano-particle networks.
Neural Networks (NN; [10] [13[] [19]) have proven to be
powerful function approximators and have, especially recently,
been applied to a wide variety of domains with great success [J5]
[6] [14]]. Being essentially treated as black-boxes themselves,
NNs do not facilitate a better understanding of the underlying
quantum-mechanical processes that take place in the material.
For that purpose, physical models are more appropriate. But,
in contrast to physical models, NNs provide differentiable
models and thus offer interesting possibilities to explore the
computational capabilities of the nano-material. In the sequel,
NNs will be used, in particular, to search for configurations
of input voltages such that the material computes different
Boolean logic functions, such as AND, OR, NOR, NAND, and
XOR.

To enable the exploration of the computational capabilities
of the material by an NN, the NN needs to be trained first with
data collected from the measurements on the material. Since
a physical model and an associated validated simulation tool
for the nano-particle networks have already been developed
[7], such training data can be obtained from the simulated
material. This also provides an opportunity for predicting
functionalities in small nano-particle networks that have not
been fabricated yet. This in turn can inform electrical engineers
on the minimum requirements necessary for obtaining such
functionalities, without the burden of costly and time-consuming
fabrication and experimentation. As soon as the NN has been
trained, searching for arbitrary target functions is very fast, and
can happen without any access to the material or its physical
model.

The rest of the paper is organised as follows. Section [[I]
provides some technical details on the gold nano-particle
networks that have been used in the experimental work [3]].
This section also describes the choices that have been made
and that form the basis for the physical-model based simulation
tool of [[7], combining a genetic algorithm with Monte-Carlo
simulations for charge transport. Section [[II| presents simulation
results obtained with these tools for an example network.
Section shows how an NN was trained for modelling the
example network, using data collected from the physical-model
based simulation tool. An analysis of the results is presented
in Section |V| followed by a short section with conclusions as
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Figure 1. Illustration of a disordered network of gold NPs

well as an outlook to future work.

II. NANO-PARTICLE NETWORKS AND THEIR SIMULATION

In collaboration with the NanoFElectronics group at the
MESA+ institute of the University of Twente, networks
consisting of commercially available nano-particles of size
5-20 nm consisting of gold, and junctions of alkanedithiol of
length 1-3nm have been produced. The alkanedithiols stick
to the metal and can form junctions (tunnel barriers) between
particles. shows an illustration of such a network.
The central circular region is about 200 nm in diameter. More
details on the production process can be found in [3]].

The networks investigated there are relatively large (in the
order of a hundred particles) and disordered. The transport
of electrons is governed by the Coulomb blockade effect [8]:
transport is blocked, except at almost discrete energy levels;
there exactly one electron can jump. The dynamics of such
a system is governed by stochastic processes: electrons on
particles can tunnel through junctions with a certain probability.
For such systems, there are basically two simulation methods to
one’s disposal: Monte-Carlo Methods and the Master Equation
Method [17)). Since the number of particles is large,
the Monte-Carlo Method is the best candidate. This method
simulates the tunnelling times of electrons stochastically. To
get meaningful results, one needs to run the algorithm in the
order of a million times. Doing so, the stochastic process gives
averaged values of the charges, currents, voltages, etc. More
details on the simulation tool can be found in [7].

III. AN ILLUSTRATIVE EXAMPLE

As an example which is still relatively small and manage-
able, but shows interesting features, the described methods have
been explored on the symmetric 4 x 4-grid consisting of the
components shown in Figure [2]

In Figure[2] the 16 green dots represent the nano-particles; in
between are the tunnelling junctions, with fixed C' and R values.
The two input leads and the single output lead are depicted
as I1 and Iy and O, respectively. Voltages are applied to the
configuration leads V;-Vjy, according to a Genetic Algorithm,
and also to a back gate; this back gate is connected through
tunnel barriers (a silicon oxide layer) to all nano-particles (for
convenience we have not shown the back gate in the figure).

The fitness of the sets of configuration voltages is deter-
mined by how close the output for the four input combinations
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Figure 2. A symmetric 4 X 4-grid of 16 nano-particles with leads

of the Boolean truth table is to the desired logic. We omit the
details due to page restrictions. Details can be found in [[7].

