
Specification and Verification of Garbage Collector by Java Modeling Language

Wenhui Sun, Yuting Sun, Zhifei Zhang

Department of Computer Science and Technology

Beijing Jiaotong University

Beijing, China

{whsun1, ysun, zhfzhang}@bjtu.edu.cn

Jingpeng Tang

Department of Computer Science

Utah Valley University

Oren, Utah

JTang@uvu.edu

Kendall E. Nygard, Damian Lampl

Department of Computer Science

North Dakota State University

Fargo, ND, USA

{kendall.nygard,damian.lampl}@ndsu.edu

Abstract— The Java garbage collector effectively avoids some

security holes and improves the utilization rate of resources.

Guaranteed reliability of the garbage collector is a challenge

due to the complexity of the interaction between the collector

and the user program; the highly abstracted garbage collector

algorithms cannot reflect the real implementation details.

System complexities have allowed dynamic analysis based on

Design by Contract (DBC) to become an important method for

ensuring software quality. Java Modeling Language (JML)

inherits all the advantages of contractual design, and became a

behavior interface specification language for Java. JML can be

used to regulate module behavior and detailed design of Java

programs. In this paper, we discuss the JML specifications for

the functional requirements of the garbage collector in Hoare-

style. This approach can improve the reliability and

correctness of the software system in the extent of real

environments and run-time.

Keywords- design by contract, Java Modeling Language,

garbage collector.

I. INTRODUCTION

A large number of existing research works have addressed
validating various types of garbage collection algorithms.
However, these works focus on highly abstract algorithms
with little work on implementations. Birkedal, Torp-Smith,
and Reynolds gave an informal proof of a copying garbage
collector [1]. Russinoff mechanically verified an incremental
garbage collector under abstracted memory and a user
program without actual environmental and implementation
details. Validated algorithms are not equivalent to executable
programs [2]. Lin, Chen, and Li verified the incremental
stop-the-world mark-sweep garbage collector, which is more
complex [3]. However, the interactions between a user
program and garbage collector do not typically exist for a
stop-the-world garbage collector.

Java Garbage Collector is an important component of a
software system that can effectively avoid dangling pointer
bugs, memory leaks, double free bugs, and can improve
memory utilization [4]. Multi-threading makes possible for a

concurrent incremental garbage collector. However,
compared to a stop-the-world garbage collector, it is more
complex and the reliability issue is more challenging. Java is
an object-oriented language with inheritance, polymorphism,
and dynamic binding properties. The program execution is
no longer simply based on static typing and must now
accommodate dynamic typing, meaning the type will not be
known until execution time. This will introduce extra
complexity to ensure program correctness. If the garbage
collector process produces errors or exceptions, the user
program will run into unpredictable consequences.
Therefore, ensuring the reliability of the garbage collector is
extremely important.

Many practitioners utilize Design by Contract (DBC) to
improve software quality. Java Modeling Language (JML) is
a DBC implementation in Java, and is also a precise formal
specification language for Java programs [5][6]. JML can
accurately describe functional requirements and generate
efficient testing cases which can avoid ambiguity and
inaccuracies caused by natural language [7]. Formal interface
specifications written in JML can also encourage automated
testing.

This paper discusses the validation and verification of an
incremental mark-sweep garbage collector. The security
interaction between the garbage collector and the user
program is accurately described by applying JML
precondition, postcondition, and invariants in Hoare-style
logic. The JML runtime assertion will automatically perform
formal verification to ensure the correctness of the garbage
collector. This study focuses on real environment memory
objects. The JML specification covers both normal and
abnormal behavior, which can accurately describe the real-
time environment. The assertions are runtime execution, thus
they can effectively handle polymorphic, inheritance and
dynamic binding for object-oriented software. In our
approach, program execution is not only the result of a
function generation process, but also an assertion checking
process. This approach can improve correctness and

18Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

reliability for the garbage collector, quickly position errors,
and handle abnormal behavior during collection.

