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Abstract—In this paper, we introduce our visualization tool, the
Communication Log Viewer (CLV), that assists the development
of collective communication algorithms. We also present visualiza-
tion results as a case study. CLV visualizes information regarding
node events and network statistics in linked multiple views.
CLV also has a function for analyzing the results obtained from
network simulators and actual machines in the same framework,
which is useful when developers repeatedly test their algorithms
on a simulator and an actual system. For a case study, we visually
evaluated two all-to-all algorithms on the full system of the K
computer that has 82,944 nodes. As a result, we confirmed that an
optimized all-to-all algorithm implemented for the K computer
performed better than an all-to-all implemented in Open MPI.
We also confirmed that the barrier operation used in the K
computer’s Message Passing Interface (MPI) functions keep link
utilization high. However, there is also a trade-off between the
number of barriers and link utilization.
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I. INTRODUCTION

Parallel application programmers frequently utilize collec-
tive communications implemented in Message Passing Inter-
face (MPI) libraries to design applications. Collective commu-
nications usually produce a large number of communications,
especially on the peta-scale parallel systems that consist of
tens of thousands of nodes. In the applications running on such
large systems, communication takes longer than computation.

Optimizing communication algorithms is an important
means of maximizing the performance of parallel applications
[1]. Many parallel systems listed in the Top500 [2], such as the
Cray XK7 [3], Blue Gene/Q [4], and K computer [5], employ
mesh/torus topology. Mesh/torus topology generally provides
better scalability with respect to hardware cost. However, the
bisection bandwidth is relatively narrow compared to that of
other topologies, such as Fattree [6] and Dragonfly [7].

Visualization tools that abstract and visualize communi-
cation behavior are necessary tools for optimizing communi-
cation algorithms [8]. Developers repeatedly test communi-
cation algorithms under development on network simulators
and actual systems to find potential areas for optimization.
The test results are usually obtained as huge logfiles and
extensive numerical data. Looking at the logfiles and numerical
data alone, it is difficult to determine potential areas for
optimization.

We briefly presented our visualization tool, the Communi-

cation Log Viewer (CLV), that supports the design of collective
communication algorithms in [9]. Our tool has a function that
visualizes both the results obtained from a network simulator
and an actual system in the same framework. Our tool also
visualizes both events that occur in the node and statistics
regarding traffic in the network simultaneously with linked
multiple views. This enables the user to distinguish quickly
which events in the nodes correspond to which congested
network links.

In this paper, we describe the details of CLV that can
visualize both the node events and network statistics. We
also show a visual evaluation of all-to-all on a full system
of the K computer that has 82,944 nodes. In the rest of
this paper, Section II explains the workflow for developing
communication algorithms and Section III presents related
work. Section IV then describes the features of CLV. Section
V provides a case study, and Section VI concludes the paper.

II. WORKFLOW AND REQUIREMENTS FOR VISUALIZATION

A workflow to develop collective communication algo-
rithms involves the following steps.

1) Designing an algorithm that takes into account the net-
work architecture of the target system

2) Testing the algorithm on a network simulator and gener-
ating simulation logfiles

3) Analyzing and evaluating the behavior and efficiency of
the algorithm based on the information in the logfiles

4) Implementing the algorithm on the target system, if the
algorithm has achieved the expected performance in the
simulation

5) Evaluating the algorithm based on logfiles and numerical
data obtained from the performance counters of the target
system

Considering this workflow, the following functions are
needed in visualization tools:
R1 Visualizing the simultaneous network statistics and node

events with concise association
R2 Mapping the information to the actual network structure

of the target system
R3 Showing the information in multiple linked views
R4 Displaying concise information by filtering
R5 Supporting the outputs obtained both from simulators and

actual systems in the same framework
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Visualizing both the network statistics and node events in the
same tool allows the developer to easily find bottleneck links
and the events that cause them. Additionally, the developer also
can intuitively understand which part of a network is heavily
used by observing the topologically mapped information. The
tool should provide multiple views with multiple levels of
abstraction because needed information is sometimes lost at
different levels of abstraction. In addition, information that is
not the current focus of the investigation must be filtered out
by the developer. As discussed above, developers evaluate their
algorithms on a simulator and target system. Considering this,
the tools should analyze both outputs obtained from simulators
and actual systems within a single framework.