1) Evolved Boolean Logic: Applying the developed simula-
tion tool to the small network of Figure [2] it was possible to
evolve all basic Boolean logic gates, using different computed
(simulated and optimised) settings of the values of the free
variables (the configuration leads voltages and the back gate
voltage). The solutions for four of the cases, namely AND,
NAND, OR and XOR, are illustrated as contour plots in
The four plots are functions of the two input signals;
the voltages of both inputs range from 0 to 10 mV, horizontally
as well as vertically; the colour scheme ranges from blue for
small values to red for high values of the output.

(a) simulated AND (b) simulated NAND

(c) simulated OR

(d) simulated XOR

Figure 3. Contour plots of simulated evolved logic in the 4 x 4-grid

2) Discussion: From an electrical engineering point of view,
the simulation results are very interesting, for several reasons.
First of all, the example of Figure [2] can be configured into any
of the basic Boolean logic gates, using only 16 nano-particles
of size 5-20 nm. If one would like to design and build the same
functionality with transistors, one would require at least 10
transistors. Secondly, in the designed circuit one would have
to rewire the input and apply it at different places, whereas in
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the nano-particle network each of the input signals is applied
at exactly one place. Even with current transistor sizes below
20nm, the designed circuit would require the same or more
space, and would dissipate substantially more energy.

It is interesting to note, that in the experiments with the
real material samples [3]], all basic Boolean gates were also
evolved within an area with a diameter of around 200 nm,
but with only six control voltages. However, currently these
samples consist of 100-150 particles that are self-assembled
into a disordered network. The experimental results as well as
the simulations show the great potential for the approach, both
in the bottom-up and top-down design regime. This could have
a huge impact on future computing, either as an alternative
approach to digital computing or as an alternative way to
produce reconfigurable multi-functional devices, e.g., to support
further down-scaling of digital components. Currently, we are
not aware of any production techniques for constructing samples
that come anywhere close to the 4 x 4-grid structure of Figure

To obtain more insight in the underlying currents and
physical phenomena, and with the long term goal to fully
understand what is going on in terms of electron jumps
and currents through these nano-particle networks, in [7]]
visualisation tools have been developed to analyse the processes
that are taking place over time. In Figure f] some pictures
visualising the currents through the network are presented, in
this case, as an example, when the network was configured
as an AND. The amplitude of the currents is proportional to
the area of the red arrows in the figure. The currents are all
averaged over time. The tool also enables the calculation of
variances, and it can show fast animations of the electron jumps
as well. It is still an open problem to deduce an explanation for
the patterns and jumps that cause the 4 x 4-grid to behave as
a logic AND (or one of the other basic Boolean logic gates).
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Figure 4. Averaged current patterns for simulated AND in the 4 x 4-grid

Figure [ gives an impression of how complicated the traffic
of electrons in such networks can get, and can hopefully in
the future lead to more insight as to why they behave as logic.

In the next two sections, the use of artificial NNs to simulate
the nano-material will be explained, as well as how to use the
data collected from the above physical-model based simulations
to explore the 4 x 4-grid.

IV. NEURAL NETWORKS

Deep feed-forward NNs are powerful function approxima-
tors, and recently they have been very successfully applied in
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a wide range of domains. They consist of a sequence of layers,
where each layer computes an affine projection of its inputs
followed by a pointwise non-linear function :

h=¢(Wx+b),

where § = {W,b} are the parameters of the layer.

By stacking these layers, one can build non-linear functions
of varying expressiveness that are differentiable. In theory, these
networks can approximate any function to arbitrary precision
given enough hidden units, and they also work very well in
practice. This motivates the choice to use such deep feed-
forward NNs to model the input-output characteristics of the
nano-particle networks that were described earlier. These NNs
are used in the sequel for approximating the mapping from
the input and configuration voltages to the output current, by
training them using many randomly chosen examples, generated
with the physical-model based simulation tool. By solving
that task for a specific nano-particle network, the trained NN
becomes a differentiable model for the complex quantum-
mechanic interactions within the material sample.

Figure 5. Illustration of an NN with two hidden layers

The voltages on the configuration leads and the inputs
are scaled to have zero mean and unit variance, and serve
as inputs to the NN. Referring to the 4 x 4-grid of Figure 2]
in Figure E], I, and I, denote the two input leads, b denotes
the back gate, and cj,cs, ..., c5 denote the other leads, in a
symmetric fashion, so c¢; represents V7 and Vjy, and so on,
whereas O denotes the output lead. The training objective
is to minimise the Mean Squared Error (MSE) on the (also
standardised) current of the output. The optimisation is done
using Minibatch Stochastic Gradient Descent with Nesterov-
style momentum [9]] [12]]. The Minibatch Stochastic Gradient
Descent method is the de facto standard for optimising deep
feed-forward NNs, whereas Nesterov-style momentum is a
regularly used extension for improving convergence speed.
There are other more elaborate optimisation schemes (like
AdaGrad, RMSProp, ADAM, etc.), but their benefits are usually
moderate, and there was no need for this added complexity
here.

