
Design of Dependable Systems: An Overview of Analysis and Verification
Approaches

Jose Ignacio Aizpurua, Eñaut Muxika
Department of Signal Theory and Communications

University of Mondragon
Spain

{jiaizpurua,emuxika}@mondragon.edu

Abstract—Designing a dependable system successfully is a
challenging issue that is an ongoing research subject in the
literature. Different approaches have been adopted in order
to identify, analyse and verify the dependability of a system
design. This process is far from obvious and often hampered
due to the limitations of the classical dependability analysis
techniques and verification approaches. This paper provides
an overview of analysis approaches grouped by limitations.
The principal points for the characterization of the considered
approaches are the capability to handle notions of time,
component-wise failure propagations and the use of architec-
tural languages with the aim to extract analysis models from
design models. Finally, verification approaches are partially
reviewed.

Keywords-Dependability design; Dependability Analysis; De-
pendability Verification; Model-Based Analysis.

I. INTRODUCTION

The goal of this paper is to provide a list of sources to
those readers who are not familiar to the field of model-
based design of dependable systems. Our goal is not to ex-
haustively evaluate the specific features of these approaches,
but to aggregate a comprehensive list of works grouped by
their main characteristics.

In computing systems, dependability is defined as “ability
of a system to deliver a service that can be justifiably trusted”
[1]. Such trustworthiness is based on the assurance of
dependability requirements. These requirements are defined
through dependability attributes: Reliability, Availability,
Maintainability, Safety (RAMS), confidentiality and integrity.
The scope of this overview focuses on RAMS attributes.
Consequently, security aspects (confidentiality and integrity)
are not addressed.

Reliability is the ability of an item to perform a required
function under given conditions for a stated period of time
[2]. Maintainability is the ability to undergo repairs and
modifications to restore to a state in which the system can
perform its required actions. Availability is the readiness
for correct service and safety is the absence of catastrophic
consequences on the user(s) and the environment.

This survey concentrates on three main phases: depend-
ability analysis, system design and verification. Despite
being aware of the relevance of software code for system

dependability in each of these phases, we will consider soft-
ware code as a black box component to limit the extension
of this paper (interested readers refer to [3] [4]).

Dependability analysis techniques can be organised by
looking at how different system failures are characterized
with its corresponding underlying formalisms. On one hand,
event-based approaches reflect the system functionality and
failure behaviour through combination of events. This anal-
ysis results in either Fault Tree (FT) like [5] or Failure
Mode and Effect Analysis (FMEA) like [6] structures, which
emphasizes the reliability and safety attributes. On the other
hand, state-based approaches map the analysis models into
a state-based formalism (e.g., Stochastic Petri Nets (SPN)).
Those approaches analyse system changes with respect to
time and centre on reliability and availability attributes.

Fault injection and model-checking [7] approaches are
mainly adopted for model-based analysis and verification
of design decisions. Principally, they are aimed at checking
and evaluating dependability requirements using nominal
and failure behaviour models. This overview addresses the
analysis and verification of system properties using these
approaches. There is also another class of verification ap-
proaches, which try to ensure the validity of the system by
design [8] (i.e., formal verification).

The remainder of this paper is organized as follows:
Section II classifies dependability analysis techniques based
on the limitations of classical techniques. Section III studies
how to adopt these approaches when designing a dependable
system. Section IV discusses the characteristics of veri-
fication approaches when designing a dependable system.
Section V outlines an abstract hybrid design process based
on the reviewed analysis, design and verification approaches.
Finally, Section VI draws conclusions remarking different
challenges for designing dependable systems. Due to space
limitations, acronyms are used throughout the work. Inter-
ested readers can refer to listed references.

II. REVIEW AND CLASSIFICATION OF DEPENDABILITY
ANALYSIS TECHNIQUES

Event-based approaches analyse the failure behaviour of
the system by investigating the logic succession of faults.

