

Implementing a VoIP SIP Server and User Agent on a Bare PC

Andre L. Alexander, Alexander L. Wijesinha, and Ramesh K. Karne
Department of Computer & Information Sciences

Towson University
Towson, MD 21252

USA

Abstract—Bare PC applications run on ordinary desktops
and laptops without the support of an operating system or
kernel. They provide immunity against attacks targeting an
underlying operating system, and have been shown to perform
better than applications running on conventional systems due
to their reduced overhead. We describe a bare PC SIP server
and a SIP user agent designed for VoIP and give details of
their internal implementation. The server and user agent
include streamlined SIP functions and message handling,
efficient CPU tasking, protocol and application intertwining,
and direct Ethernet-level data manipulation. The SIP server
provides registration, proxy, and redirection services, and the
user agent is integrated with lean implementations of the
necessary protocols within the bare PC softphone. Bare PC SIP
servers and SIP softphones can be used for building secure and
efficient low-cost VoIP systems, or deployed in existing VoIP
networks with conventional SIP servers and user agents.

Keywords-bare machine computing; bare PC; SIP
implementation; SIP server; SIP user agent; VoIP.

I. INTRODUCTION

Telephony systems over the Internet continue to evolve
with the development of new or enhanced VoIP
technologies. SIP [1] is an important protocol that provides
support for VoIP by handling functions such as call set up,
user authentication, user registration and location, and
billing support. Although SIP is a general-purpose protocol
that can also be used for video conferencing, instant
messaging and gaming, it is predominantly used today in
VoIP systems. Conventional SIP implementations in servers
and softphones require the support of a traditional operating
system (OS) such as Windows or Linux, or an OS kernel.
SIP phones are also frequently implemented in
hardware/firmware typically with an embedded OS. The SIP
implementations in OS-based systems take advantage of
their rich supporting environment and capabilities and are
convenient to use.

However, an OS-based full SIP implementation is not
always needed. If a higher level of security or performance
is desired at low cost, a customized SIP server or a SIP
softphone running on a bare PC (ordinary desktop or laptop
without a conventional OS or kernel) would be more easily
secured or designed for high performance. For example, an
OS-based system may be difficult to secure against attacks
that target vulnerabilities of the underlying OS. Bare PC
systems are inherently immune against such attacks since
they have no OS. In addition, compared to their OS-based
counterparts, they also have reduced code complexity and
code size, making it easier to analyze their code for security

flaws. Moreover, due to their simplicity and the limited
services they offer, they also have fewer avenues open for
attackers to exploit. Also, studies of bare PC Web servers
[2] and email servers [3] have shown that they perform
better than their OS counterparts.

 Thus, a SIP server or SIP user agent running on a bare
PC can be expected to provide secure and efficient low-cost
operation. Moreover, since there is no OS, lean versions of
the necessary protocols can be intertwined with the bare PC
SIP server or SIP softphone application to reduce the
overhead of inter-layer communication and improve
performance. A preliminary performance study of the bare
PC SIP server (see the related work section below) confirms
that it performs better than Linux or Windows-based SIP
servers with very few exceptions.

In this paper, we describe the design and implementation
of a bare PC SIP server and a bare PC SIP UA. In particular,
we discuss the details of SIP operations, message handling,
and task structure on the bare PC SIP systems. We also
examine possible causes for the few performance
bottlenecks identified in the bare PC SIP server performance
study and note possible future design improvements.

As with other bare PC applications, the SIP server or
user agent implementation and interfaces to the hardware
constitute a single self-contained executable. The SIP UA is
also integrated with the bare PC softphone. The bare PC SIP
server and SIP UA implement only the key elements of SIP
and have minimal functionality compared to conventional
OS-based SIP servers and SIP UAs. Also, the SIP
implementations are UDP-based, and the server is stateless.
A SIP server implementation over TCP is under
development. The bare PC SIP server and bare PC SIP
softphone currently run on an IA32 (Intel Architecture 32-
bit) or Intel 64-bit architecture in 32-bit mode. They can be
used for building secure or high-performance bare PC-only
VoIP networks, or interoperate with conventional OS-based
SIP servers and SIP softphones as discussed below in the
section on testing.

