
A Dendritic Cell Inspired Security System in Wireless Sensor Networks 

Jingjun Zhao 

Department of Computer Science 

North Dakota State University 

Fargo, ND, USA 

jingjun.zhao@ndsu.edu   

Kendall E. Nygard 

Department of Computer Science 

North Dakota State University 

Fargo, ND, USA 

Kendall.Nygard@ndsu.edu

 

 
Abstract – We describe a scalable distributed methodology for 

increasing the rate of real packets received by the base station 

(BS) in a wireless sensor network (WSN) and to limit the inimical 

impacts of intruders in the network. The proposed security 

mechanism adopts a dual protection scheme to ensure that the BS 

obtains maximal real packets. First, we utilize a Dynamic 

Dendritic Cell Algorithm (DDCA) that effectively detects harmful 

intruders in a WSN and dynamically adjusts the monitoring 

period in response to the situation of the network. A sensor node 

running this algorithm can identify fake packets generated by the 

intruders based on pre-defined rules. Second, we apply a Markov 

Chain Monte Carlo (MCMC) method called the Metropolis-

Hastings (MH) algorithm to infer the location of intruders in a 

wireless sensor network using partial information obtained from 

a subset of the sensor nodes. In turn these inferred locations are 

used by a fuzzy logic algorithm that we apply to assess the effect 

of the intruders on a monitored point. Based on the assessment, 

the BS sends commands that adjust the monitoring period that a 

sensor node uses to identify an intruder. The mechanism 

increases the flexibility and accuracy of the DC-inspired 

algorithm in accurately identifying harmful intruders, especially 

for harmful mobile intruders. The method can be applied to 

different sizes of WSNs and to both dynamic and static WSNs. 

We simulated the proposed algorithms using JADE (Java Agent 

Development Framework), and the results demonstrate good 
performance.  

Keywords-Wireless Sensor Networks; Dendritic Cells; 

Metropolis-Hastings algorithm; Fuzzy Logic; JADE 

I.  INTRODUCTION  

A wireless sensor network (WSN) is composed of large 
numbers of small devices called sensor nodes that are typically 
deployed in an open and unprotected environment. They collect 
information and transmit data packets to a Base Station (BS). 
WSNs have been widely used in military and civil applications 
such as battlefield monitoring, environment and habit 
monitoring, and factory automation management. However, a 
WSN is susceptible to attacks and sensor failures such as 
packet dropping, packet change, energy-exhaustion, etc. 
Intrusion detection is an important research topic in a WSN, to 
help decrease power loss and to increase malicious event 
detection. Intrusion Detection methods utilized in wired 
networks are difficult to apply directly to WSNs because the 
sensor nodes are limited in battery power, storage, and 
computational ability. An Artificial Immune System (AIS) is a 
problem-solving methodology inspired by how biological 
immune systems in mammals are able to detect pathogens and 
destroy them before they cause harm to the body.  

More specifically, Negative Selection Algorithm (NSA) has 
been used for solving different anomaly detection problems 

[14]. A NSA uses a learning phase to construct detectors which 
can identify and dispatch invaders, but are not harmful the 
organism itself. A fundamental issue in a NSA is that very 
difficult to maintain complete “non-self” detection in many real 
applications [13]. 

Following another type of AIS, the work in [4] advanced the 
Danger Theory (DT) approach to intrusion detection. 
Subsequent work by Nauman and Muddassar [6] established a 
security system based on the Dendritic Cells behavior. Work 
reported in [9] included detailed rules for the Dendritic Cell 
Algorithm (DCA) for analyzing abnormal signals. These DCAs 
are more flexible at detecting misbehaviors than NSAs, but do 
require monitoring period to identify an intruder.  The period is 
fixed at the initial stage of a WSN and there is a tradeoff in 
deciding an appropriate monitoring period. A large period may 
lead to a low detection rate, and a little period may lead to a 
high error rate. 