The choice of network architecture and training parameters
comprise a set of hyperparameters that need to be set for
this method. For the network, these are the number of hidden
layers, the number of neurons in each layer and their activation
functions. For training, they are the batch size, learning rate,
the momentum coefficient, and stopping criterion. We fixed
the batch size to 20, the momentum to 0.9, and stopped the
training once the MSE on the validation set did not decrease
for 5 epochs, or after a maximum of 100 epochs.
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The hyperparameters of the NNs were optimised by random
search over 40 runs [1f] [15] [2]. In particular, we randomly
sampled:

e learning rate 17 log-uniform from [10~%,107}]

e number of hidden layers from {1, 2, 5,10}

e number of units in each layer from {8, 16, 32, 64, 128}

e activation function from {ReL, tanh, sigmoid}.

The best NN had two hidden layers with 128 rectified linear

units each, and was trained with a learning rate of n =~ 1.6 E —2.

This is the NN we use for the rest of the analysis.

A. Search

The trained NN is a differentiable (approximate) model
of the nano-material. This property can be used to run the
model “backwards”: find inputs that produce certain desired
outputs by using the backpropagation algorithm to perform
gradient descent, not on the weights but on the inputs. Here,
it was required to go even further and use backpropagation to
search for functions; in particular, the aim is to find settings of
the configuration leads such that various combinations of the
input leads (logic pairs) produce corresponding desired (logic)
outputs.

1) Local Search: To accomplish the above goal, it was
necessary to produce a set of examples that have different
values for the input leads but share the same (random) values

for the configuration leads, along with the desired output values.

Gradient descent is then used to minimise the MSE by adjusting
the values for the configuration leads, while keeping their values
the same for all examples. So formally, given our neural network
model f of the nano-material, we define an error over our N
input/output pairs ((I{’), 12(1), O
N o4 N

> (1. 10.0) =002,
and then, using backpropagation, we effectively calculate:

9B _ of

00 00"

2) Global Optimisation: One problem with the method
described above, is that it only performs a local search, which
means that the solution it converges to might correspond to
a bad local minimum. To mitigate this, it was decided to
first sample 10,000 random starting points (settings of the
configuration leads), and perform just 10 iterations of the
described local search on them. Only the starting point that
leads to the lowest error is then optimised further for 5,000
epochs, in order to obtain the final solution. In this way, we
reduce the risk of getting stuck in a poor local minimum. Each

search comprises 420K evaluations of the neural network, for
a total of about a minute on a modern CPU.

(fFa?, 15”,6) — 09)

V. RESULTS

In this section, we present the results of a network trained on
IM random function-evaluations collected from the simulated
material. First of all, the following issue that was encountered
and is illustrated in Figure [6] had to be resolved.

In Figure [6 only the 2,000 samples with the highest
prediction error are shown. It can clearly be seen that the
last =~ 500 samples account for most of the total error. Also
their target values are obviously outliers.
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Figure 6. Prediction errors (top left), target outputs (bottom left), and network
predictions (bottom right) for the simulated 4 X 4 nano-grid data
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Figure 7. Prediction errors plus histogram (top), target outputs (bottom left),
and network predictions (bottom right) for the cleaned nano-grid data

A. Removing Outliers

After training several NNs on the simulation data, it was
discovered that more than half of the total prediction error
stems from less than 0.1% of the data. These samples, which
account for most of the error, also turned out to be outliers in
terms of their output values, as can be concluded from Figure
Most of the data falls in the region [—3, 3], but these ‘bad’
samples go up to +40. The gradient for training the NN is
thus dominated by these few samples, causing the model to
ignore the bulk of the data. For these reasons, it was decided to
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remove those outliers entirely from the dataset. After that, the
NN performed much better in modelling the material, as can
be seen in Figure [7] There, the samples are sorted by target
value. One can observe a clear correspondence between the
predictions (bottom right) and the targets (bottom left). The
histogram in the top right confirms that most of the predictive
errors are very small (< 0.3).