The rest of this paper is organized as follows. In Section
II, we briefly survey related work. In Section III, we give an
overview of bare machine computing. In Sections IV and V
respectively, we describe the design and implementation of
the bare PC SIP server and UA. In Section VI, we discuss
testing of the SIP server and UAs. In Section VII, we present
the conclusion.

II. RELATED WORK

There are numerous implementations of conventional SIP
servers and SIP softphones on various OS platforms. These
SIP servers and UAs run on conventional OSs. In [4], a SIP

8

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-107-6

server is implemented on top of an existing SIP stack. In [5],
SIP servers and SIP UAs are implemented on the Solaris 8
OS. A client-side SIP service offered to all applications
based on a low-level SIP API is described in [6]. In [7], the
features of a new language StratoSIP for programming UAs
that can act respectively as a UA server to one endpoint and
as a UA client to another are presented. In [8], the UA is a
SIP-based collaborative tool implemented by using existing
SIP and SDP stacks. In [9], a Java-based SIP UA is proposed
for monitoring manufacturing systems over the Internet. The
focus of [10] is a SIP adaptor for both traditional SIP
telephony and user lookup on a P2P network that does not
have a SIP server. The goal of such SIP servers and SIP UAs
is to offer enhanced services to clients by using existing low-
level SIP stacks that rely on an OS. In contrast, bare PC SIP
servers and UAs that are implemented directly on the
hardware will have less overhead and are more suited for
secure low-cost environments.

Intertwining bare PC Web server or email server
application and application protocols (i.e., HTTP or SMTP)
with the TCP protocol contributes to its improved
performance over OS-based servers [2, 3]. In [11], the
performance of a bare PC SIP server is compared with that
of OS-based servers, and it is shown that the bare PC server
performs better except in a few cases. It is likely that the
performance drops are due to using a simple (non-optimized)
search algorithm for user lookup as discussed in the section
on server implementation below. The performance study did
not discuss the SIP server design details or its
implementation. The design, implementation, and
performance of a bare PC softphone are discussed in [12,
13]. However, the softphone does not include a SIP UA and
hence lacks the ability to communicate with SIP servers and
set up calls with other SIP softphones.

III. BARE MACHINE COMPUTING

Bare PC application development is based on the bare
machine computing paradigm, also referred to as the
dispersed operating system (DOSC) paradigm [14]. In this
paradigm, a single self-supporting application object (AO)
encapsulating all of the necessary functionality for a few
(typically one or two) applications executes on the hardware
without an OS. Bare machine applications only use real
memory; a hard disk is not used. The AO, which is loaded
from a USB flash drive or other portable storage medium,
includes the application and boot code. The application code
is intertwined with lean implementations of the necessary
network and security protocols. If required by the
application, the AO also includes cryptographic algorithms,
as well as network interface and other device drivers, such as
an audio driver in case of the bare PC softphone. The
interfaces enabling the application to communicate with the
hardware [15] are also included in the AO. The AO code is
written in C++ with the exception of some low-level
assembler code. The AO itself manages the resources in a
bare machine including the CPU and memory. For example,
every bare PC AO has a main task that runs whenever no
other task is running, and network applications require a
Receive (Rcv) task that handles incoming packets.

Additional tasks may be used depending on the applications
included in the AO, such as an audio task for the bare PC
softphone.

IV. BARE PC SIP SERVER IMPLEMENTATION

The bare PC SIP server supports registrar, redirector, or
proxy modes with or without authentication. The server is
designed in a modular fashion to allow for easy updates and
implementation of new features, and to facilitate analysis of
the server code. Since the bare PC SIP server
implementation is lean, only specific content from an
incoming SIP packet is parsed. The bare PC SIP server AO
contains about 2000 lines of code.

