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Abstract—One of the best media for studying natural 

computing is presented by the behavior of Physarum 

Polycephalum plasmodia. Plasmodium has active zones of 

growing pseudopodia and these zones interact concurrently 

and in a parallel manner. This behavior can be stimulated by 

attractants and repellents. In the paper, different syllogistic 

systems are proposed for simulating the plasmodium’s 

behavior. While Aristotelian syllogistic may describe concrete 

directions of Physarum spatial expansions, pragmatic 

syllogistic proposed in this paper may describe Physarum 

simultaneous propagations in all directions. It is a more 

suitable system for applying syllogistic models in designing 

logic gates in plasmodia. 

Keywords-plasmodium; L-system; Aristotelian syllogistics; 

non-Aristotelian syllogistics. 

I.  INTRODUCTION 

There are many approaches to biological computing as a 
kind of unconventional computing; one of them is presented 
by systems invented by Aristid Lindenmayer [4]. They are 
called L-systems and allow us to simulate the growth of 
plants by formal grammars [6][13]. In the project [2], we are 
going to develop another approach to biological computing, 
assuming a massive parallelism of biological behavior. In 
this paper, we will show that we can implement two 
syllogistics in the biological behavior: the Aristotelian 
syllogistic [5] and a non-Aristotelian syllogistic constructed 
in [10][12]. The first is implementable within standard trees 
of appropriate L-systems. The second is massive-parallel and 
contain cycles and, therefore, can be implementable just 
within non-standard trees of some rigorous extensions of L-
systems. This means that Physarum Polycephalum, the 
medium of computations, which we have studied in the 
project, embodies complex extensions of L-systems.  

Let us recall that Physarum Polycephalum is a one-cell 
organism that behaves according to different stimuli and can 
be considered the basic medium of simple actions that are 
intelligent in the human meaning [1][2][7][8][9]. It behaves 
by plasmodia which can have the form either waves or 
protoplasmic tubes (arches).  Hence, it is a system that is 
being spatially extended, as well as standard L-systems. This 
extension can be described as an extension of L-system 
called Physarum L-system (Section 2). Within this system 
we can implement (i) Aristotelian syllogistic in the 
Physarum media (Section 4), as well as non-Aristotelian 
syllogistic defined in [10][12] (Section 5).  

In our project [2], we obtained a basis of new object-
oriented programming language for Physarum polycephalum 
computing [11]. Within this language we are going to check 
possibilities of practical implementations of storage 
modification machines on plasmodia and their applications 
to behavioral science such as behavioral economics and 
game theory. The point is that experiments with plasmodia 
may show fundamental properties of any intelligent 
behavior. The language, proposed by us, can be used for 
developing programs for Physarum Polycephalum by the 
spatial configuration of stationary nodes.  Some preliminary 
results of computational models on plasmodia are obtained 
in [1]. In this paper, we consider possibilities to implement 
syllogistic models as logic gates for Physarum 
Polycephalum, which can be programmable within our 
language. In Section 2, we define Physarum L-systems. In 
Section 3, we consider their particular case presented by 
Aristotelian trees. In Section 4, we show how we can 
implement Aristotelian syllogistic in the Physarum behavior. 
In Section 5, we show how we can implement non-
Aristotelian syllogistic defined in [10][12]. 

II. PHYSARUM L-SYSTEM 

The behavior of Physarum plasmodia can be stimulated 
by attractants and repellents. We have the following entities 
which can be used in programming plasmodia: 

 The set of active zones of Physarum {V1, V2, ...},  
from which any behavior begin to carry out.  

 The set of attractants {A1, A2, ...}; they are sources 
of nutrients, on which the plasmodium feeds, or 
pheromones which chemically attract the 
plasmodium. Any attractant is characterized by its 
position and intensity. 

 The set of repellents {R1, R2, ...}. Plasmodium of 
Physarum avoids light and some thermo- and salt-
based conditions. Thus, domains of high 
illumination (or high grade of salt) are repellents 
such that each repellent is characterized by its 
position and intensity, or force of repelling.  

