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Abstract— Nowadays, the telecom network traffic environment 
is composed mostly of emerging multirate services whose calls 
can tolerate bandwidth compression either by extending their 
service-time (elastic services) or not (adaptive services). The co-
existence of elastic and adaptive services makes the call-level 
performance analysis and evaluation of modern networks 
much more complicated. To contribute, in this paper, we 
present a new multirate loss model for elastic and adaptive 
services with finite traffic-source population. Thus, the call 
arrival process is a quasi-random process which is, in many 
cases, a more realistic consideration than a random (Poisson) 
process. The proposed model does not have a product form 
solution, and therefore, we propose approximate but recursive 
formulas for the efficient calculation of the call-level 
performance metrics, such as time and call congestion 
probabilities and link utilization. The consistency and the 
accuracy of the new model are verified through simulation and 
found to be quite satisfactory. 

Keywords - quasi-random process; elastic-adaptive traffic; 
recursive formula; time-call congestion; Markov chain.  

I.  INTRODUCTION 

In modern communication networks, the increase of 
elastic and adaptive multirate traffic necessitates the QoS 
network assessment through proper teletraffic loss models 
 [1]. Based on them, we can accommodate various services 
in the network according to their offered traffic-load, and 
avoid costly over-dimensioning of the links. By the term 
elastic traffic (e.g., file transfer) we refer to calls that can 
compress their bandwidth, while simultaneously expanding 
their service time. On the other hand, adaptive traffic refers 
to calls that can tolerate bandwidth compression, but their 
service time does not alter (e.g., adaptive video)  [2].    

Call-level multirate loss models of a single link of fixed 
capacity, where calls of both elastic and adaptive service-
classes are accommodated, have been proposed in [2]-[4]. In 
all cases, calls can tolerate bandwidth compression down to 
a minimum value. In  [2], calls arrive in the link according to 
a Poisson process (a random process) and use their peak 
bandwidth requirement when the occupied link bandwidth 
does not exceed the capacity of the link. Otherwise, the link 
accepts a call by compressing its peak-bandwidth, as well as 

the bandwidth of all in-service calls, at the same time. Call 
blocking occurs when, after the maximum possible 
bandwidth compression, the minimum bandwidth 
requirement of a new call is still higher than the available 
link bandwidth. The minimum bandwidth requirement of a 
call is a proportion of its peak-bandwidth; this proportion is 
common to all service-classes. When an in-service call, 
whose bandwidth has been compressed, departs from the 
system, then the remaining in-service calls expand their 
bandwidth. Our analysis through Markov chains shows that 
this bandwidth compression/ expansion destroys the 
Markov chain reversibility, and therefore no Product Form 
Solution (PFS) exists. However, based on the method 
proposed in  [2], we find an approximate but reversible 
Markov chain, which is solved and leads to a recursive 
formula for the determination of link occupancy distribution 
and, consequently, call blocking probabilities and link 
utilization. This formula resembles the well-known 
Kaufman-Roberts formula used in the Erlang Multirate Loss 
Model (EMLM), where Poisson arriving calls of different 
service-classes have fixed bandwidth requirements (stream 
traffic)  [6], [7]; thus, we name the model of  [2], Extended 
EMLM (E-EMLM). In  [3], the E-EMLM is extended to 
include retrials, i.e., blocked calls may retry one or more 
times to be serviced with reduced bandwidth. In  [4], new 
calls, upon their arrival, may reduce their bandwidth 
according to the occupied link bandwidth. In [5], the E-
EMLM is further extended to include the Batched Poisson 
call arrival process which is used to approximate arrival 
processes that are more “peaked” and “bursty” than the 
Poisson process. Recently, a multirate loss model that 
includes stream, elastic and adaptive traffic has been 
proposed in [8]; the presence of stream traffic prohibits the 
recursive calculation of link occupancy distribution. 