The main contributions of this paper are listed as follows:
(1) Using JML to verify the incremental mark-sweep

garbage collector. JML, a Hoare-style syntax for pre- and
postconditions and invariants, is a DBC implementation in
Java. If the inputs meet the requirements, we should get the
expected outputs. In more detail, if we take the parameters as
inputs and returns as the outputs, then the responsibility of
the caller (client) is to ensure that the correct parameters are
provided, while the obligation of the supplier is to ensure the
correct results are returned.

(2) Verifying the write barrier of the garbage collector

using JML. The verification can avoid incorrect operation
due to memory access and modification by the user program,
to improve the correctness of the interaction between the
garbage collector and the user program.

(3) Improve simplicity and understandability of the

program function code. By separating the original program
function code from the DBC checking code using JML, the
program function code no longer mingles with DBC code
block, thus avoiding unnecessary confusion. Also, the
postcondition failure can easily locate errors. Improvement
of algorithm reliability, as well as code understandability,
can be achieved.

The rest of the paper is organized as follows: Section 2
describes JML and examples. Section 3 describes the
garbage collector and write barrier algorithm using JML.
Section 4 establishes the capabilities of the garbage collector
in detail. Finally, Section 5 points out the conclusion and
future work.

II. INTRODUCTION TO JML

A. Features of JML

JML specifications are written as Java annotation
comments in the source files, and can be compiled with any
Java compiler. These specifications are more abstract
without logic implementation and thus can increase the
modularity and accuracy of the source code [7][8]. By using
DBC ideas, JML inherits all of its advantages, and is an
excellent specification language:

(1) Documentation. JML provides semantics to formally
specify interface, behavior, and detailed design. Java
modules with JML specifications can be compiled with any
Java compiler, making JML well suited for documenting
reusable components, libraries, and frameworks [8].

(2) Clear Obligation. Pre- and postconditions separate the
obligation. A precondition error indicates that the user's input
does not meet the conditions, while a postcondition error
indicates the procedural methods do not meet the
requirement [9][10].

(3) High Efficiency. Since each execution of pre- and
postconditions checks will consume resources, JML can turn
off these checks to avoid unnecessary consumption of
resources. This mechanism can decrease the cost of
debugging and testing.

(4) Modular Reasoning. JML is abstract so that by
reading the formal specification of a method its function is
understood with no need to go inside other referenced
methods (JML modular reasoning). JML modularity brings
the benefits of easy understanding, but shields the details.
The user will cannot understand the contents due to the lack
of corresponding information.

In addition, the quantifier, specification inheritance, and
pre-process can make the specification more accurate. Java
modules with JML specifications can describe a method or
class’s anticipated behavior, without affecting the normal
code while compiling. This can provide an early detection of
incorrectness to improve the security of a system. Finally,
Java modules with JML specifications can be compiled
unchanged with any Java compiler. Various verification
tools, such as a runtime assertion checker and the Extended
Static Checker (ESC/Java) are available to aid the
development. If the program does not implement the
specification, JML throws an unchecked exception to explain
that the program violates the specification.

B. JML Syntax and Examples

 JML is a behavioral interface specification language for

Java modules. JML provides semantics to describe the

behavior of a Java module, preventing ambiguity with the

module designers' intentions. Developers use JML to write

classes and interfaces in the form of specifications. Each of

the methods and interfaces written in accordance with the

functional requirements is a JML formal specification.

Developers must consider specific context of the system

within which the method is running. The more precise the

specification is, the more correctness will be achieved.

 The example below illustrates JML usage and how it

ensures reliability of a program. Assume class

CustomerManager can manage all customer information of

class BasicCustomerDetails. CustomerManager provides

users with the add() method to create new customers. When

a clear requirement of the add() method is available, we can

develop JML specification as follows:

/*@ public normal_behavior

@ public invariant count>=0;

@ requires !theManager.idActive(theCustomer);

@ assignable theManager;

@ ensures

@ theManager.count==\old(theManager.count+1);

 @ theManager.idActive(theCustomer);

 @*/

public void add(BasicCustomerDetails theCustomer);

Figure 1. JML example.