 The set of protoplasmic tubes {T1, T2, ...}. 
Typically, plasmodium spans sources of nutrients 
with protoplasmic tubes/veins. The plasmodium 
builds a planar graph, where nodes are sources of 
nutrients or pheromones, e.g., oat flakes, and edges 
are protoplasmic tubes.  

Plasmodia grow from active zones. At these active zones, 
according to Adamatzky's experiments [2][3], the following 
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three basic operations stimulated by nutrients (attractants) 
and some other conditions can be observed: fusion, 
multiplication, and direction operations (see Fig. 1): 

 
 

 
 

Figure 1.  The stimulation of the following operations in Physarum 

automata: (a) fusion, (b) multiplication, and (c) direction, where  A1, A2, A3 

are active zones, N, N1, N2, N3 are attractants,  is a protoplasmic tube, R is 

a repellent. 

 
(1) The fusion, denoted Fuse, means that two active 

zones A1 and A2 either produce new active zone 
A3 (i.e., there is a collision of the active zones) or 

just a protoplasmic tube : Fuse(A1, A2) = A3 or 

Fuse(A1, A2) = .  
(2) The multiplication, Mult, means that the active 

zone A1 splits into two independent active zones 
A2 and A3, propagating along their own 

trajectories: Mult(A1) = {A2, A3} or Mult() = 
{A2, A3}.  

(3) The direction, Direct, means that the active zone 
A is not translated to a source of nutrients but to a 
domain of an active space with certain initial 
velocity vector v: Direct(A, v).  

These operations, Fuse, Mult, Direct, can be determined 
by the attractants   {A1, A2, ...} and repellents {R1, R2, ...}. 

On the basis of active zones {V1, V2, ...}, attractants {A1, 
A2, ...}, repellents {R1, R2, ...}, and protoplasmic tubes {T1, 
T2, ...}, we can define a Physarum L-system. Let us 
remember that an L-system consists of (i) an alphabet of 
symbols that can be used to make strings, (ii) a collection of 
production rules that expand each symbol into some larger or 
shorter string of symbols, and (iii) an initial string from 
which we move. These systems were introduced by 
Lindenmayer [4][6][13] to describe and simulate the 
behavior of plant cells.  

The Physarum L-system is defined as follows: G = G, 

ω, Q, where (i) G (the alphabet) is a set of symbols 
containing elements that can be replaced (variables), namely 
they are active zones {V1, V2, ...}, which can be propagated 
towards attractants {A1, A2, ...} by protoplasmic tubes and 

avoid repellents {R1, R2, ...}, i.e., G = {V1, V2, ...}  {A1, A2, 

...}  {R1, R2, ...}; (ii) ω (start, axiom or initiator) is a string 
of symbols from G defining the initial state of the system, 
i.e., ω always belongs to {V1, V2, ...}; (iii) Q is a set of 
production rules or productions defining the way variables 
can be replaced with combinations of constants and other 
variables, i.e., production rules show a propagation of active 
zones by protoplasmic tubes towards attractants with 
avoiding repellents.  

Let A, B, C are called primary strings, their meanings  
run over symbols V1, V2, ..., A1, A2, ... Production rules allow 
us to build composite strings from primary strings. So, a 

production A Q B consists of two strings, the predecessor 
A and the successor B. Some basic cases of productions are 

as follows: (i) the fusion, denoted AB Q C, means that two 
active zones A and B produce new active zone C at the place 

of an attractant denoted by C; (ii) the multiplication, A Q 
BC, means that the active zone A splits into two independent 
active zones B and C propagating along their own 
trajectories towards two different attractants denoted then by 

B and C; (iii) the direction, A Q B, means that the active 
zone A is translated to a source of nutrients B.  

L-systems can generate infinite data structure. Therefore 

it is better to define some production rules, denoted by A  

B, recursively like that: A  BA, producing an infinite 

sequence BABABABA… from A, or A  BCA, producing 
an infinite sequence BCABCABCABCA… from A. In the 

Physarum L-system, the rule A  BA means that we will 

fulfill the direction, A Q B, infinitely many time, the rule 

A  BCA means that we will fulfill the multiplication, A 

Q BC, infinitely many time. Let us consider an example of 
recursive production rules. Let G = {A, B} and let us start 

with the string A. Assume (A  BA) and (B  B). Thus, 
we obtain the following strings: 

 
Generation n = 0 : A 
Generation n = 1 : BA 
Generation n = 2 : BBA 
Generation n = 3 : BBBA 
Generation n = 4 : BBBBBA 
Generation n = 5 : BBBBBBA 
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In an appropriate Physarum L-system, these generations 
are represented as an infinite tree by permanent additions 
new attractants before the plasmodium propagation. In other 
words, we obtain the binary tree labeled with s and t, and 
whose interior nodes are either one unary node labeled with 
B or one binary node labeled with A (Fig. 2). 