A. Boot Sequence

The bare PC SIP server is booted by directly loading its
AO from a USB flash drive. The protocol/task relationships
for the server are shown in Fig. 1. The bare PC SIP Server
boot sequence begins when the Main task invokes the
DHCP handler to send a DHCP request for an IP address
(unless the server has been preconfigured to use a specific
IP address). When a response arrives, the Rcv task is
invoked to process it. Next, a file containing username and
password combinations of authorized users is transferred
from another host on the network using an adaptation of
trivial FTP. As discussed later, multiple data structures to
facilitate server operations such as user lookup, username
and password lookup, and state lookup are then created in
memory. The last step in the boot process is to display the
user interface for administering the server.

B. SIP Server Internals

The bare PC SIP server uses only two CPU tasks, Main
and Receive (Rcv), which simplifies task management and
increases efficiency. The Main task runs continually and
activates the Rcv task whenever packets arrive in the
Ethernet buffer and need to be processed. After a response is
sent, the Rcv task terminates and the Main task runs again.
For example, when the SIP Server AO’s Rcv task is
activated by the Main task upon the arrival of a SIP request
in the Ethernet buffer, a single thread of execution handles
the request all the way from the Ethernet level to the SIP
(application) level till a response is sent, which simplifies
server design and reduces the processing overhead. Thus, if
an arriving packet is designated for the default SIP UDP
port 5060, the Rcv task causes the Ethernet, IP, and UDP
handlers to be invoked to process the respective protocol
headers using a single copy of the message. As shown in
Fig. 1, the Rcv task only terminates after the SIP request is
processed and a SIP response is sent by the server (after
invoking the respective protocol handlers to attach the
headers).

The bare PC SIP server AO consists of several objects.
In addition to the Ethernet, IP, UDP, and SIP objects, the
server also requires the DHCP, FTP, and MD5 objects. The
role of the DHCP and FTP objects were discussed earlier.
The MD5 object is used to provide support for user
authentication via standard SIP authentication (i.e., HTTP-
Authentication) if it is needed.

9

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-107-6

C. User Database Lookup

After the usernames and passwords from the file are read
into memory, the bare PC SIP server runs the
sipservergetdb() function to store them in the
USER_DATABASE structure:
Struct USER_DATABASE {
char username [20];
int username_size;
int username_hash;
char Password [20];
int Password_size;
};

The data structures HASH_TABLE and
SORTED_TABLE shown below are also used.
Struct HASH_TABLE {
int hash_hit;
int hash_reg_db_loc[HASH_REG_DB_SIZE];
int hash_hit_size
};
Struct SORTED_TABLE {
int hash;
int hash_link;
};

In essence, the hash of each username is then used as an
index into HASH_TABLE, which is used together with
SORTED_TABLE to facilitate looking up the user in the
USER_DATABASE structure, and retrieving information
when making or receiving calls, or registering a user. The
HASH_TABLE structure links back to the
SORTED_TABLE and USER_DATABASE structures. The
details are as follows. First, the hash values are stored in a
SORTED_TABLE array (which allows for efficient
searching for a given hash value), and each position in the
sorted array is linked to the specific HASH_TABLE array
corresponding to that hash value. In turn, each position in
the HASH_TABLE array corresponds to a user that hashed
to that value and contains a link back to the
USER_DATABASE entry for that user. The
HASH_TABLE structure links the index in the
USER_DATABASE structure to the hash value of the
SORTED_TABLE as shown in Fig. 2.

The user lookup process in Fig. 3 is done by using two
functions: the find_hash_hit() function, which is based on a
particular hash value, and the find_user() function that is
based on the username and size. In performance tests, this
search operation was found to be a likely bottleneck because
of the username comparisons triggered by collisions on a
single hash value. The find_user() function takes a username
and username size as input. It then hashes the username and
passes the value to the find_hash_hit() function, which finds
the corresponding hash table containing all the users with
that same hash value. The hash table is passed back to the
find_user() function, which calls the lookup_user() function.
The latter goes through each user in that specific hash table
and first compares the sizes of the usernames; if they match,
it looks for a second match on the full username. If the user
is found, the location containing the user’s information in
the database, including the IP Address and port, is returned.

To improve performance, future bare PC SIP server
implementations will use adaptations of data structures and
search techniques used by popular Linux SIP servers.