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

They identify an event sequence leading to equipment or
function failure. Differences are mainly based on represen-
tation and analysis structures. Two of the most widely used
techniques are: FT Analysis (FTA) [5] and FMEA [6].

Both techniques focus on the identification of events
that jeopardize the objectives of the design. However,
their logical deductive/inductive orientation (from known ef-
fects/causes towards unknown causes/effects respectively for
FTA/FMEA) and initial assumptions are different. They are
not orthogonal techniques, indeed they are complementary
and in some cases they overlap. The extended usage of these
approaches for dependability related tasks have lead to the
identification of the main limitations. Subsequently, there
has been a long list of works aimed at overcoming them:

• L1: FMEA and FTA are static representations of the
system, neither time information nor sequence depen-
dencies are taken into account [9].

• L2: Orientation of FTA and FMEA concentrate on
the analysis of failure chain information. Consequently,
their hierarchy reflects failure influences without con-
sidering system functional architecture information
[10].

• L3: FMEA and FTA depend on the analyst’s skill
to reflect the aspects of interest. Failure modes (FM)
and undesired events must be foreseen, resulting in a
process highly dependent on analyst’s knowledge of the
system [11].

• L4: Manageability and legibility of FTA and FMEA
models is hampered when analysing complex systems.
Model size, lack of resources to handle interrelated
failures and repeated events, in conjunction with few
reusability means, are its main impediments [10] [12].

L1 refers to the capability of the technique to handle
temporal notions. This is of paramount importance when
analysing fault tolerant systems. L2 emphasizes the interdis-
ciplinary work between dependability analysis and architec-
tural design. Joining both procedures helps obtaining a de-
sign, which meets dependability requirements consistently.
L3 entails a trade-off solution between the time consuming
analysis resulted from understanding the failure behaviour
of the system and the acquired experience. A substantial
body of works have been oriented towards the automatic
generation of analysis models from design models (refer
to groups 3, 5 in Table I) addressing limitations L2 and
L3. These approaches promote the reuse of design models
showing the effects of design changes in the analysis results.
However, note that the correctness of the analysis lies in the
accuracy of the failure annotations. Finally, L4 underlines
the capability of the model to handle the component-wise
nature of embedded systems. This permits obtaining a model
that better adheres to the real problem and avoids confusing
results.

Many authors have developed new alternatives or ex-

tended existing ones. Three groups are identified in order to
gather the approaches and limitations strategically. Firstly,
L1 is addressed in the subsection dynamic solutions for
static-logic approaches. Secondly, L2 and L4 are covered in
compositional failure analysis approaches. Finally, specifi-
cally focusing on L3 and generally addressing the remainder
of limitations model-based transformational approaches are
studied. Note that some approaches cannot be limited to a
specific group, hence they are classified accordingly to its
main contribution.

A. Dynamic Solutions for Static-Logic Approaches

The limitation concerning the lack of time information
has been addressed by several authors to deal with system
dynamics such as redundancy or repair strategies.

Dugan et al. [9] paved the way to cope with configuration
changing analysis using FTs by defining Dynamic Fault Tree
(DFT) methodology. New gates were introduced accounting
for event ordered situations like common cause failures
and redundancy strategies. In [13], temporal notions and
FT models were integrated in order to handle the timed
behaviour of the system. The model reflects how modular FT
models are switched through discrete points in time taking
into account time dependant basic events.

Other alternatives to analyse DFT models are based on
Monte Carlo simulations (MCS) by specifying temporal fail-
ure and repair behaviours of components through state-time
diagrams [14]. In [15], an approach based on Simulink [16]
for DFT modelling and reliability analysis is presented. The
technique integrates MCS and FT methodologies resulting
in a intuitive model-based simulating environment.

Following the way of DFTs, an approach emerged based
on Reliability Block Diagrams (RBD) [2]. RBD is focused
on the analysis of the success of the system, instead of the
failure analysis orientation of FTs. Dynamic RBDs (DRBDs)
[17] models failures and repairs of components based on
their dependencies and state machines.