In our work, we employ a dual protection model that 
dynamically–adjusts to detect both static and mobile intruders 
while maintaining low energy consumption. Our DCA is 
primarily used to detect attacks: packet change, fake packet and 
energy-exhaustion. The ability to defend against these basic but 
widely existing types of attacks in a WNS makes our DCA a 
good fit in practice. To maximize the detection ability of our 
DCA, we also utilize the Metropolis-Hastings Algorithm 
(MHA) and fuzzy logic to dynamically adjust the monitoring 
period used in the DCA. The BS collects partial information 
about an intruders’ location by requesting from a subset of the 
sensor nodes, then applies the MHA to estimate the location of 
the intruder. Because only a subset of the sensor nodes 
transmits location information, network longevity is enhanced. 
Upon acquiring the inferred information, the BS implements a 
fuzzy logic assessment algorithm that assesses the effect of 
these intruders on a monitored point. The assessment is sent 
back to the sensor nodes in this area, and these sensor nodes 
use it to adjust their monitoring period accordingly. This 
dynamic-adjusting mechanism ensures that the proposed DCA 
can accurately identify intruders and thus increases event 
detection reliability. 

The rest of the paper is organized as follows: Section II 
discusses the related work; Section III describes the proposed 
DC-inspired algorithm, the usage of the Metropolis-Hastings 
algorithm, and the Fuzzy Logic algorithm; Section IV describes 
the designed multi-agent architecture for wireless sensor 
networks; Section V details our implementation and simulation 
results; finally, the conclusion and future work are given in 
Section VI. 
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II. RELATED WORK 

Greensmith, Aickellin and Cayzer [5] proposed a DC-based 
algorithm for the detection of anomalies. The authors 
categorize signals as Pathogen Associated Molecular Patterns 
(PAMPs), Safe Signals (S), Danger Signals (D), or 
Inflammatory Cytokines (IC). In [1], a description of the 
similarity between WSNs and AIS is provided, showing that a 
Dendritic Cell algorithm (DCA) can detect Cache Poisoning 
attack in a WSN.  In this work, each node has an interest cache 
with fixed size that is used to record received history interest 
packets. Newly received packets replace older ones in the 
interest cache when the cache is full. These history packets are 
used to help a node decide whether or not to drop a received 
packet. The Ubiquitous Dendritic Cell algorithm (UDCA) 
combines the interest cache and the data cache in a node to 
analyze and identify danger signals. This algorithm can 
potentially detect an interest cache poisoning attack at an early 
stage. In [4], the authors employ Danger Theory (DT) in an 
intrusion detection system. Nauman and Muddassar [6] built 
upon an existing AIS-based security system described in [7] by 
simulating the behavior of a DC. In this approach, danger 
signals lead to the maturing of the DCs. The matured DCs 
activate detectors, which are then used to detect “non-self”  
network nodes. The work in [8] introduced a Dendritic Cell 
Algorithm. In [9], rules are formulated for identifying intrusion 
in a WSN.  

The fixed cache size and monitoring period assumed in these 
algorithms will restrict their effectiveness in some applications. 

For example, these algorithms will have less efficiency on 

detecting mobile intruders than detecting static intruders in a 

WSN because mobile intruders can move out from the 

surveillance range of a sensor node before being detected. In 

this paper, we propose a Dendritic Cell algorithm that 

dynamically adjusts the monitoring period in a WNS. Our 

algorithm has great flexibility when compared with these 

existed algorithms. 

III. THE DENDRITIC CELL APPROACH 

A. Dendritic Cells  

In a biological immune system, Dendritic Cells (DCs) are 
considered to be the most important Antigen Presenting Cells 
(APCs).  Their basic role is to mark the surface of harmful 
antigens so that they can be recognized and destroyed by other 
cells in the immune system.  The DCs are derived from bone 
marrow cells and begin their existence in an immature state. As 
an immature DC collects surrounding antigens, it is 
transformed to a semi-mature state.  Eventually a semi-mature 
DC can receive sufficient danger signals from antigens to 
transform to a fully mature state at which time it is capable 
placing the danger marks on the surface of the harmful 
antigens. A Dendritic Cell Algorithm (DCA) is a problem-
solving method that is based on the behavior of dendritic cells. 
We have designed a new DCA used to detect harmful intruders 
in a WSN. An innovation in our method is that the, monitoring 
period is dynamically adjusted by the base station in 
accordance with the current network status.  Thus, we refer to 
the method as a Dynamic Dendritic Cell Algorithm (DDCA). 
To achieve the dynamic behavior, we employ a Markov Chain 
Monte Carlo (MCMC) technique to infer the distribution of the 

intruders in the network, then apply a Fuzzy Logic Algorithm 
(FLA) to assess the impact of these intrudes on a monitored 
point. Figure 1 shows the integration of the DC-inspired 
detection system and impact assessment system. We describe 
these three algorithms in more detail in the following sections. 