D. SIP Message Processing

The siphandler() function manages the processing of
received SIP messages. This function, which is called
directly by the udp_handler() function after verifying the
SIP port in the UDP header, is the key element in the bare
PC SIP server. The siphandler() function calls the
parse_headers() function which goes through the SIP packet
and parses out specific identifiers to identify the type of
message (for example, REGISTER, INVITE, ACK, BYE,
180 Ringing, 200 OK and 100 Trying). Within the
parse_headers() function are specific functions built to
handle the following SIP tags: Header, Via, From, To,
Expires, Authorization, Proxy Authorization, CallId, CSeq,
Contact, and Content Length. In keeping with the lean SIP
implementation, only the indicated tags are parsed to
expedite the processing of SIP packets (other tags are
bypassed). Once the tags are parsed and the relevant data
from the packet is stored, control returns to the siphandler()
function. Further processing is determined according to the
request_type returned. Only the following SIP messages are
routable by the Bare PC SIP Server: Register Invite, 100
Trying, 180 Ringing, 200 OK, Ack, Bye, and Unsupported.
When the system (the siphandler function) has decided what
to do with the SIP request, processing is carried out to
forward the SIP message, or a reply is sent to the SIP User
Agent by utilizing the generate_sip_response() function.
This function generates the SIP reply (or 100 Trying
response) based on the values retrieved earlier by parsing
the SIP request. It then calls the sipsenddata() function,
which calls the relevant protocol handlers to format the
headers in the SIP reply.

Register Message: To process a Register message, the
bare PC SIP server parses the Via (IP address:port), From
and To (usernames@domain/IP), and Contact tags. It then
calls the function check_registered_users(). A process
similar to that described earlier is used to determine if the
user is already registered (i.e., is found in the
Registered_Users_Database). If so, only the relevant
information is updated; otherwise, the system stores all
necessary information parsed from the SIP request including
the username, IP address and port number. This information
is used to generate replies back to the UA on future requests
until the UA re-registers or one of the parameters is updated.
After the information is stored or updated, the server
generates a 200 OK message and sends the reply back to the
SIP UA.

Invite Message: For an Invite message, the bare PC SIP
server parses almost all of the same fields as for the Register
message. The server then sends messages to the caller and
callee. A 100 Trying message is sent back to the caller
letting the UA know that the SIP Server is processing the
request. To send this message, the server looks up the IP
address of the caller using the process described earlier. It
also looks up the registration information for the callee and
forwards the Invite message to its UA.

10

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-107-6

SIP Authentication: The Message format for an Invite
request with authentication is shown in Fig. 4. SIP
authentication is done by challenging the initial request
(Invite or Register) sent by the SIP UA. SIP uses HTTP
authentication techniques. The bare PC SIP Server is
designed so that each request is not authorized unless it
receives the proper response for a given challenge. The
server can be configured at start-up to operate with or
without authentication. An authorization flag indicates if a
particular request is approved or denied based on
authentication. The bare PC SIP server processes the initial
request, and then sends a challenge response back to the
requesting SIP UA. The SIP server generates a challenge
response that depends on the values of realm and nonce. The
realm is typically set to the domain of the SIP server (for
example, barepc.towson.edu or the IP address). The nonce is
a string that is randomly generated by the server. Once the
server receives the reply to the challenge, the fields in the
authorization request are parsed from the SIP packet. Then
the response value is computed using the MD5 algorithm
and matched against the response value sent by the SIP UA.
The response value is a hash that depends on the
concatenation of all values in the authorization request. If
the computed response matches the response sent by the SIP
UA, the request is approved (authorized) and normal SIP
call flow processing is allowed.

E. User Interface

The bare PC SIP Server has a simple user interface that
displays its basic configuration and state information when
the interface function sipserverstate() is called. The displayed
information includes the number of users added to the
username and password database, and the server’s
configuration mode (proxy, redirector, authentication,
stateless, or stateful). The server can also show the username,
ip address, and port for each user logged into the system. An
administrator can toggle through the list of users, or
configure the server so that the display is triggered every
time a user is added or removed from the
Registered_User_Database by calling sipserverstate() from
the Main task.