 
 
               A                                                   B 
 

s =                          t =  
 
           t              s                                t 
 

Figure 2.  Example of labels for binary trees. 

To sum up, we obtain the infinite binary tree of Fig. 3. 

If we are limited just by the multiplication, A Q BC, 

and the direction, A Q B, we can build up binary trees in 
Physarum L-systems using the following definition of binary 
trees labeled with x, y, …, whose interior nodes are either 
unary nodes labeled with u1, u2, … or binary nodes labeled 
with b1, b2, …: 

1. the variables x, y, … are trees; 
2. if t is a tree, then adding a single node labeled with one 

of u1, u2, … as a new root with t as its only subtree gives a 
tree; 

3. if s and t are trees, then adding a single node labeled 
with one of b1, b2, … as a new root with s as the left subtree 
and t as the right subtree again gives a tree; 

4. trees may go on forever. 
 
                                   A     
 
     
 
                         B             A  
 
 
 
                        B       B            A 
 
 
 
                
                       …    …    …           … 
 

Figure 3.  Example of infinite binary tree. 

Let Tr be the set of trees that we have been defined. Then 
our definition introduces a coalgebra [14]: 

 

Tr = {x, y, …}  ({u1, u2, …} × Tr)   
({b1, b2, …} × Tr × Tr). 

 
Thus, within L-systems, we can obtain complex 

structures including infinite structures defined 
coalgebraically. In some cases, it is better to deal with 

infinite structures (infinite trees), assuming that all strings are 
finite. 

III. ARISTOTELIAN TREES 

Let us consider Aristotelian syllogistic trees, which can 
be large, but their strings are only of the length 1 or 2. An 
Aristotelian syllogistic tree is labeled with x, y, …, its 
interior nodes are n-ary nodes labeled with b1, b2, …, and it 
is defined as follows: (1) the variables x, y, … are 
Aristotelian syllogistic trees whose single descendants are 
underlying things (hypokeimenon, ὑποκείμενον) such that for 
each x, y, …, parents are supremums of descendants (notice 
that all underlying things are mutually disjoint); (2) if t1, t2, 
…, tn are Aristotelian syllogistic trees such that their tops are 
concepts which are mutually disjoint and their supremum is 

bx {b1, b2, …}, then adding a single node labeled with bx as 
a new root with t1, t2, …, tn as its only subtrees gives an 
Aristotelian syllogistic tree; (3) an Aristotelian syllogistic 
tree is finite. 

The idea of hypokeimenon allowed Aristotle to build up 
finite trees. He starts with underlying things as primary 
descendants of trees in constructing syllogistic databases. 
Now, let us define syllogistic strings of the length 1 or 2 by 

means a Physarum L-system. Let each bx {b1, b2, …} be 
presented by an appropriate attractant and underlying things 
by initial active zones of Physarum. So, first trees x, y, …, 
whose single descendants are underlying things, are obtained 
by fusion or direction. Their supremums are denoted by 
attractants which were occupied by the first plasmodium 
propagation. These trees are considered subtrees for the next 
plasmodia propagation by fusion or direction. At the end, we 
can obtain just one supremum combining all subtrees. Let a1, 
a2, a3,… be underlying things. Then they are initial strings, 
i.e., they can be identified with active zones of plasmodia. 
Their meanings are as follows: “there exists a1”, “there exists 
a2”, “there exists a3”, … Assume that in the tree structure the 
supremum of a1 and a2 is b1, the supremum of a2 and a3 is b2, 
… These supremums are fusions of plasmodia. Then, we 
have the strings a1b1, a2b1, a2b2, a3b2, … Their meanings are 
as follows: “a1 is b1”, “a2 is b1”, “a2 is b2”, “a3 is b2”, …  
Further, let bn be a supremum for b1 and b2. It denotes an 
attractant that was occupied by the plasmodium at the third 
step of the propagation. Our new strings are as follows: “b1 is 
bn”, “b2 is bn”, etc. Now we can appeal also to the following 
new production rule: if “x is y” and “y is z”, then “x is z”. 
Thus, we have the strings: a1bn, a2bn, a2bn, a3bn, … 