 

 

 

 

 

 

 

 

 

 

m:    the number of sensor nodes that are queried by the BS 
p:     the number of sensor nodes around the monitored point 
LEi:       the location of intruder i 
DDCAi: the sensor node i running DDCA around the 
               monitored point 

Figure 1.  The block diagram showing the integration of Dynamic Dendritic 

Cell Algorithm (DDCA), MCMC and Fuzzy Logic based Algorithm (FLA) 

B. The Dynamic Dendritic Cell Algorithm (DDCA) 

In this paper, we primarily recognize the following types 

of attacks in a WSN: 

 the transmitting of changed  messages; 

 the reporting of messages at a frequency different than 
normal or expected ; and 

 the reporting of fake messages. 

When a sensor node sends out a message, we assume that all 
the neighbor nodes of the sender can receive and interpret the 
message. Each sensor node has the ability to discern if a 
neighbor node is transmitting a suspicious message (such as a 
changed or false message). A sensor node flags a harmful 
intruder if the number of suspicious message exceeds a pre-
specified threshold value. 

Sensor nodes are typically battery powered and have limited 
energy that must be used efficiently. The energy consumption 
rate for communication greatly exceeds that for sensing.  
Thereby, the useful lifetime of a WSN is largely governed by 
the management of the transmitting and receiving of messages.  
Ignoring messages rather than communicating with harmful 
intruders is energy conserving.   

In the first phase of identifying a harmful intruder, 
suspicious messages are flagged by placing the senders onto a 
semi-harmful intruder (SHI) list. Additional detailed 
monitoring of subsequent message traffic will trigger the 
placing of the node onto a harmful intruder (HI) list. If an 
innocent period has elapsed, a node is deleted from the SHI list. 
Figure 2 illustrates the structure of this algorithm. 
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Figure 2.  The Structure of  Dynamic Dendritic Cell Algorithm (DDCA) 

The following code in Figure 3 describes the DDCA in detail. 
 

𝑚𝑛 : new message      

𝐻𝐼: Harmful Intruder 

𝑆𝐻𝐼: Semi-Harmful Intruder 

𝑇1 : the maximum time slice calculating abnormal frequency 

      of reporting message 

𝑇2 : the maximum time slice supervising a suspicious intruder                     

𝑡0: threshold for reporting message frequency during 𝑇1   

𝑡1: threshold for reporting message frequency during 𝑇2 

𝑡2: threshold for reporting false message rate during 𝑇2  

𝑡3: threshold for reporting changed message rate during 𝑇2  

 (Note: to tolerate casual high frequency of reporting 

message, let 𝑇2 >  𝑇1) 

 
//To check if the received message is dangerous 

BOOL CheckDangerMessage (mn) 

       IF (mncame from HI) 

              return TRUE 

       ELSE IF (mncame from SHI) 

              IF (CheckHarmfulIntruder(mn) == TRUE) 

                    return TRUE 

       ELSE IF (CheckAbnormalMessage(mn) == TRUE) 

              update SHI list 

       ELSE 
               return FALSE 

 

 

//To check if the received message is abnormal 

BOOL CheckAbnormalMessage (mn) 

       IF (mn  is a changed original message) 
              return TRUE 

       ELSE IF (mn  is a fake message) 

              return TRUE 

       ELSE IF (the frequency of the sender reporting   

                        message >  t0) 

              return TRUE 

       ELSE 
               return FALSE 

 

//to decide if the message sender is an harmful intruder by 

checking the history records 

BOOL CheckHarmfulIntruder (mn) 

       update the history message record of the sender 

       estimate the frequency and percentage of the sender      

       IF ((the new frequency > 𝑡1) or (the new percentage     

       of false message > 𝑡2) or (the new percentage of         

       changed message > 𝑡3)) 

clear the history record of the sender  

move the sender from SHI list to HT list 

               return TRUE 

       ELSE IF (the supervised time of the sender > 𝑇2 ) 

             remove the sender from SHI list               

       ELSE 
               return FALSE 

 

Figure 3.  The Dynamic  Dendritic Cell Algorithm (DDCA) 