 JML invariant assertion count is always greater than or

equal to zero. Class CustomerManager’s invariant count is

19Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

true under all circumstances. In line 3, the keyword requires

starts the precondition followed by a precondition assertion,

@ requires !theManager.idActive(theCustomer);

 The precondition has to be true; otherwise, the caller is

not able to call this method. This shows that in order to

legally call add() to add theCustomer, theCustomer.id

should be inactive. This will be asserted during runtime.

Keyword assignable can modify the variable theManager.

Keyword ensures introduces the postcondition which should

be true after the execution, otherwise there are errors in the

implementation of the add() method. In this case, the

postcondition includes two assertions,

@theManager.count==\old(theManager.count+1);

 @theManager.idActive(theCustomer);

 The first assertion ensures count is incremented by 1. The

expression \old indicates that the count value is the value

before calling add(). The second assertion indicates the

customer ID is now active. The pre- and post-conditions are

specified as:

(1) If the customer ID is already active, the same

customer cannot be added;

(2) Increasing the customer count will make the

customer ID active.

 Violation of either one or both will be considered as

illegal and prohibited. If the add() method implementation

did not follow JML specification, we would get error

debugging feedback like the following:

 By reading the debug feedback, we can get the following

information:

(1) The application is stopped in an object;

(2) The object is theManager of class CustomerManager;

(3) The error occurred when calling the add() method;

(4) The error is a violation of a precondition of add();

(5) The violation is idActive;

(6) The BasicCustomerDetails object (theCustomer) caused

the error when passed as an argument;

(7) The call sequence causes the problems: The

changeCustomer method of the CustomerManagerUif class

(Customer Manager user interface) calls the add() method of

the CustomerManager class;

 In summary, we conclude that the CustomerManagerUif

class's changeCustomer method is the problem: it is trying

to add() an activated ID of the BasicCustomerDetails object,

which is illegal.

 In supporting the design by contract without slowing

down the program execution, the contract testing can be

manipulated by turning it on or off according to customer

need.

III. MARK-AND-SWEEP GARBAGE COLLECTION

A. Garbage Selection Algorithm

The mark-and-sweep algorithm is based on tracing
through the working memory, which includes a mark phase
and sweep phase. In the mark phase, the collector does a tree
traversal of the entire “root set”, marking all reachable
objects, while the remaining memory cells are unreachable.
During the sweep phase, unreachable objects are returned to
the free list. The most notable disadvantage is that the entire
system must be suspended during collection, also known as a
stop-the-world event. In order to avoid this halting
interruption, we adopted an interleaved garbage collector and
user program which is called incremental collection. In our
approach for JML specification, we also adopted tri-color
marking, which divides the heap node into black, gray, and
white sets. The tri-color method can be performed “on-the-
fly”, without halting the system for significant time periods.

(1) The black set is the set of reachable objects that the

garbage collector has visited and all their referenced objects.
(2) The gray set is the set of reachable objects the

garbage collector has not visited; or, visited but not all their
referenced objects; or, the reference relationship has been
changed by the user program.

(3) The white set is the set of unreachable objects the
garbage collector has not yet visited. At the end of the
tracking phase, these are the garbage.

The garbage collection process is divided into mark,

sweep, and idle phases. During the mark phase, each object
in memory has a flag (a single bit) reserved for garbage
collection and a stack data structure to achieve the tri-color
abstraction: 1) a marked object not in the stack is considered
black; 2) a marked object in the stack is considered gray; 3)
an unmarked object not in the stack is white. Although
additional data structures needed for the mark phase will
increase the memory space required for the collector, they
will also shorten the time used for marking survived objects
in the stack. If the stack is not empty, every time a gray
object is visited, the garbage collector will mark all the non-
black objects that are referenced by the current object to
grey, and mark the current object to black. This process will
continue until the number of visited objects meet the thresh
value, and go to the sweep phase. In the sweep phase, not
only the white objects are recycled, but also all the black
objects are marked white for the next round before entering
the idle phase. Once the empty space in the stack is less than
the thresh value, a new mark phase is started again.

20Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

 Root Root

A B A B

 C C

Figure 2. User programs violate garbage collection.

B. The Write Barrier

The role of the write barrier is to prevent error caused by
a changed reference graph from the user program. Figure 2
shows the user program has changed pointer A to point to
object C, and we do not know if there are other references to
object B. If the objects B and C at the end of the mark phase
are still white, then the garbage collector must ensure they
are marked, otherwise they will be treated as garbage in the
sweep phase. In this case, an object needs to be protected by
a write barrier. Otherwise, there must be an object that is still
reachable by the user program but is marked white. Thus,
two conditions must be met at marking phase:

(1) A reference to a white object is written to a black
parent object, and this is the only reference to this white
object.

(2) The original reference to the white object is
eliminated.
 An object is retained if one or both of the conditions failed.
We used Dijkstra’s algorithm for color updating. Every time
a reference to a white object is created, regardless of the
color of its parent, this white object is marked gray. When
the collector traverses the heap, there will be no reference
from a black object to a white object. For a reachable white
object, there must be a path from gray to white. When the
collector traverses the stack, condition 1 will fail. This is the
solution for the communication between the user program
and the collector.

IV. GARBAGE COLLECTOR JML SPECIFICATION

 The JML specification for the garbage collector is
discussed in this section. Assume the pointerSet is the
memory set for the garbage collector, including white, gray,
black, and free sets. The freeList is a linked list used to store
the recycled idle objects. The stack together with the flag bit
is used for marking the objects. The detailed JML
specification of the garbage collector is as follows:

/*@ require p.getAddr()>=ST&&p.getAddr()<=ED;

 @ assignable p.color,stack;

 @ ensures p.getColor()==Color.BLACK;

 @ stack.peek()==p;

 @ stack.count==\old(stack.count+1);

 @ also

 @ requires p.getAddr()<ST||&p.getAddr()>ED;

 @ assignable \nothing;

 @ signals_only IllegalArgumentException;

 @*/

 public void markField(/*@non_null @*/ Pointer p);

Figure 3 JML specification for the markField.

 The markField function has a constraint that the non_null
parameter passed is not an empty pointer. If the pointer
address is not within the address space managed by the
collector, assignable \nothing cannot modify the stack,
otherwise it is painted gray. According to the coloring, set p
flag and push to the stack. The function returns the top
element, stack.peek() which is p, and the number of
elements in the stack increases by 1, which is
\old(stack.count) plus 1.

/*@requires phase==Phase.MARK&&stack.count==0;

 @ assignable Phase;

@ ensures phase==Phase.MARK;

@ \not_modifed(stack);

@ \not_modifed(pointSet);

@ \not_modifed(freeList);

@also

@ requires phase==Phase.MARK&&stack.count>0;

 @ (\forall Pointer p;

@ pointerSet.contains(p)&&p.getcolor==Color.BLACK;

@ p.accessible(root));

 @ invariant NumMark>=MARKNUM&&NumMark<=MARKNUM;

@ assignable Phase,stack,pointSet.color,pointSet.Field;

 @ ensures (numMark==MARKNUM&&phase==Phase.MARK);

 @ (\forall Pointer p;

@ pointerSet.contains(p)&&p.getcolor()==Color.BlACK;

@ p.getField1().getcolor()==Color.BlACK&&p.getField1==stack.peek()&&

@ p.getField2().getcolor()==Color.BlACK&&p.getField1==stack.peek()));

@*/

public void mark();

Figure 4. JML specification for the mark function.

21Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

 The precondition of the mark() function is that garbage

collection is in the mark phase, and the operations are

dependent on the status of the stack. When the stack is

empty, that means no nodes need to be visited, and no

operations need to be done, thus the garbage collection goes

to the sweep phase directly. If the stack is not empty, the

mark stage is started. The assumption is that all the black

and gray objects are reachable by the root. Each time a top

element (a black node) is popped, all its referenced objects

need to be marked gray, and the number of marked objects

increases until reaching the threshold value. In the mark

phase, the pop and push operations modify the stack, the

flag, and the address space, while other variables that are

not declared in the assignable remain unmodified. This

ensures that the mark process did not modify the user

information, idle list, or the current sweep position in the

main memory.

/*@ invariants numSwept>=0&&numSwept<=SWEEPNUM;

 @ invariants sweepCur>=START&&sweepCur<=END;

@ requires phase==Phase.SWEEP&&START<=p.getAddr()<=END;

@ assignable freeList,pointSet.color;

 @ ensures numSwept=SWEEPNUM;

@ (\forall Pointer p;START<=p.getAddr()<=sweepCur&&

@ \old (p.getColor()==Color.BLACK);p.getcolor==WHITE)

 @ (\forall (Pointer p;sweepCur<=p.getAddr()<=END&&

@ \old (p.getColor()==Color.BLACK);p.getcolor==BLACK)

 @ (\forall (Pointer p;START<=p.getAddr()<=sweepCur&&

@ \old(p.getColor()==Color.BLACK);p.getcolor==WHITE&&

@ freelist.getlast()==p&&p.freeField<==>TRUE);

@also

 @ requires phase==Phase.SWEEP&&p.getAddr()>=END;

@ ensures phase==phase.IDLE;

@*/

public void sweep();

Figure 5. JML specification for the sweep function.

Similar to the mark() function, the precondition for the

sweep() function is that garbage collection is in the sweep

phase. Its task is to recycle a certain number (SWEEPNUM)

of garbage. The invariant keyword describes, during sweep

the numSwept (already swept objects) and sweepCur

(current sweep address) should both be within the valid

range. Changing in \old(p.getColor) (before call) and

p.getColor (after call) means all the objects before

sweepCur are swept. For the objects after sweepCur,

p.getColor remaining unchanged means the objects were not

visited. By setting the second identification bit p.freeField

we can check whether the garbage is in the free list. The

assertion Freelist.getlast () == p verifies if it is indeed

recycled in the free list. Finally, all the visited black objects

are marked white for the next round sweep.

Garbage collector calls the corresponding functions

according to phase status. Whether to start the next round of

mark-sweep is based on the number of idle objects

(FREENUM). The garbage collector constantly monitors the

memory to make judgments. When the size of the free list,

freelist.size, is less than the threshold, the start_marking

function sets phase to mark status. The sweepCur starts

scanning from low address and marks the root node to mark

phase. Its JML specification is as follows:

/*@ requires freelist.size()<FREENUM&&phase==Phase.IDLE;

 @ ensures sweepCur==START;

 @ phase=Phase.MARK;

 @ root.color==Color.BLACK;

 @ root==stack.peek();

 @ stack.size=\old (stack.size+1);

@*/

public void startMarking();

Figure 6. JML specification for start_marking().

 In order to make the garbage collector and the user

program interact properly, the allocate() function needs not

only to allocate space to the user program from the free list,

but also needs to avoid treating objects as garbage in the un-

swept address segment. After assigning space to the user

program (\result is assigned starting address), the length of

the free list and the number of the idle objects (numfree)

will both be reduced. Marking objects after sweepCur black

can ensure the unprocessed objects are not treated as

garbage.

22Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

/*@ requires freelist.size()>0;

 @ assignable freelist,pointSet.color;

 @ ensures \result=\old(freelist.getFirst());

 @ freelist.size()=\old(freelist.size()-1);

 @ numfree=freelist.size();

 @ (\result.getAddr()<sweepCur;||(\result.getAddr()>=sweepCur&&

@ \result.getColor==Color.BLACK;)

 @*/

public void allocate ();

Figure7. JML specification for allocate function

The assignable constraint in the write barrier only

changes the color of the node, while data in memory is not

changed before or after the execution of write barrier. As

long as there is a pointer from black to white in the stack,

the white are marked gray to ensure the user program will

not interfere with the execution of the garbage collector.