V. BARE PC SIP UA IMPLEMENTATION

The bare PC SIP user agent (UA) is integrated with the
bare PC softphone enabling calls to be set up. Its operational
characteristics are similar to those of a SIP UA in a
conventional OS-based SIP softphone. However, the UA
implementation is different due to the absence of an OS and
a built-in protocol stack, and results in a UA with less
overhead and better security. The UA can also directly
communicate with a peer (without using a SIP server)
provided the peer can be contacted via a known (public)
destination IP address and port number.

A. UA Operation/User Interface

As in the case of the bare PC SIP server, only two tasks
Main and Rcv are needed for the UA, and arriving SIP
messages and responses are processed in a single thread of
execution as described earlier. When the UA is booted, if an

IP address for the UA has not been preconfigured, the UA
sends out a request for an IP address and obtains one using
DHCP. If this is a private address, the UA is behind a NAT
and uses STUN [16] to learn its public IP address and port.
In this case, the UA first sends a DNS request and obtains
the IP address of a public STUN server. The bare PC STUN
implementation is described in more detail below.

After UA completes the initialization process it displays
the main login menu, which enables the user to login-in to a
particular SIP server or to communicate directly with a peer
as noted earlier. In case SIP server login is selected, the UA
sends a SIP Register request to the server after performing a
DNS resolution if needed. Once the 200 OK messages are
received from the SIP server, the UA displays a “main
menu” screen as in Fig. 5. The menu has several options,
which enables the user to see the IP configuration
information from DHCP, and NAT mappings from STUN
that show the external IP address and internal/external SIP
and RTP ports for the softphone. Such information is useful
to troubleshoot connectivity problems. In addition, a
separate option shows call status and connectivity
information, and indicates whether security is on. A “quick
dial” option for selecting specific users is also available.

The software design of the bare PC SIP UA is simple
and modular. The essential UA functionality contained in
the SIPUA object consists of 3000 lines of C++ code. This
object is supplemented by 1) objects for cryptographic and
other algorithms needed for key establishment (HMAC,
SHA-1, MD5, AES, and Base64); 2) objects implementing
the essential elements of the necessary auxiliary protocols
(STUN, DHCP, and DNS); and 3) objects needed by the
bare PC softphone including the Ethernet, IP, and UDP
objects, the RTP, audio, and G.711 objects that handle voice
data processing, recording, and playback on the bare PC
softphone, and the SRTP [17] object that provides VoIP
security.

B. User Agent Client and User Agent Server

The bare UA consists of two independent components:
the SIP user agent server (UAS) and SIP user agent client
(UAC). The UAS is operationally similar to the bare PC SIP
server with respect to its handling of SIP packets. For
example, it listens for call requests and its actions are
activated by the Rcv task when a packet arrives as discussed
earlier for the case of the SIP server. The UAC can be
activated by keyboard input. The UA functionality is
contained in a SIPUA object that is responsible for
processing SIP messages and SDP tags, displaying the SIP
UA interface, and interacting with the user. The SIPUA
object is integrated in a single AO with several other objects
needed to implement the UA.

C. STUN/DHCP/DNS/SRTP

The public IP address and port learned from the public
STUN server is used in SIP Invite requests to enable the
peer to communicate with the UA behind the NAT. The
bare PC SIP UA sends out multiple STUN messages to find
the external port for its voice channel over RTP. Since the
signaling channel is proxied through the SIP server, STUN

11

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-107-6

is not needed to discover the external SIP signaling port.
After the bare PC client is booted, STUN messages for the
media channel are sent every 30 seconds until the SIP UA
establishes the call. The Invite message contains the last
known media channel external port number. Since the NAT
binding may change, the UA sends voice packets to the
destination host using a sequence of consecutive ports. The
UA stops sending on the other ports once voice packets are
received on a particular port.

Since there is no OS and no built-in protocol stack on
the bare PC softphone, the bare PC SIP UA also needs to
send DHCP messages to automatically obtain an IP address
and other essential configuration information at start-up.
The DHCP messages follow the typical DHCP call flow
(Discover, Offer, Request, and Ack). The softphone can also
send DNS requests to resolve the domain name of the SIP or
STUN server. As noted earlier, the implementation of the
DHCP and DNS protocols have only the minimal features
needed by the bare PC SIP softphone.