III. RELATED WORK

Bhatele et al. visualized communications that occurred
in an Adaptive Mesh Refinement (AMR) application [10].
Existing visualization tools, such as Jumpshot [11], ParaProf
[12], and Vampir [13], visualize a profiler’s outputs. Other
well-known tools such as Open|SpeedShop [14] and TAU [15]
provide an integrated environment for performance analysis.
These tools summarize outputs obtained by the profiles in
graphs, tables, and figures. They are useful for analyzing events
that occur in the nodes. However, these tools basically do not
support network statistics because profilers cannot be designed
to acquire the network statistics.

Minkenberg and Rodriguez proposed a simulation envi-
ronment to support the development of high performance
computing systems [16]. An MPI task simulator works with
a network simulator in this simulation environment to emu-
late parallel applications running with specific topology and
hardware construction. This environment uses Paraver [17] to
visualize the communication.

SimCon [18] was developed to find appropriate overlay
networks for running parallel applications. This simulator
displays networks based on physical distances and links be-
tween pairs of communicating nodes. Users can understand the
communication situation from the simulation results. Gamblin
et al. [19] also developed a tool to evaluate parallel applications
to optimize node mapping. This tool presents a topological
view of the network and places the information on this
view. By observing this view, users can intuitively check the
communication situation. However, these tools also require
external tools to obtain network statistics.

Landge et al. [20] developed a visualization tool to analyze
packet traffic on the torus network. This tool focuses especially
on recent Blue Gene systems. It provides two linked views
to show an overview of the packet traffic. One view is a
2D projection, mainly used to show brief trends and patterns
of the traffic. The other view is a 3D topological view that
maps traffic patterns to the physical structure of a target
network. This tool allows application developers to understand
link utilization and find bottleneck links intuitively. However,
application developers still need to combine it with another
tool to inspect the cause of the bottleneck.

IV. CLV

A. System summary

CLV is designed to implement two requirements, R1 and
R5, into a single tool. Existing visualization tools introduced
in Section III have some features that implement R2, R3, and

Figure 1. Example of the time series view. Maximum and average values are
represented by red and green bars, respectively.

R4. R1 and R5 can also be realized by combining multiple
tools. However, there is no integrated tool that implements R1
and R5. CLV also has basic functions that are implemented
in existing visualization tools. In addition, CLV can read
and analyze logfiles obtained both from simulators and actual
systems in the same framework. This feature is useful when
developers need to test their algorithms on a simulator and
an actual system repeatedly. As of now, Booksim [21] and
Message Flow Simulator (MFS) [22] can be used as the
simulators, and the K computer using the Tofu Performance
Analysis (Tofu PA) [23], is targeted for the actual system.
The developer can use existing simulators or performance
measurement tools for traffic data acquisition. CLV provides
an utility to convert the data format to feed the data into CLV.

CLV mainly provides two views: time series and topolog-
ical. The time series view summarizes network statistics in
the time series. This view is also used to select a particular
time on which to focus. All views in CLV are linked from
the time series view. When a user selects a time in the time
series view, all other views show the data at that time. The
topological view maps the events that occurred in the nodes
and network statistics to the physical structure of the network
in 3D space. As of now, CLV can visualize the messages
sent as the events. This view shows link utilization as well as
the duration of the communication delay. Users can filter the
information by selecting nodes or links in this view. The users
also can understand where the messages sent events occurred
in the network from this view.

CLV was implemented in C++ with OpenGL library. Thus,
the CLV can be compiled on any OS that has OpenGL
implementation. We also used the OpenGL Utility Toolkit
(GLUT) [24] to construct the user interface.