In this paper, we extend  [2] by assuming that calls of 
each service-class (elastic or adaptive) come from finite 
sources. This arrival process is known as quasi-random and 
is smoother than the Poisson process  [9]. The proposed 
model does not have a PFS. However, we propose an 
approximate recursive formula for the efficient calculation 
of the link occupancy distribution. This formula simplifies 
the determination of: a) Time Congestion (TC) 
probabilities, b) Call Congestion (CC) probabilities and c) 
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link utilization. Applications of the proposed model are in 
the area of wireless networks, where calls come from finite 
sources and their bandwidth is compressed (e.g.,  [10]- [12]). 

The remainder of this paper is as follows:  In Section II, 
we: a) present the basic assumptions of the proposed model 
and the call admission control, b) prove the recursive formula 
for the link occupancy distribution and c) provide formulas 
for the various performance measures. In Section III, we 
provide numerical results whereby the new model is 
compared to the E-EMLM and evaluated through simulation 
results. We conclude in Section IV. 

II. THE PROPOSED MODEL 

A. Basic assumptions and description of call admission 

Consider a link of certain capacity C bandwidth units 
(b.u.) that accommodates elastic and adaptive calls of K 
different service-classes. Let Ke and Ka be the set of elastic 
and adaptive service-classes (Ke + Ka = K), respectively. 
Calls of service-class k (k=1,…,K) come from a finite source 
population Nk and request bk b.u. (peak-bandwidth 
requirement). The mean arrival rate of service-class k idle 
sources is λk = (Nk - nk)vk where nk is the number of in-
service calls and vk is the arrival rate per idle source. This 
call arrival process is a quasi-random process  [9]. If 

kN  for k=1,…,K then a Poisson process results. To 
introduce bandwidth compression, the occupied link 
bandwidth j may exceed C up to T b.u.  

To describe call admission, consider the arrival of a 
service-class k call while the system is in state j. Then: 
i) If j + bk   C, the call is accepted in the system with its 
peak-bandwidth requirement for an exponentially distributed 
service time with mean 1

k . 

ii)  If j + bk > T, the call is blocked and lost. 
iii)  If T   j + bk > C, the call is accepted in the system by 
compressing its peak-bandwidth requirement, as well as the 
assigned bandwidth of all in-service calls. All calls share the 
C b.u. in proportion to their peak-bandwidth requirement, 
while the link operates at its full capacity C. This is the 
processor sharing discipline  [13]. 

When T   j + bk > C, the compressed bandwidth 
comp
kb of the newly accepted call, is given by: 

comp
k k k'

C
b rb b

j
                                                                  (1) 

where r = C/j΄ denotes the compression factor, '
kj j b  .  

Since 
1

K

k k
k

j n b


  nb , n = ( 1 2,, ..., Kn n n ) and b = (b1, b2, 

…,bK), the values of r are given by r   r(n) = C/( kbnb ). 
The bandwidth of all in-service calls is also compressed by 

the same factor r(n) and becomes equal to 
'

comp
i i

C
b b

j
  for i 

= 1,…,K. After bandwidth compression, we have j = C and 
all adaptive calls do not alter their service time. On the other 

hand, all elastic calls increase their service time so that the 
product ‘service time’ by ‘bandwidth’ remains constant. 
The minimum bandwidth that a call of service-class k (k 
=1,…,K) tolerates, is:  

,min min
comp
k k k

C
b r b b

T
                                                              (2) 

where rmin = C/T is the minimum proportion of the required 
peak-bandwidth and is common to all calls.  

When an in-service call of service-class k, with 
bandwidth comp

kb , departs from the system, then the 
remaining in-service calls of each service-class i (i=1,…,K), 
expand their bandwidth to expan

ib , in proportion to their peak-
bandwidth bi: 

exp

1

min ,an comp compi
i i i kK

k k
k

b
b b b b

n b


 
 
  
 
 
 


                                (3) 

B. Determination of link occupancy distribution and 
various performance metrics 

 
Let Ω be the system’s state space Ω= n:0  nb  T . 