/*@ requires phase=Phase.MARK;

 @ assignable stack,pointSet.color;

@ ensures (\exist Iterator it; PointerSet.iterator()>=START/(sizeof)(Pointer)

@ &&PointerSet.iterator()<=END/(sizeof)(Pointer)&&

@ \old(it.getcolor==Color.BLACK)&&\old(it.next().getColor==Color.WHITE);

@ it.next().getColor==Color.BLACK&&stack.count=\old(stack.count+1)&&

@ stack.peek()==it.next());

*@/

public void djikstraStroe(Pointer field,Pointer val);

Figure 8. JML specification for djikstraStore().

The examples shown above illustrate that the JML

specification can efficiently specify the pre- and
postconditions for the mark, sweep, and write barriers of the
garbage collector. Based on the system requirements, the
JML specification can be applied to the entire garbage
collector to improve the correctness and reliability.

V. CONCLUSION AND FUTURE WORK

 We discussed the JML specification for the interaction
between the garbage collector and the user program. The
assertion is based on DBC pre- and postconditions in Hoare-
style logic. This study focuses on real environment memory
objects without abstraction, which is more reliable to some
extent. The JML specification covers both normal and

abnormal behavior which can accurately describe the real-
time environment. Runtime execution of the assertions is
more suitable for object-oriented software. In our approach,
program execution is not only the result of a function
generation process, but also an assertion checking process.
This approach can improve correctness and reliability for the
garbage collector, quickly position errors, and handle
abnormal behavior during collection. For the future, we will
focus more on DBC implementation in JML, improve
accuracy for describing various types of garbage collectors,
and their implementation on generational concurrent garbage
collectors.

REFERENCES

[1] L. Birkedal, N. Torp-Smith, and J. Reynolds, “Local

reasoning about a copying garbage collector,” Proc. 31st
ACM Symp On Principles of Prog .Lang. pp 220-231, 20014.

[2] D. Russinoff, “A mechanically verified incremental garbage
collector,” Formal Aspects of Computing, vol. 6, pp 359-390,
1994.

[3] L Chun-xiao, Y. Chen and Li Long, “Garbage collector
verification for proof-carrying code,” Journal of Computer
Science and Technology vol 22, pp. 426-437, 2007.

[4] M. Ben-Ari, “Algorithms for on-the-fly garbage collection,”
ACM Transactions of Principles on Programming Languages
and Systems, vol. 6, pp. 333-344, 1984.

[5] G. Leavens, A. Baker, and C. Ruby, “Preliminary Design of
JML: A Behavioral Interface Specification Language for
Java,” ACM SIGSOFT Software Engineering Notes, vol 31,
pp. 1-38, 1999.

[6] G. Leavens, A. Baker and C. Ruby, “JML: A Notation for
Detailed Design.,” in Behavioral Specifications for
Businesses and Systems, Chapter 12, H Kilov, B Rumpe and
W Harvey, Eds. Kluwer, pp. 175-188, 1999.

[7] G. Leavens and Y. Cheon, “Design by Contract with JML,”
[Online]. Available from:.
http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf. Accessed
3/12/2014.

[8] G. Leavens, E Poll, C. Clifton, Y. Cheon, C Ruby, D Cok, J.
Kiniry, P. Chalin, D. Zimmerman and W. Dietl. “JML
Reference Manual,” (DRAFT), [Online]. Available from:
http://www.jmlspecs.org/OldReleases/jmlrefman.pdf.
Accessed 3/12/2014.

[9] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens,
K. Rustan M. Leino and E Poll, “An overview of JML tools
and applications,” International Journal on Software Tools for
Technology Transfer, vol. 7, pp. 212-232, 2005.

[10] R. Mitchell, J. McKim and B. Meyer, Design by contract, by
example, Redwood Citiy, Addison Wesley, 2002.

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