B. Time series view

Figure 1 shows an example of the time series view. This
screenshot shows the link utilization for sending (SendFlit)
and receiving (RecvFlit) for all links in each dimension. It
also shows the communication delay (VCFull). The horizontal
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Figure 2. Examples of the topological view showing link utilization and
communication delay

line represents the elapsed times. The time unit is an interval
time of data specified in the logfiles. The link utilization and
communication delay are defined as the fraction of bandwidth
and number of wait cycles in each time unit, respectively.
Dimensions “X,” “Y,” and “Z” correspond to the first, second,
and third dimensions of the network. “Host” refers to a link
connected from a node to a router (switch) in the network. The
“+” and “-” symbols indicate the directions of the links.

The graphs in the screenshot indicate the maximum and
average values by the red and green bars, respectively. If
the average value (green) is close to the maximum value
(red), most messages on all the links in those directions and
dimensions have transferred efficiently. In contrast, if these
values are far apart, a small number of links are heavily used,
while most of the remaining links are not utilized.

C. Topological view

In the topological view, information is mapped to the
physical structure of a network topology in 3D space. Figure
2 shows an example of the topological view. The triangle in
the top left corner of the figure is a legend that specifies link
utilization and communication delay by color.

The situation in Figure 2 is such that the three source
nodes at the lower front left nodes (180, 186, and 192) are
communicating with three other destination nodes at the upper
back right (23, 29, and 35). We added the node numbers to
the screenshot for this explanation.

Small arrows are printed on the links. These are showing
a direction of the messages sent. From the direction of the ar-
rows, the users can understand that the events of the messages
sent occurred in node 180, 186, and 192.

The colors represent link utilization and communication
delay. The green link between nodes 197 and 203 indicates
that this link is fully used (100%). Furthermore, we can see
that the links around this green link are colored dark green and
gray. The user can determine that these links have lower link
utilization from the legend. There are purple and gray links in
the lower half of the view. This indicates that the packets on
the purple links wait for a long time, while packets on the gray

links only wait for a short time. From this view, the user can
guess that the packets on the purple links are blocked while
the packets on the gray links are transmitted through the green
links. In the same way, users can guess the cause of low link
utilization from this view.

V. CASE STUDY

A. Comparing all-to-all algorithms on a simulator

We first compared two all-to-all algorithms using CLV on
simulation results. We simulated all-to-all communications on
a 10 × 10 × 10 3D mesh network using Booksim. In this
simulation, each node sends one message to 999 other nodes.
One message consists of 200 flits, and one flit is sent per cycle.
Dimension order routing is used as the routing algorithm. Node
numbers (ranks) are assigned in the order of x, y, and z
dimensions.

We chose to compare two all-to-all algorithms using a
simple spread algorithm and an algorithm optimized for torus.
We refer to the simple spread and torus optimized algorithms
as A2A and A2AT, respectively, in this paper. A2A is used in
many MPI libraries such as MPICH [25], MVAPICH [26], and
Open MPI [27]. A destination node number in A2A is calcu-
lated by (src + i) mod N (i = 1, 2, . . . , N − 1). Here, src
and N represent a source node number and the total number
of nodes in the network, respectively. A2AT is an optimum
topology-aware algorithm for mesh/torus networks that we
previously proposed [28]. We have shown that A2AT performs
better than a modified version of A2A. Here, we investigate the
communication efficiency with respect to performance using
the CLV visualization result.

Figure 3 presents the visualization results of both algo-
rithms in the time series view. The figures show the first
part of each simulation result. Link utilization in the y and z
dimensions in Figure 3(a) decreases several times, as indicated
by the rectangles. This indicates that A2A does not utilize links
in the y and z dimensions at this time. In contrast, there are
no large black spaces in Figure 3(b). This indicates that A2AT
utilizes all links at any time. We confirmed from these results
that A2AT provides better performance by utilizing the links
in y and z dimensions to avoid using the bottleneck links.