Due to the bandwidth compression/expansion mechanism, 
we cannot describe the system by a reversible Markov chain 
(i.e., local balance does not exist between adjacent states of 
Ω). Therefore, the steady-state distribution P(n) does not 
have a PFS. To derive an approximate but recursive formula 
for the efficient calculation of the link occupancy 
distribution, G(j), j=0,1,…,T, we construct a reversible 
Markov chain that approximates the system by using state 
multipliers for all states nΩ. The local balance equations 
between the adjacent states 1

k
n  = ( 1n , 2n ,…, nk – 1,…, Kn ) 

and n =(n1, n2, …, nk, …,nK) have the form: 

1( )( 1) ( ) ( ) ,-
k k k k k k k eP N n v P n k K    n n n                 (4) 

1( )( 1) ( ) ( ) ,-
k k k k k k k aP N n v P n k K    n n n                 (5) 

where ( )k n is a state multiplier and is defined as:  

1

1 ,

( )
( ) ,

( )

0 ,  

k
k

when C and

x
when C T and

x

otherwise    




 

   



nb n Ω

n
n nb n Ω  

n
                    (6) 

and 

1 1

1 ,

1
( ) ( ) ( )

( )

,

0 ,

e a

k k k k k k
k K k K

when C,  

n b x r n b x
x C

when C T,  

otherwise     

 

 

 


        
   


 

nb n Ω  

n n n
n

nb n Ω   

                (7) 
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where ( )r n =C/ nb .  
When andC T  nb n Ω  the values of bandwidth of 

all in-service calls are compressed by a factor ( )k n  so that: 

 
e a

comp comp
k k k k

k K k K

n b n b C
 

                                                (8) 

To derive (7), we keep the product ‘service time’ by 
‘bandwidth’ of service-class k calls (elastic or adaptive) in 
state n of the irreversible Markov chain equal to the 
corresponding product in the same state n of the reversible 
Markov chain. This means that: 

( )

( ) ( )

comp
k k

k k k

b r b

r  


n

n n
 ( )comp

k k kb b  n , ek K                  (9) 

and 

( )

( )

comp
k k

k k k

b r b

  


n

n
   ( ) ( )comp

k k kb b r n n , ak K       (10) 

Equation (7) results by substituting (9), (10) and (6), into 
(8). 

In order to prove a recursive formula for the calculation 
of G(j)’s, we consider two cases: i) states where 0 j C   
and ii) states where C j T  .  

When 0 j C  , then ( )k n =1 and based on (4) and (5), 
it is proved that  [14]: 

1 for 0

1
( + 1) ( )

( ) ( )

for 1, ...,

0 otherwise

k k k k k
k K

j

N - n α b G j b
G j min j,C

j T




  
 


   (11) 

where: αk = vk/μk is the offered traffic-load (in erl) per idle 
source of service-class k. 

When C j T  , we multiply both sides of (4) by 
comp
kb and sum over k=1,…,Ke to have:  

1( 1) ( ) ( ) ( )
e e

comp - comp
k k k k k k k k

k K k K

N n a b P P n b 
 

   n n n      (12)  

Based on (6) and (9), (12) is written as: 

1 1( ) ( 1) ( ) ( ) ( )
e e

-
k k k k k k k k

k K k K

x N n a b P P x n b

 

   n n n n     (13) 

We continue by multiplying both sides of (5) by 
comp
kb and sum over k=1,…,Ka to have:   

1( 1) ( ) ( ) ( )
a a

comp - comp
k k k k k k k k

k K k K

N n a b P P n b 
 

   n n n     (14) 

Based on (6) and (10) and since r(n) = C/j,  (14) can be 
written as: 

1 1( ) ( 1) ( ) ( ) ( )
a a

-
k k k k k k k k

k K k K

C C
x N n a b P P x n b

j j


 

   n n n n (15) 

Adding (13) and (15) we have: 

1 1

1 1

( ) ( 1) ( ) ( 1) ( )

( ) ( ) ( ) (16)

e a

e a

- -
k k k k k k k k k k

k K k K

k k k k k k
k K k K

C
x N n a b P N n a b P

j

C
P x n b x n b

j

 

 

 

 
      

 
 

   
 

 

 

n n n

n n n

                     

Due to (7), (16) can be written as: 

1 1( 1) ( ) ( 1) ( ) ( )
e a

- -
k k k k k k k k k k

k K k K

C
N n a b P N n a b P CP

j 

      n n n  (17) 