This algorithm consists of three sub-functions: checking for 

dangerous messages, abnormal messages and harmful 

intruders. Figure 2 presents the relationships among these sub-

functions. When a sensor node receives a new message, the 

algorithm first checks the HI list.  If the sender of this message 

is an identified harmful intruder, the message is considered to 

be a dangerous message. If the sender is an identified 

suspicious intruder that exists in the SHI list, the algorithm runs 

the function for identifying harmful intruder to decide if this 

sender is dangerous enough to be considered harmful. Finally, 
the algorithm runs the function of checking for abnormal 

message and possibly puts the sender on the SHI list. This 

algorithm will only consume limited energy of a sensor node 

because of the simple calculation in each sub-function. The 

dynamic adjustment of parameters increases the flexibility and 

accuracy of the DC-inspired algorithm in detecting dangerous 

messages. 

C.  The MCMC Method 

We employ a Markov-chain Monte-Carlo (MCMC) method 
to infer the location of an intruder.  The MCMC approach is 
based upon the Metropolis-Hastings algorithm. Figure 4 
describes the general process of this algorithm. By recognizing 
the location of intruders, the BS can do a more effective 
assessment of received packets. If the BS were to send query 
messages to all sensor nodes in the WSN to collect location 
information, excessive energy would be required.  The MCMC 
technique infers the intruders’ location from limited local 
information. We assume that the fixed intruders are uniformly 
distributed over the network in the beginning. To the proposal 
distribution, we let the random location of an intruder moving 
to is chosen uniformly. That means the movement of an 
intruder is conditionally independent, which is a necessary 
condition for running the Metropolis-Hastings algorithm. In the 
training phase, a sensor node reports a message to the BS when 
an intruder is identified. The BS obtains the intruders’ initial 
location from these messages. 
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For 𝑖 = 0 to n-1 

Sample  𝑢 ~ 𝑢[0, 1] 

         Sample  𝑦 ~ 𝑞(𝑦|𝑥𝑖) 

 α (𝑥𝑖 , 𝑦) =  min {1,
π(y)q(𝑥𝑖 |y)

 π(𝑥𝑖)q(y|𝑥𝑖)
} 

 If (𝑢 <   α (𝑥𝑖 , y)) 
  𝑥𝑖+1 = 𝑦 

Else  
 𝑥𝑖+1 = 𝑥𝑖  

Figure 4.  The Metropolis-Hastings algorithm 

Figure 4 shows that a proposal movement is accepted if the 
calculated probability α bigger than a random number μ 
uniformly drawn from between 0 and 1. To minimize the 
complexity of the calculations, we use the method of [12] 
shown below for the acceptance criterion α. 

 

  α (𝐿𝐸𝑡 , 𝐿𝐸𝑡+1)  =  min (1,   
𝑃  𝐿𝐸𝑡+1 , 𝑅1 …𝑅𝑃   

𝑃  𝐿𝐸𝑡 , 𝑅1 …𝑅𝑃   
          (1) 

LEt:  the vector of the intruders’ location at time 𝑡 
Ri:    the 𝑖𝑡ℎ sensor measurement 
p:      the number of nodes that the BS requests 
 

Simplifying the following expression 

             
 𝑃 (𝐿𝐸𝑡+1 , 𝑅1 …𝑅𝑃  )

𝑃 (𝐿𝐸𝑡 , 𝑅1 …𝑅𝑃  )
                                            (2) 

to 

                
𝑃(𝑅𝐾𝑘

 |𝐿𝐸𝑡+1)

𝑃(𝑅𝐾𝑘
 |𝐿𝐸𝑡)

𝐾

𝑘=1

                                            (3) 

𝐾:  the number of affected sensor nodes 
𝐾𝑘 : the index of the 𝑘𝑡ℎ affected sensor 
 

In equation (3), there is only one variable in vector LE that 
has changed value from step t to step t+1. This change only 
affects those sensor nodes that can sense the change. This 
equation makes the calculation of the acceptance criterion easy 
and fast.  The detail process of simplification can be found in 
[12]. 

D. The  Fuzzy Logic Algorithm 

Once the location of the intruder is known, a fuzzy logic 
algorithm is used to calculate the impact of these intruders on 
the accuracy of the packets received by the BS from designated 
areas in the network. 

1) Inputs and outputs 

a) The fuzzy algorithm has three inputs 

Each input is classified into three categories: small, middle 
and large. The threshold values can be adjusted according to 
the requirements of different applications. 