The bare PC SIP UA is also integrated with SRTP. The
implementation and performance of SRTP on a bare PC
softphone are presented in [18]. SRTP allows the UA to
communicate securely with conventional SIP UAs that are
SRTP capable. The bare PC softphone AO includes
implementations of SHA-1, MD5, HMAC, and AES in
counter mode, which are used by SRTP. The bare PC SRTP
implementation also supports addition of a recommended
authentication tag to the end of the RTP packet. The UA
currently implements the SDP Offer/Answer model via
SDES for key exchange. This method is used by several
conventional SRTP clients. The keys used to generate the
session keys are Base64 encoded by the bare PC softphone
SRTP implementation prior to transmission. Since this
approach for transmitting keys is not secure, TLS is used by
some conventional softphones for SIP signaling.

VI. TESTING

Operational tests of the bare PC SIP server and SIP
softphone implementations with and without authentication
and SRTP security were conducted using Dell GX-260
desktops with Intel Pentium 4 2.4 GHz processors, 1.0 GB
RAM, and a 3COM Ethernet 10/100 PCI network card. The
test network consists of a dedicated LAN within the Towson
University network, and an external network connected
through an ISP as shown in Fig. 6. The bare PC SIP server
and user agents were first tested within the dedicated LAN.
Testing was performed to verify 1) correct operation
between the bare PC SIP server and bare PC SIP
softphones; 2) interoperability of bare PC SIP softphones
with the OpenSer v3.0.0 server [19]; 3) interoperability of
the bare PC SIP server with Snom360-5.3 softphones [20];
and 4) interoperability of bare PC SIP softphones with the
Snom softphones.

Similar tests were conducted over the Internet by
establishing calls between a softphone on the external
network and another on the dedicated LAN when the SIP
servers are connected to the LAN. These tests also served to
verify that the UA and the lean DHCP, STUN, and DNS
implementations on the bare PC SIP softphone work

correctly when it is connected to the Internet. In particular,
the bare PC STUN implementation was found to be
adequate for connecting between clients behind NATs on
the dedicated test LAN and on an ISP network.

VII. CONCLUSION

We described the design, implementation, and operations
of a bare PC SIP server and SIP UA, which provide essential
SIP functionality with less overhead and better security at
lower cost due to the absence of an OS. The underlying bare
PC system enables the SIP server and UA to benefit from
simple tasking, lean protocols, and efficient data handling.
The tests conducted show that the bare PC SIP server can
interoperate with both bare PC and OS-based UAs, and also
that the bare PC SIP UA can interoperate with both an OS-
based UA and an OS-based SIP server.

REFERENCES
[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation
Protocol,” RFC 3261, 2002.

[2] L. He, R. Karne, and A. Wijesinha, “The Design and Performance of
a Bare PC Web Server”, International Journal of Computers and
Their Applications, vol. 15, pp. 100 - 112, June 2008.

[3] G. Ford, R. Karne, A. Wijesinha, and P. Appiah-Kubi, “The
Peformance of a Bare email server”, 21st International Symposium on
Computer Architecture and High Performance Computing, SBAC-
PAD 2009, October 28-31, Sao Paulo, Brazil, pp.143-150, 2009.

[4] L. Chen, and C. Li, “Design and Implementation of the Network
Server Based on SIP Communication Protocol,” World Academy of
Science, Engineering and Technology 31, pp. 138-141, 2007.

[5] S. Zeadally and F. Siddiqui, “Design and Implementation of a SIP-
based VoIP Architecture,” AINA 2004.

[6] A. Singh, A. Acharya, P. Mahadeva, and Z-Y, Shae, “ SPLAT: a
unified SIP services platform for VoIP applications,” International
Journal of Communication Systems, Volume 19, Issue 4, pp. 425-
444, 2006.

[7] P. Zave, E. Cheung, G. W. Bond, and T. M. Smith, “Abstractions for
Programming SIP Back-to-Back User Agents,” IPTComm’09, 2009.