To introduce the link occupancy distribution G(j) in (17), 
let  :j j  Ω n Ω nb  be the state space where exactly j 

b.u. are occupied. Then, since ( ) ( )
j

P G j



n Ω

n , summing 

both sides of (17) over 
jΩ we obtain: 

1

1

( 1) ( )

( 1) ( ) ( )

j e

j a

-
k k k k k

k K

-
k k k k k

k K

N n a b P

C
N n a b P CG j

j

 

 

  

  

 

 

n

n

n

n





               (18) 

Interchanging the order of summations in (18) and 
assuming that each state has a unique occupancy j we have: 

1

1

( 1) ( )

( 1) ( ) ( )

e j

a j

-
k k k k k

k K

-
k k k k k

k K

N n a b P

C
N n a b P CG j

j

 

 

  

  

 

 

n

n

n

n





                     (19) 

or 

( 1) ( )

( 1) ( ) ( )

e

a

k k k k k
k K

k k k k k
k K

N n a b G j b

C
N n a b G j b CG j

j





   

   




                       (20) 

The combination of (11) and (20) gives the approximate 
recursive formula of G(j)’s, when 1 j T  :  
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1 for 0

1
( 1) ( )

min( )
( )

1
( 1) ( ) for 1,...,

0 for 0

e

a

k k k k k
k K

k k k k k
k K

j

N n α b G j b
j,C

G j

N n α b G j b j T
j

j







   
 
    








  (21) 

 When kN  for k=1,…,K then the call arrival process 
is Poisson and the formula of G(j)’s is [2]:   

1 for 0

1
( )

min( )
( )

1
( ) for 1,...,

0 for 0

e

a

k k k
k K

k k k
k K

j

α b G j b
j,C

G j

α b G j b j T
j

j







  
 
  








                    (22) 

where αk=λk/μk (in erl) and λk is the arrival rate of calls of 
service-class k. 

The determination of G(j)’s in (21) requires the value of 
nk which is unknown. In other finite multirate loss models 
(e.g.,  [14],  [15]) there exist calculation methods for the 
determination of nk in each state j through the use of an 
equivalent stochastic system, with the same traffic 
description parameters and exactly the same set of states. 
However, the state space determination of the equivalent 
system is complex, especially for large capacity systems that 
serve many service-classes. Thus, we avoid such methods 
and approximate nk in state j, nk(j), as the mean number of 
service-class k calls in state j, yk(j), when Poisson arrivals 
are considered, i.e., ( ) ( )k kn j y j . Such approximations are 
common in the literature and induce little error (e.g., 
 [16], [17]).  The values of yk(j) are given by (23), (24) in the 
case of elastic and adaptive service-classes, respectively  [2]: 

 

1

1

1
( ) ( ) ( ) ( ) 1

min( , )

1
( ) ( )

min( , )

1
( ) ( )

e

a

k k k k k k

K

i i i k i
i
i k

K

i i i k i
i

y j G j a b G j b y j b
C j

a b G j b y j b
C j

a b G j b y j b
j






   

  

  





  (23) 

 

 

1

1

1
( ) ( ) ( ) ( ) 1

1
( ) ( )

1
( ) ( )

min( , )

a

e

k k k k k k

K

i i i k i
i
i k

K

i i i k i
i

y j G j a b G j b y j b
j

a b G j b y j b
j

a b G j b y j b
C j






   

  

  





        (24) 

 where the values of G(j)’s are determined by (22).  
Having determined G(j)’s according to (21), we 

calculate the following performance measures: 
1) The TC probabilities of service-class k, denoted as Pbk

, 
which is the probability that at least T-bk+1 b.u are 
occupied: 

1

1

( )
k

k

T
-

b
j T b

P G G j
  

                                                  (25) 

where: G = 
0

( )
T

j

G j

  is a normalization constant. 

TC probabilities are determined by the proportion of 
time the system is congested.  
2) The CC probabilities of service-class k, denoted as Cbk

, 
which is the probability that a new service-class k call is 
blocked and lost: 

1

1

( )
k

k

T
-

b
j T b

C G G j
  

                                                         (26) 

where G(j)’s are determined for a system with Nk - 1 traffic 
sources.   