IV. ARISTOTELIAN SYLLOGISTIC 

The symbolic system of Aristotelian syllogistic can be 
implemented in the behavior of Physarum plasmodium. Let 
us design cells of Physarum syllogistic which will designate 
classes of terms. We can suppose that cells can possess 
different topological properties. This depends on intensity of 
chemo-attractants and chemo-repellents. The intensity entails 
the natural or geographical neighborhood of the set's 
elements in accordance with the spreading of attractants or 
repellents. As a result, we obtain Voronoi cells [3][11]. Let 
us define what they are mathematically. Let P be a nonempty 
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finite set of planar points and P= n. For points p = (p1, p2) 
and x = (x1, x2), let 
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denote their Euclidean distance. A planar Voronoi diagram 
of the set P is a partition of the plane into cells, such that for 
any element of P, a cell corresponding to a unique point p 
contains all those points of the plane which are closer to p  in 
respect to the distance d than to any other node of  P. A 
unique region  
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assigned to the point p is called a Voronoi cell of the point p. 
Within one Voronoi cell, a reagent has a full power to attract 
or repel the plasmodium. The distance d is defined by 
intensity of reagent spreading like in other chemical 
reactions simulated by Voronoi diagrams. A reagent attracts 
or repels the plasmodium and the distance on that it is 
possible corresponds to the elements of a given planar set P. 
When two spreading wave fronts of two reagents meet, this 
means that on the board of meeting the plasmodium cannot 
choose its one further direction and splits (see Fig. 5). Within 
the same Voronoi cell, two active zones will fuse. 

Now, we can obtain coordinates (x, y)  Z
2
 for each 

Voronoi center. The number (x, y) can be assigned to each 
concept as its character. If a Voronoi center with the 
coordinates (xa, ya) is presented by an attractant that is 
activated and occupied by the plasmodium, this means that 
in an appropriate Physarum syllogistic model there exists a 
string a with the coordinates (xa, ya). This string has the 
meaning “a exists”. If a Voronoi center with the coordinates 
(xa, ya) is presented by a repellent that is activated and 
avoided by the plasmodium, this means that in an 
appropriate Physarum syllogistic model there exists a string 
[a] with the coordinates (xa, ya). This string has the meaning 
“a does not exist”. If two neighbor Voronoi cells with the 
coordinates (xa, ya) and (xb, yb) of centers contain activated 
attractants which are occupied by the plasmodium and 
between both centers there are protoplasmic tubes, then in an 
appropriate Physarum syllogistic model there exists a string 
ab and a string ba where a has the coordinates (xa, ya) and b 
has the coordinates (xb, yb). The meaning of those strings is 
the same and it is as follows: “ab exist”, “ba exist”, “some a 
is b”, “some b is a”.  

If one neighbor Voronoi cell with the coordinates (xa, ya) 
of its center contains an activated attractant which is 
occupied by the plasmodium and another neighbor Voronoi 
cell with the coordinates (xb, yb) of its centre contains an 
activated repellent which is avoided by the plasmodium, then 
in an appropriate Physarum L-system there exists a string 
a[b] and a string [b]a where a has the character (xa, ya) and 
[b] has the character (xb, yb). The meaning of those strings is 
the same and it is as follows: “ab do not exist, but a exists 
without b”, “there exists a and no a is b”, “no b is a and there 
exists a”, “a exists and b does not exist”.  