B. Comparing all-to-all algorithms on the K computer

1) Preparation: The K computer implements a tuned all-
to-all algorithm in its MPI library [29]. We refer to this MPI
library as the Tofu MPI in this paper because the K computer
employs a 6-dimensional mesh/torus network called the Tofu
interconnect. In this algorithm, the order in which the messages
are sent is modified while considering the routing algorithm
of the K computer. The barrier operation is also used to make
the messages sent in this algorithm uniform. We evaluated this
algorithm on a full system of the K computer at the RIKEN
Advanced Institute of Computer Science in Japan [30].

The fourth, fifth, and sixth dimensions are labeled a, b, and
c, respectively, in the Tofu interconnect. The K computer has
82,944 (= 24×18×16×2×3×2) computation nodes, excluding
I/O nodes. The physical construction of the K computer was
24×18×17×2×3×2. However, nodes located on z = 0 are
reserved for I/O nodes. Therefore, the full size of the system
that could be used was 24× 18× 16× 2× 3× 2 because no
I/O nodes joined into the MPI communicator. Note that the y,
a, and c dimensions are mesh networks while the others are
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(a) A2A (b) A2AT

Figure 3. Comparison of simulation results for A2A and A2AT on a 10× 10× 10 3D mesh network in the time series view.

TABLE I. SUMMARY OF NETWORK STATISTICS OBTAINED WITH
THE TOFU PA DURING ALL-TO-ALL COMMUNICATION WITH

32,768 BYTES of DATA

Run time Samples Period Raw logfile size
Tofu MPI 2.77 s = 277 × 10 ms 7.9 GB
Open MPI 22.94 s = 2,294 × 10 ms 59 GB

torus networks.
We ran the tuned all-to-all algorithms implemented in Tofu

MPI and an existing all-to-all algorithm implemented in Open
MPI with 32,768 bytes of data. We also obtained logfiles
using the Tofu PA. TABLE I summarizes the logfiles that we
obtained. The total amount of the messages to be sent was
205.0 TB.

Here, we estimate the ideal communication time of an all-
to-all communication on the K computer. The lower bound of
all-to-all communication time (L) for a mesh/torus network
can be generalized as

L = (α⌊kb
2
⌋⌈kb

2
⌉(

n−1∏
i=0

ki)m)/B. (ki ̸= kb) (1)

Here, kb represents the sizes of the dimensions that have
bottleneck links. The links in the longest dimension are the
bottlenecks. Variables n and ki indicate the number of dimen-
sions and size of the i-th dimension, respectively. Note that the
dimension corresponding to kb will be skipped. Parameters m
and B represent message size and link bandwidth, respectively.
Parameter α is set to 1/2 or 1 depending on whether the
bottleneck dimension has wrap-around links (torus) or not
(mesh).

We need to determine a dimension size kb that includes
bottleneck links to calculate an ideal communication time from
(1). Links in the longest dimension are basically bottleneck
links. Yet, the x dimension is longer than the y dimension
in the K computer network. However, the bandwidth of the
x dimension is twice that of the y dimension because the
x dimension is a torus network. Therefore, the bottleneck
links of the K computer are in the y dimension. The effective

bandwidth of a single link in the K computer was 4.76
GB/s. Thus, the optimum communication time for an all-to-
all communication in the K computer can be calculated to be
2.57 s from (1). From the table, we can find that the Tofu MPI
spent 2.77 s on an all-to-all communication. This means that
the tuned all-to-all algorithm achieved 1.08 times the optimum
communication time.

2) Visualization of all-to-all algorithms: We then visual-
ized an all-to-all communication using the logfiles obtained by
the Tofu PA. The logfiles included various network statistics.
However, the logfiles do not include information corresponding
to the node events such as amount of traffic from the nodes
to the nearest routers. Thus, we only visualized the network
statistics at this time. We visualized the fraction of bandwidth
and communication delay based on the number of sent packets
and the number of wait cycles needed to inject packets.