CC probabilities are determined by the proportion of 
arriving calls that find the system congested.  
3) The link utilization, denoted as U: 





T

j

-
C

j

- jGCGjGjGU
11

)()(
C

11                           (27) 

III. EVALUATION 

In this section, we present an application example and 
compare the analytical results of the TC probabilities, CC 
probabilities and link utilization obtained by the proposed 
model and the E-EMLM. The corresponding simulation 
results, presented for the proposed model only, are mean 
values of 6 runs. Simulation is based on Simscript II.5  [18].  

We consider a single link of capacity C = 90 b.u. that 
accommodates calls of three service-classes. The first two 
service-classes are elastic, while the third service-class is 
adaptive. The traffic characteristics of each service-class 
are: 

1st service-class: N1=200, v1 = 0.10, b1 = 1 b.u. 
2nd service-class: N2=200, v2 = 0.04, b2 = 4 b.u. 
3rd service-class: N3=200, v3 = 0.01, b3 = 6 b.u. 

In the case of the E-EMLM the corresponding Poisson 
traffic loads are: α1= 20 erl, α2= 8 erl and α3= 2 erl.  

We also consider two values of T: a) T = 90 b.u. , where 
no bandwidth compression takes place and b) T = 100 b.u., 
where bandwidth compression takes place and rmin = 
C/T=0.9. In the x-axis of all figures, v1 and v2 increase in 
steps of 0.01 and 0.005 erl, respectively while v3 remains 
constant. So in Point 1 we have (v1, v2, v3) = (0.10, 0.04, 
0.01), while in Point 6 (v1, v2, v3) = (0.15, 0.065, 0.01). In 
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the case of the E-EMLM the corresponding Poisson traffic 
loads in Point 1 and Point 8 are (α1, α2, α3)= (20, 8, 2) and 
(α1, α2, α3)= (30, 13, 2), respectively.   

In Figs. 1-3, we present the analytical and the simulation 
TC probabilities of the three service-classes while in Figs. 4-
6, we present the corresponding analytical and simulation 
CC probabilities. In all cases, both T=90 and T=100 b.u. are 
considered. Note that the term N=inf. in all figures refers to 
the E-EMLM where the number of traffic sources is infinite 
for each service-class. All figures show that: i) analytical 
and simulation results for both TC and CC probabilities are 
very close, ii) the application of the compression/expansion 
mechanism reduces congestion probabilities compared to 
those obtained when C=T=90 b.u. and iii) the results 
obtained by the E-EMLM fail to approximate the 
corresponding results obtained by the proposed model 
(quasi-random traffic model). Finally, in Fig. 7, we present 
the analytical and simulation results of the link utilization 
(in b.u.). It is clear, that the application of the bandwidth 
compression/expansion mechanism increases link utilization 
since it decreases CC probabilities.    

 

 
  

Figure 1.  TC probabilities of the 1st service-class.  

 
Figure 2.  TC probabilities of the 2nd service-class. 

 

Figure 3.  TC probabilities of the 3rd service-class. 

 

Figure 4.  CC probabilities of the 1st service-class. 

 

Figure 5.  CC probabilities of the 2nd service-class. 
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Figure 6.  CC probabilities of the 3rd service-class. 

 

Figure 7.  Link utilization (in b.u.) 

IV. CONCLUSION 

We propose an analytical model for the call-level 
performance assessment of telecom networks, when elastic 
and/or adaptive calls of different service-classes come from 
finite traffic-sources and compete for the available bandwidth 
of a single link with certain capacity. Due to the existence of 
the bandwidth compression/expansion mechanism, the 
proposed model does not have a product form solution. 
Therefore, we propose approximate but recursive formulas 
for the calculation of the most important performance 
measures, namely TC and CC probabilities and link 
utilization. Simulation results verify the analytical results and 
prove the accuracy and the consistency of the proposed 
model. Furthermore, the comparison of the results obtained 
by the proposed model and the E-EMLM shows the necessity 
of the proposed model, since the E-EMLM fails to 
approximate the case of quasi-random traffic. Potential 

applications of the proposed model are in the environment of 
wireless networks that support elastic and adaptive traffic.   
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