If two neighbor Voronoi cells with the coordinates (xa, 
ya) and (xb, yb) of their centers contain activated repellents 
which are avoided by the plasmodium, then in an appropriate 
Physarum L-system there exists a string [ab] and a string 
[ba] where [a] has the character (xa, ya) and [b] has the 
character (xb, yb). The meaning of those strings is the same 
and it is as follows: “ab do not exist together”, “there are no 
a and there are no b”, “no b is a”, “no a is b”.  Hence, 
existence propositions of Aristotelian syllogistic are spatially 
implemented in Physarum L-systems.  

Let y' denote all neighbor Voronoi cells for x which differ 
from y. Now, let us consider a complex string xy&x[y']. The 
sign & means that we have strings xy and x[y'] 
simultaneously and they are considered the one complex 
string. The meaning of the string xy&x[y'] is a universal 
affirmative proposition “all x are y”.  

As a consequence, each Physarum L-system is 
considered a discourse universe verifying some propositions 
of Aristotelian syllogistic. 

V. NON-ARISTOTELIAN SYLLOGISTIC 

Let us propose now the syllogistic system formalizing 
performative propositions of the form ‘A is P’ (see [10][12]), 
i.e., propositions with context-based meanings. This system 
is said to be synthetic (pragmatic) syllogistic, while we are 
assuming that Aristotelian syllogistic is analytic 
(informative). The basic logical connectives of pragmatic 
syllogistic are as follows: a (‘every + noun + is + adjective’), 
i (‘some + noun + is + adjective’), e (‘no + noun + is + 
adjective’) and o (‘some + noun + is not + adjective’) that 
are defined in the following way:  

 SaP:= A (A is S)  (A(A is SA is P)). 

 SiP:= A((A is S) (A is P)).  

 SoP:= (A (A is S)  (A(A is SA is P))), i.e.,  

A(A is S)  (A((A is S) (A is P))). 
 

 SeP:= (A((A is S) (A is P))), i.e.,  

A(A is SA is P). 
 
Now, let us formulate axioms of pragmatic syllogistic: 

 SaP  SeP. 

 SaP  PaS. 

 SiP  PiS. 

     SaM  SeP.  

      MaP  SeP.  
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 (MaP  SaM)  SaP 

 (MiP  SiM)  SiP.  

In pragmatic syllogistic, we have a novel square of 
opposition that we call the synthetic square of opposition 
(see Fig. 4), where the following theorems are inferred from 
(1) – (11):  

 
SaP     SiP 

 
 
 
 
 
 
 
 
 
 

SeP   SoP 
 

Figure 4.  The synthetic square of opposition. 

 

SaP  (SoP), (SoP)  SaP,  SiP  (SeP), (SeP) 

 SiP, SeP  (SiP), (SiP)  SeP, SoP  (SaP),  

(SaP)  SoP, SaP  (SiP), SiP  (SaP),  (SeP)  

SoP, (SoP)  SeP,  SaP  SeP, SiP  SoP, SeP  SiP, 

(SeP  SiP), SaP  SoP, (SaP  SoP), (SaP  SiP), SeP 

 SoP. 
For more details, see [10][12].  
In the implementations within Physarum L-systems, the 

four basic syllogistic propositions of non-Aristotelian 
syllogistic defined above are understood as follows: 

    • ‘All S are P’: there is a string AS and for any A which 
is a neighbor for S and P, there are strings AS and AP. This 
means that we have a massive-parallel occupation of region, 
where the cells S and P are located. 

    • ‘Some S are P’: for any A which is a neighbor for S 
and P, there are no strings AS and AP. This means that the 
plasmodium cannot reach S from P or P from S immediately.  

    • ‘No S are P’: there exists A which is a neighbor for S 
and P such that there is a string AS or there is a string AP. 
This means that the plasmodium occupies S or P, but surely 
not the whole region, where the cells S and P are located. 

    • ‘Some S are not P’: for any A which is a neighbor for 
S and P there is no string AS or there exist A which is a 
neighbor for S and P such that there is no string AS or there 
is no string AP. This means that the plasmodium does not 
occupy S or there is a neighbor cell which is not connected 
with S or P by a protoplasmic tube. 

Thus, the pragmatic syllogistic allows us to study 
different zones containing attractants for Physarum if they 
are connected by protoplasmic tubes homogenously. 