 Distance – the distance between an intruder and the 

monitored point 

     Small:    distance ≤ 5m 

     Middle:  5m< distance < 15m 

     Large:    distance ≥ 15m  

 Danger degree – classifying intruders based on their 

danger attacking type, i.e.,  

                    Small:     reporting false message; 

                    Middle:  transmitting changed original message; 

                    Large:    reporting message in a frequency higher  

                                    than expected one; 

 Relative Position – using the angle of an intruder, the 

monitored point and the BS to represent the relative 

position of an intruder and the BS  

     Small:        𝜃 ≤ 200  

      Middle:     200  < 𝜃 < 450                   

     Large:        𝜃 ≥ 450 

b) The fuzzy algorithm has five outputs:   

  (0, 0.25, 0.5, 0.75, 1) 

These outputs represent different impacts of the intruders on 
the monitored point. 

 

2) The membership functions 
Figures 5 and 6 present the member functions of the fuzzy 

logic algorithm. The outputs of membership functions are 
defined as: small, middle and large, depending on the distance 
and the relative position individually. 

 

 
 

 

 

 

 

 

 

 

 

Figure 5.  The input is the relative position. 

 

 

 

 

 

 

 

 

 

 

Figure 6.  The input is the distance. 

3) Fuzzy Rules   
The fuzzy rules are listed in Table I. Shorter distance, 

smaller relative position, and consuming more energy will 
result in a classification of danger.   
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TABLE I.  FUZZY RULES 

Inputs Output 

Distance  Danger Degree Relative Position 

S M/S M/S 0.25 

S M/L S 0.5 

S L L 0.75 

S L M/S 1 

M M/S M/L 0.25 

M L M 0.5 

M L S 0.75 

L - M/L 0 

L - S 0.25 

 

4) Usage of the Fuzzy Logic Algorithm 
The fuzzy logic algorithm is used to assess the impact of the 

intruders on a monitored point in a sensor network. To 
calculate the impact, we define the following equation: 

 

𝐼𝐴   =  
 𝐼𝐴𝑖

𝑛
𝑖=1

𝑁
 

𝐼𝐴   :  the assessed impact of intruders 

𝐼𝐴𝑖 : the impact of the ith intruder (i.e., the output of the    

       fuzzy logic algorithm) 

𝑛:  the number of intruders 

𝑁: the number of sensor nodes around the monitored point 
 

The BS in a WSN will adjust the monitoring parameters 

T1  and T2 used in the DDCA algorithm, according to the new 

assessment. Because the value 𝑁 is fixed, more intruders will 

increase the assessed impact. Our rule is that the bigger the 

assessment is, the smaller the monitoring parameters become. 

IV. MULTI-AGENT ARCHITECTURE 

Using Multi-agent Systems (MASs) to model WSNs is 
considered to be a powerful and flexible approach [11]. The 
work reported in [10] concerns implementing a MAS using 
JADE (Java Agent DEvelopment Framework), a software 
framework fully implemented in JAVA. Similarly, we use 
JADE for our work.  We have identified a set of common 
functions in WSNs and map each function with an agent, as 
shown in Table II. The architecture is composed of five types 
of agents: the Central Control Agent (CCA), the Sensing and 
Transmitting Message Agent (STMA), the Environment Agent 
(EA), the Message Analysis Agent (MAA), and the Immune 
System Agent (ISA). Figure 7 illustrates the designed Multi-
Agent Architecture.  

TABLE II.  MAPPING BETWEEN AGENTS AND FUNCTIONS IN A WSN 

Agents Functions in a Wireless Sensor 

Networks (WSN) 

The Central Control Agent  

(CCA) 

Control center in a WSN 

The Sensing and Transmitting 

Message Agent (STMA) 

A sensor node 

The Environment Agent (EA) Environment of sensor nodes deployed 

The Message Analysis Agent 

(MAA) 

Sense of abnormal messages 

The Immune System Agent 

(ISA) 

Intruder detection 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 7.  The designed Multi-Agent Architecture 

The CCA sends control commands to the STMA. The 
STMA collects information and sends it to the CCA. The EA 
provides an operating environment for the other agents. The 
MAA is used to judge if a node is a potentially harmful 
intruder. The ISA is responsible for recognizing harmful 
intruders. The ISA is activated only when a message is 
recognized as a suspicious message by the MAA. The detailed 
functions of the agents are listed in Table III We run the 
proposed algorithm in the ISA to discriminate between normal 
messages and abnormal messages. 