So, as a consequence, all results in the sequel have been
obtained from the ‘cleaned’ data.

B. Logic Gates

The overall aim was to find configurations for the simulated
4 x 4 nano-grid that turns it into a multi-functional reconfig-
urable device for computing some well-known Boolean logic
functions, just like the physical-model based simulation did:
AND, OR, XOR, NAND, NOR, XNOR. For this goal, we first
had to decide which values of (xg,x1) to map (False, True)
to. The obvious choice is (0, 1), but values of (0.2,0.8), for
example, would also still be acceptable. To circumvent the
problem of choosing these values, the same gradient descent
method was used to adjust the values for True and False for
the inputs as well.

In particular, the following was done for each function:

1)  generate eight random numbers, while assuring that
xr1 > o

2)  using these values, create a set of four input/output
pairs (see Table [T}

3) perform gradient descent on these 8 values, while
maintaining x; > o

The scheme by which the four input/output pairs are created
from the eight random values xg, x1, . .., 27 for any of the logic
functions, is explained in Table[]] in this case for the logic OR.
Note that this depends on zg < z7.

TABLE I. THE SCHEME FOR CREATING THE FOUR INPUT/OUTPUT
PAIRS (FOR THE LOGIC OR)

I Is ‘ c1 c2 c3 cyq cs b ‘ out

o o xro T3 T s Te o OR(F, F)
o Xy xro T3 T s Te X7 OR(F, T)
T xo T2 x3 x4 x5 Te 7 OR(T, F)
1 T To x3 x4 x5 T6 x7 OR(T, T)

As described in Section [[V-A2] first a global search is
performed, in order to find a good starting point, and then that
vector is optimised further. The results are presented in Figure|[§]
There, the resulting configurations for six logic functions are
illustrated (one logic function per row). The leftmost column
shows the desired output for the logic function, while the middle
column presents the actual response of the trained NN model.
In the rightmost column, the corresponding configurations are
visualised.

From the plots in Figure [§] it can be concluded that most
of the target Boolean functions can be performed by the nano-
material (according to the NN model). Note that, what is most
important is the response of the model in the corners, since we
do not really care about values in between True and False. The
smooth plots are just there to show how the model is behaving,
and to give an impression on how robust the solutions are.
For AND, OR, NAND, and NOR, the values in the corners
match the desired outputs very well. In contrast, the search
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Figure 8. Results for six logic functions: desired outputs, actual responses,
and the corresponding configuration

for the XOR and XNOR functions failed to produce equally
satisfactory results, indicating that these functions might be
difficult to perform for the nano-material under the given setup.

VI. CONCLUSION

This paper has demonstrated how an artificial Neural
Network model can be applied to look for configuration voltage
settings that enable different standard Boolean logic functions
in the same piece of material consisting of a disordered nano-
particle network. The training of the Neural Network was
based on generated random data from a physical-model based
simulation tool. The results are promising and can inform the
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electrical engineers about possible functional capabilities of
these material systems, without the need of fabricating and
doing costly and time-consuming trial-and-error experiments on
real nano-particle networks. Of course, it is obvious that such
experiments are unavoidable if it comes to actually testing real
networks for the predicted functionalities. In fact, the capability
of reconfigurable Boolean logic in small samples of nano-
particle networks has recently been confirmed experimentally.
It is likely, that this proof of concept will be the starting point
for exciting new research, and open up the opportunity for a
totally new approach to developing multi-functional stand-alone
devices.

Next steps in this direction first of all involve the simulation
of real material samples. For this, new experiments are
needed, in order to produce sufficiently many data to enable
proper training of the Neural Network. This also requires new
fabrication techniques, involving larger networks on micro-
electrode arrays, with more contact leads to the material, and
with a more sophisticated back gate. The requirements can
be predicted by simulations, in particular if one wants to turn
to more complicated functionalities, like computational tasks
that are difficult to perform with digital computers. Secondly,
it would be worthwhile to apply the same modelling and
simulation approach to other materials that show interesting
physical properties and behaviour, like networks of quantum
dots, films of carbon nanotubes, sheets of graphene, and
mixtures of such materials. Thirdly, a natural next step would
be to integrate the Neural Network modelling approach with
the evolutionary search technique. These are amongst the future
research plans we want to pursue.
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