[8] S Siddique, RK Ege, SM Sadjadi, “X-Communicator: Implementing
an advanced adaptive SIP-based User Agent for Multimedia
Communication,” SoutheastCon, pp. 271-276, 2005.

[9] K. J. Kim, Y, Jang, J. W. Chung, and J. H. Seo, “Design and
implementation of SIP UA for a manufacturing network,”
International Journal of Advanced Manufacturing Techniques,
Volume 28, Number 7-8, pp. 822-826, 2006.

[10] K. Singh and H. Schulzrinne, “Peer-to-Peer Internet Telephony using
SIP,” International Workshop on Network and Operating System
Support for Digital Audio and Video, pp. 63-68, 2005.

[11] A. Alexander, A. L. Wijesinha, and R. Karne, “A Study of Bare PC
SIP Server Performance,” 5th International Conference on Systems
and Network Communications, ICSNC 2010, In Press.

[12] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and S.
Girumala, “A Peer-to-Peer bare PC VoIP Application,” IEEE
Consumer and Communications and Networking Conference (CCNC
2007), pp. 803-807, 2007.

[13] G. H. Khaksari, A. L. Wijesinha, R. Karne, Q. Yao, and K. Parikh,
“A VoIP Softphone on a Bare PC”, Embedded Systems and
Applications Conference (ESA), 2007.

[14] R. K. Karne, K. V. Jaganathan, T. Ahmed, and N. Rosa, “DOSC:
Dispersed Operating System Computing,” 20th Annual ACM
Conference on Object Oriented Programming, Systems, Languages,
and Applications (OOPSLA ’05), Onward Track, pp. 55-61, 2005.

12

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-107-6

[15] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to Run C++
Applications on a Bare PC?” 6th International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD 2005), pp. 50-55, 2005.

[16] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session
Traversal Utilities for NAT (STUN),” RFC 5389, 2008.

[17] M. Baugher, D. McGrew, M. Naslund, E. Carrara and K.Norrman,
“The Secure Real-time Transport Protocol (SRTP),” RFC 3711, 2004.

[18] A. Alexander, A. L. Wijesinha, and R. Karne, “An Evaluation of
Secure Real-Time Protocol (SRTP) Performance for VoIP,” 3rd
International Conference on Network and System Security (NSS), pp.
95-101, 2009.

[19] Kamailio (OpenSER) SIP server, http://sourceforge.net/projects/open
ser

[20] Snom VoIP phones, http://www.snom.com/download/snom360-
5.3.exe

Figure 1. SIP Server Protocol/Task Relationships.

Figure 2. Database and Hash Table Relationships.

Figure 3. User Lookup Process.

Figure 4. SIP Invite with Authentication.

Figure 5. UA Main Menu Screen.

Figure 6. Test Network.

INVITE sip:67890111@barepc.towson.edu:5060 SIP/2.0
Via:SIP/2.0/UDP192.168.1.56:5060;brach=0320
From:<sip:0123456@ barepc.towson.edu>;tag=0
To: <sip: 67890111@ barepc.towson.edu>
Max-Forwards: 70
Call-ID: 0010-0003-DA76506F-0@AAE2A42DF82D1D0AA
 CSeq: 297386 INVITE
Contact: <sip:123456@192.168.1.56:5060>
Content-Type: application/sdp
Proxy-Authorization:Digest
username=“8000”,realm=“BAREPC”,nonce=“3bd76584”,
uri=“sip:123456@192.168.2.81”,response=“6e91de67ad976997
ff”
User-Agent: BarePC SIP UA v1.0
Content-Length: 276
v=0
 o=Vega400 4 1 IN IP4 192.168.1.56
 s=Bare PC Sip Call
 t=0 0
 m=audio 10006 RTP/AVP 4 18 8 0 96
 c=IN IP4 192.168.1.56
 a=rtpmap:8 PCMA/8000
 a=rtpmap:0 PCMU/8000
 a=rtpmap:96 telephone-event/8000
 a=fmtp:96 0-15,16
 a=sendrecv

13

FUTURE COMPUTING 2010 : The Second International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-107-6