Figure 4 shows screenshots of the visualization results in
the time series view. The link utilization and message delay are
represented by “Sbyte” and “VC” in Figure 4. Both average
and maximum link utilization (Sbyte) of the Tofu MPI that is
shown in Figure 4(a), were higher than those of Open MPI
that is shown in Figure 4(b). By simply looking at these
visualization results, we can intuitively understand that the
Tofu MPI utilized more links than Open MPI. Link utilizations
in the a, b, and c dimensions are relatively low compared
to other dimensions in both figures. Dimensions a, b, and c
construct a small 2 × 3 × 2 sub-network, hence links in this
small sub-network are not heavily used.

We also found that link utilization in the x, y, and z
dimensions drops twice in Figure 4(a). The all-to-all algorithm
implemented in the Tofu MPI uses the barrier operations at
these two points to send messages uniformly. Right before the
barrier points, it can be seen that the average link utilization
indicated in green in the x dimension is declining. It then
recovers after the barrier points. However, there are also black
gaps around the barrier points. This indicates that the com-
munications are being blocked during these cycles. This could
be the barrier penalty. From this observation, we concluded
that the barrier operations work well to keep the average link
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(a) Tofu MPI (b) Open MPI

Figure 4. Comparison of all-to-all algorithms on full system of the K computer (82,944 nodes) in the time series view.

Figure 5. All-to-all communication using the Tofu MPI on full system of the
K computer (82,944 nodes) in the topological view at 0.33 s

utilization high. However, there is a trade-off between the
number of barriers and average link utilization.

Figure 5 shows a screenshot of the topological view of
the Tofu MPI at 0.33 s. The red vertical line in Figure 4(a)
indicates this time. We can easily focus on this time by
selecting it in the time series view. Links near the middle of
the y and z dimensions are green, as can be seen in Figure
5. This indicates that these links were fully utilized. However,
links near the edge of the network that were not used as much
are colored blue. This is because the y and z dimensions were
a mesh network, which has no wrap-around links. Thus, links
near the corner of the network were not used much more than
the links in the central area of the network.

(a) x dimension (b) y dimension

(c) z dimension

Figure 6. Views of Figure 5 filtered by dimension.

We next filtered this topological view by each dimension
for further analysis. The visualization results are shown in
Figure 6. In Figure 6(a), we can see many brown links in the x
dimension. In contrast, there are no brown links, in the y and
z dimensions in Figures 6(b) and (c). This indicates that many
packets were blocked only in the x dimension. The K computer
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employs routing that sends messages to the x dimension first.
Thus, in all-to-all communication, many packets are injected
into links in x dimension within a short time slot. This leads
to congestion in the x dimension. However, the delay is not
critical, as many links are brown. We suppose that messages
are sent at a constant pace by utilizing the barrier operations
explained above.

VI. CONCLUSIONS

We introduced CLV, a visualization tool to assist the devel-
opment of collective communication algorithms. CLV provides
time series and topological views that visualized information
about node events and network statistics.

We also presented a case study to demonstrate the effective-
ness of CLV. We compared the performances of simple (A2A)
and topology-aware (A2AT) designs of all-to-all algorithms
both in a simulation and on an actual system. We ran two
all-to-all communication algorithms implemented in the Tofu
MPI and Open MPI to compare their performances. The
algorithm implemented in the Tofu MPI was optimized for the
K computer. We found that the Tofu MPI achieved 1.08 times
the optimum all-to-all communication time on the full system
of the K computer that includes 82,944 nodes. We confirmed
that the barrier operation used in the Tofu MPI effectively
keeps link utilization high. We also pointed out that there is
a trade-off between the number of barriers and link utilization
for further optimization.

As of now, CLV can only visualize the messages sent as the
node events. For the future work, other node events that affect
network utilization should be visualized to help optimization
of communication algorithms.
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