TABLE III.   AGENTS’ RESPONSIBILITIES 

Agent type Responsibilities 

The Central Control Agent  

(CCA) 

Sends commands to the EA 

Receives messages from the EA 

The Sensing and Transmitting 

Message Agent (STMA) 

Sends messages to the EA. 

Presents incoming messages from the 

EA 

Allows a sensor to accept incoming 

messages 

Allows a sensor to reject incoming 

messages 

The Environment Agent (EA) Presents incoming messages from the 

CCA and the STMA 

Sends the received messages to the 

CCA and the STMA 

The Message Analysis Agent 

(MAA) 

Sends messages to the STMA 

Sends messages to the ISA 

Recognizes abnormal message 

The Immune System Agent (ISA) Sends messages to the MAA 

Recognizes harmful intruders 

V. SIMULATION RESULTS 

We evaluate the performance of the security scheme using 
simulation. We implement the algorithms in JADE, which is an 
agent platform that is compliant with the Foundation for 
Intelligence Physical Agents (FIPA) standards for multi-agents. 
Our multi-agent architecture is similar to that reported in [10], 
which supports differing types of agents and inter-agent 
communication. Each sensor node agent hosts the DC-inspired 
algorithm, and the BS agent hosts the MH algorithm and the 
fuzzy logic algorithm. 

The test area is a 100 by 100 square region, and 100 sensor 
nodes are randomly deployed in this area. Our experiments use 
a fixed number of intruders randomly deployed in the test area. 

We conducted three groups of experiments to evaluate the 
efficiency of the dual protection scheme in a sensor network. 
The first group of experiments is executed to estimate the 
efficiency of the proposed DC-inspired algorithm on 

EA 

CCA STMA 

ISA MAA 
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maintaining the network lifetime.  The second group of 
experiments is performed to measure the effect of cache size on 
the intruder detection rate. The last group of experiments is 
conducted to assess the performance of the dual protection 
scheme on detecting mobile intruders in a WSN. The intruders 
in the sensor network are static in the first two groups of 
experiments and mobile in the last one.  The total number of 
sensor nodes is constant in all experiments. 

A. Maintaining the network lifetime 

In this group of experiments, there are 100 sensor nodes in 
the test area. When a sensor node runs out of battery life, 
normally or abnormally, it becomes a failed sensor node.  We 
assume that a prescribed number of failed nodes will cause 
network failure and treat this as the only factor affecting the 
network lifetime. We set the number of failed nodes that cause 
the network failure to 70. To estimate the efficiency of the DC-
inspired algorithm, we sample the values of failed sensor nodes 
at different time slots, and compare the results with an 
experiment that simulates our DC-inspired algorithm and a 
parallel experiment in which no security mechanism is 
employed. We randomly deploy 10, 20 and 30 intruders in the 
test area and perform experiments on each case. The results 
show that the DC-inspired algorithm greatly increase the 
network lifetime when compared with no security mechanism 
employed. Figure 8 shows that the network lifetime is doubled. 
Figures 9 and 10 show a longer network lifetime despite more 
intruders added. It is related to the final distribution of 
intruders. 

 

Figure 8.  Sampling Time vs Failed rate of 10 intruders 

 

Figure 9.  Sampling Time vs Failed rate of 20 intruders 

 

Figure 10.  Sampling Time vs Failed rate of 30 intruders 

B.  Cache Size Effect on the Detection Rate 

In the second group of experiments, we keep the same size 
of the test area and the network size as in the first group of 
experiments. Our aim is to measure the effect of the cache size 
on the detection rate of the DC-inspired algorithm.  To detect a 
harmful intruder, a sensor node uses a cache to store the 
abnormal packets received from an intruder, and to monitor the 
intruder for a period of time to assess whether or not this is a 
harmful intruder. We set the cache size to 50, 100, 200, 500 
and 1000 units and perform experiments on each cache size. 