VI. CONCLUSION 

We constructed two syllogistic versions of storage 
modification machine in Physarum Polycephalum: 
Aristotelian syllogistic and pragmatic syllogistic (non-
Aristotelian syllogistic of Section 5). While Aristotelian 
syllogistic may describe concrete directions of Physarum 
spatial expansions, pragmatic syllogistic may describe 
Physarum simultaneous propagations in all directions. 
Therefore, while for the implementation of Aristotelian 
syllogistic we need repellents to avoid some possibilities in 
the Physarum propagations, for the implementation of 
pragmatic syllogistic we do not need them. Hence, the 
second syllogistic can simulate massive-parallel behaviors, 
including different form of propagations such as processes of 
public opinion formation. 

In our opinion, the general purpose of Physarum 
computing covers many behavioural sciences, because the 
slime mould’s behaviour can be considered the simplest 
natural intelligent behaviour.  Thus, our results may have an 
impact on computational models in behavioural sciences in 
general. 

ACKNOWLEDGMENT 

This research is supported by FP7-ICT-2011-8 and 
UMO-2012/07/B/HS1/00263. 

REFERENCES 

 
[1] A. Adamatzky, V. Erokhin, M. Grube, Th. Schubert, and A. 

Schumann, “Physarum Chip Project: Growing Computers 
From Slime Mould,” International Journal of Unconventional 
Computing, 8(4), 2012, pp. 319-323. 

[2] A. Adamatzky, “Physarum machine: implementation of a 
Kolmogorov-Uspensky machine on a biological substrate,” 
Parallel Processing Letters, vol. 17, no. 04, 2007, pp. 455-
467. 

[3] A. Adamatzky, Physarum Machines: Computers from Slime 
Mould (World Scientific Series on Nonlinear Science, Series 
A). World Scientific Publishing Company, 2010.  

[4] A. Lindenmayer, “Mathematical models for cellular 
interaction in development. parts I and II,” Journal of 
Theoretical Biology, 18, 1968, pp. 280-299; 300-315. 

[5] J. Łukasiewicz, Aristotle's Syllogistic From the Standpoint of 
Modern Formal Logic. Oxford Clarendon Press, 2nd edition, 
1957. 

[6] K. Niklas, Computer Simulated Plant Evolution. Scientific 
American, 1985. 

[7] A. Schumann and A. Adamatzky, “Logical Modelling of 
Physarum Polycephalum,” Analele Universitatii Din 
Timisoara, seria Matemtica-Informatica 48 (3), 2010, pp. 175-
190.  

[8] A. Schumann and A. Adamatzky, “Physarum Spatial Logic,” 
New Mathematics and Natural Computation 7 (3), 2011, pp. 
483-498.  

[9] A. Schumann and L. Akimova, “Simulating of 
Schistosomatidae (Trematoda: Digenea) Behaviour by 
Physarum Spatial Logic,” Annals of Computer Science and 
Information Systems, Volume 1. Proceedings of the 2013 
Federated Conference on Computer Science and Information 
Systems. IEEE Xplore, 2013, pp. 225-230. 

19Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications



[10] A. Schumann, “On Two Squares of Opposition: the 
Leśniewski’s Style Formalization of Synthetic Propositions,” 
Acta Analytica 28, 2013, pp. 71-93. 

[11] A. Schumann and K. Pancerz, “Towards an Object-Oriented 
Programming Language for Physarum Polycephalum 
Computing,” in M. Szczuka, L. Czaja, M. Kacprzak (eds.), 
Proceedings of the Workshop on Concurrency, Specification 
and Programming (CS&P'2013), Warsaw, Poland, September 
25-27, 2013, pp. 389-397. 

[12] A. Schumann, “Two Squares of Opposition: for Analytic and 
Synthetic Propositions,” Bulletin of the Section of Logic 40 
(3/4), 2011, pp. 165-178.  

[13] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic 
Beauty of Plants. Springer-Verlag, 1990. 

[14] J. J. M. M. Rutten, “Universal coalgebra: a theory of 
systems,” Theor. Comput. Sci., 249 (1), 2000, pp. 3-80. 

 

 

 

 

 

 

 

 
 

Figure 5.  The Voronoi diagram for Physarum, where different attractants have different intensity and power. 
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