Figure 11 shows the experimental results. As expected, a 
larger size cache uniformly has a higher detection rate than a 
small cache.  There is a flattening of the curves after a cache 
size of 100, indicating only marginal benefits of caches of size 
200 or larger.  When there are 10 intruders, the algorithm 
detect almost all of the harmful intruders with a cache size of 
1000. The results also show that the procedure achieves a 
uniformly better detection rate for smaller numbers of intruders 
than for larger numbers, for any of the cache sizes.  This is 
because the packets that a sensor node receives from harmful 
intruders are saved in the shared cache, and, when the cache is 
full, old packets will be removed from the cache, even though 
these packets may still be useful for detecting an intruder. 
Hence, the algorithm has a lower detection rate when more 
intruders exist in the network. These experiment results 
indicate that cache size is an important factor for detecting 
harmful intruders.  However, large cache sizes may be 
unrealistic in resource-limited low-end sensors.   

 

 

Figure 11.  Cache Size vs Detection Rate 
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C. Assessment of the Dual Protection Scheme 

The third group of experiments is designed to assess the 
performance of the proposed dual protection scheme. In these 
experiments, a fixed number of mobile intruders are randomly 
deployed in the sensor network. We measure the accuracy of 
the received packets by the BS to evaluate the efficiency of the 
scheme. At the beginning of the experiments, a monitored point 
is randomly chosen in the test area. In a real application, the BS 
could specify the monitored point according to the actual 
network topology.  In our experiments the BS knows the 
number of intruders and their initial location, which is 
necessary condition in the MH algorithm. In a real application, 
the BS can obtain this information from the received packets in 
the startup phase of the sensor network.  

The number of mobile intruders we choose in the 
experiments varies from 5 to 30 in step sizes of 5. These 
mobile intruders are randomly deployed in the initialization 
phase of the sensor network. Each mobile intruder picks a 
random direction to move at the speed of 5 units per second. 
Figure 12 shows the experiment results for detecting both static 
and mobile intruders. The results show that mobile intruders 
reduce the accuracy of the detection. 
 

 
 

Figure 12.  DC-inspired algorithm detecting static and mobile intruders 

Figure 13 shows the simulation results of our dual protection 
scheme for a WSN. It is clear that the BS can obtain more 
accurate packets by using the dual protection scheme than by 
only performing the standard DC-inspired algorithm.  The dual 
scheme effectively reduces the impact of the mobile intruders 
on the DC-inspired algorithm, and this advantage is more 
obvious when there are more mobile intruders in the network. 
When there are more mobile intruders in the sensor network, 
the chosen monitored point is more likely to be surrounded by 
the intruders. The BS estimates the impact of these intruders on 
the monitored point and then sends out the assessment to the 
sensor nodes around the monitored point. These sensors nodes 
effectively adjust their monitoring period according to the 
received assessment. This mechanism improves the detection 
rate to some extent. 

 

 

Figure 13.  Dynamic DCA vs static DCA on detecting mobile intruders 

In summary, our DC-inspired algorithm effectively detects 
static intruders in a WSN, but mobile intruders can elude 
detection. The MCMC technique and the fuzzy logic algorithm 
lower the effect of the mobile intruders and render the 
algorithm suitable for WSNs with either static or mobile 
intruders. 

VI. CONCLUSION AND FUTURE WORK 

We have presented a dual security mechanism for WSNs. A 
sensor node performing the dendritic cell-inspired algorithm 
effectively detects harmful intruders that report fake messages, 
transmit changed packets or report messages with unexpected 
frequencies. To enhance the ability of the dendritic cell 
algorithm to detect mobile harmful intruders, we developed an 
impact assessment system. The enhanced system uses the 
Metropolis-Hastings algorithm to infer the location of intruders 
based on partial information, followed by a fuzzy logic 
algorithm for assessing the impact of intruders on a monitored 
point. The assessment directs a sensor node to dynamically 
adjust the monitoring period according to the current network 
situation. Our simulations demonstrate that the dual protection 
mechanism promptly and effectively detects static or mobile 
intruders, extends sensor network lifetime, and improves the 
accuracy of the packets received by the BS. 

In many real applications, such as battlefield monitoring, the 
number of intruders in a monitoring area will dynamically 
change. To apply to this kind of application, our security 
system would need an enhanced MCMC algorithm for tracking 
multiple moving targets. The question of scheduling feedback 
from the BS to control feedback for the monitoring period is 
another open question for investigation.   

 

REFERENCES 

[1] J. Kim, P. Bentley, C. Wallenta, M. Ahmed, and S. Hailes, “Danger Is 
Ubiquitous: Detecting Malicious Activities in Sensor Networks Using 

the Dendritic Cell Algorithm,” Proc. International Conference on 
Artificial Immune Systems (ICARIS), pp. 390–403, 2006. 

[2] L.N. DeCastro and J. Timmis, "Artificial ImmuneSystems: A New 

Computational Intelligence Approach," Springer-Verlag, 2002.  

[3] U. Aickelin and J. Greensmith, “Sensing Danger: Innate Immunology 

for Intrusion Detection,” Elsevier Information Security Technical 
Report, pp. 218–227, 2007. 

[4] U. Aickelin, P. Bentley, S. Cayzer, J. Kim, and J. McLeod, “Danger 

theory: The link between AIS and IDS,” Proceedings of the Second 
International Conference on Artificial Immune Systems (ICARIS 2003), 

vol. 2787 of LNCS, Springer-Verlag; pp. 147–155, 2003. 

0
20
40
60
80

100
120

0 20 40

A
cc

u
ra

cy
  (

%
)

Number of Intruder

static 
intruders
Mobile 
Intruders

0

20

40

60

80

100

120

0 20 40

A
cc

u
ra

cy
  (

%
)

Number of Intruder

Dynamic 
DCA
Static 
DCA

20

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-107-6



[5] J. Greensmith, U. Aickelin, and S. Cayzer, “Introducing Dendritic Cells 

as a Novel Immune-Inspired Algorithm for Anomaly Detection,” Proc. 
International Conference on Artificial Immune Systems (ICARIS), pp. 

153–167, 2005. 

[6] N. Mazhar and M. Farooq, “A sense of danger: dendritic cells inspired 

artificial immune system for MANET security,” GECCO, pp. 63-70, 
2008. 

[7] D.B. Johnson and D.A. Maltz, “Dynamic source routing in adhoc 

wireless networks,” T. Imielinski and H. Korth, eds., Mobile computing 
(Kluwer Academic) chapter5, pp. 153-181, 1996. 

[8] J. Greensmith, U. Aickelin, and J. Twycross, “Articulation and 

Clarification of the Dendritic Cell Algorithm,” ICARIS, LNCS 4163, pp. 
404-417, 2006. 

[9] A.P. da Silva, M. Martins, B. Rocha, A. Loureiro, L. Ruiz, and H. C. 

Wong, “Decentralized intrusion detection in wireless sensor networks,” 
in Proceedings of the 1st ACM international workshop on Quality of 

service & security in wireless and mobile networks (Q2SWinet ’05). 

ACM Press, pp. 16–23, October 2005. 

[10] M. Nikraz, G. Caire, and P. A. Bahria, “A methodology for the analysis 

and design of multi-agent systems using jade,” International Journal of 
Computer Systems Science and Engineering, vol. 21, no. 2, 2006. 

[11] M. Vinyals, J. A. Rodríguez-Aguilar, and J. Cerquides, “A Survey on 

Sensor Networks from a Multi-Agent perspective,” 2th International 
Workshop on Agent Technology for Sensor Networks (ATSN), 2008. 

[12] R. Biswas, S. Thrun,  and L.J. Guibas, “A probabilistic approach to 

inference with limited information in sensor networks,” in: Proceedings 
of the 3rd International Symposium on Information Processing in Sensor 

Networks (IPSN’04), Berkeley, CA, pp. 269–276, Apr. 2004. 

[13] J. Kim and P.J. Bentley, “Evaluating Negative Selection in an Artificial 
Immune System for Network Intrusion Detection,” Proc. Genetic and 

Evolutionary Computation Conference (GECCO), pp. 1330-1337, 2001. 

[14] S. Forrest, S. Hofmeyr, and A. Somayaji, “Computer Immunology,” 
Communications of the ACM, 40(10), pp. 88-96, 1997 

 

21

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-107-6

http://dblp.uni-trier.de/db/indices/a-tree/m/Mazhar:Nauman.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Aickelin:Uwe.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Twycross:Jamie.html
http://www.informatik.uni-trier.de/~ley/db/conf/icaris/icaris2006.html#GreensmithAT06
http://www.iiia.csic.es/en/individual/meritxell-vinyals
http://www.iiia.csic.es/en/individual/juan-a-rodriguez-aguilar
http://www.iiia.csic.es/en/individual/jesus-cerquides