Lopatkin et al. [18] utilise FMEA models for system
formal specifications. The approach defines generic pat-
terns establishing direct correspondence between FMEA and
state-based Event-B [19] formalism. Consideration of error
detection and recovery patterns lead to analysing and verify-
ing whether safety properties are preserved in the presence
of faults. Utilization of these patterns, allows tracing from
static FMEA considerations towards system dynamics.

Progression in the conjoint use of event and state for-
malisms is reflected with Boolean logic Driven Markov
Processes (BDMP) [20]. BDMP employs static FT as a
structure function of the system and associates Markov
processes to each leaf of the tree. Similarly, State-Event
Fault Tree (SEFT) [21] formalism combines elements from
FT with both Statecharts and Markov chains, increasing the
expressiveness of the model. SEFT deals with functional and
failure behaviour, accounts for repeated states and events and

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

allows straightforward transformations of SEFT models into
Deterministic and Stochastic Petri Net (DSPN) models for
state-based analysis.

The compositional and transformational features of the
SEFT approach, provide an adequate abstraction of the sys-
tem structure and behaviour. As far as our knowledge, there
is no available tool for the evaluation and transformation
of SEFT models. Developing a model-based tool which
extracts DSPN models from SEFT models, would create an
adequate environment for constituting a sound approach for
manageable and consistent dependability analyses.

B. Compositional Failure Propagation Analysis Approaches

The common factors for Compositional Failure Propaga-
tion (CFP) approaches are: the characterization of the system
architectures by design components; the annotation of the
failure behaviour of each of them; and the system failure
analysis based on inter-components influences. Conceptu-
ally they all are very similar: the main objective of CFP
approaches is to avoid unexpected consequences resulting
from the failure generation, propagation and transformation
of components.

Generally, CFP approaches characterise the system as
component-wise developed FT-like models linked with a
causality chain. System architectural specifications and sub-
sequent dependability analyses of CFP approaches rely on
a hierarchical system model. This model comprises com-
ponents composed from subcomponents specifying system
structure and/or behaviour. CFP approaches analyse the
system failure behaviour through characterizations of indi-
vidual components, which lead to achieving a manageable
failure analysis procedure. Failure Propagation and Trans-
formation Notation (FPTN) [22], Hierarchically Performed
Hazard Origin and Propagation Studies (HiP-HOPS) [23]
and Component Fault Tree (CFT) [10] are the principal
CFP approaches. Their main difference is in the failure
annotations of components, which specify incoming, out-
going and internal failures to each component. In order to
annotate the logical combinations of these failures, FPTN
uses logical equations, HiP-HOPS makes annotations using
Interface Focused FMEA (IF-FMEA) tables and CFT as-
sociates to each component individual FTs. Subsequently,
the connections between system components determines the
failure flow of the system, linking related failure annotations
of each component.

Concerning the different contributions of CFP approaches,
FPTN first addressed the integration of system-level deduc-
tive FTA (from known effects to unknown causes) with
component-level inductive FMEA (from known causes to
unknown effects). HiP-HOPS integrates design and de-
pendability analysis concepts within a hierarchical system
model. However, instead of exclusively linking functional
components with their failure propagations like in FPTN,
first the hierarchical system model is specified and then

compositional failure annotations are added to each compo-
nent by means of IF-FMEA annotations. These annotations
describe the failure propagation behaviour of the component
in terms of outgoing failures specified as logical combi-
nations of incoming and internal failures. Subsequently, a
FT synthesis algorithm analyses the propagation of failures
between connected components. Traversing the hierarchical
system model, while parsing systematically the IF-FMEA
annotations of its constituent components, allows the ex-
traction of the system FT and FMEA models. CFT works
in a slightly different way, it aims at linking FTs of the
components with the architecture design. The component
FTs can be combined and reused to systematically obtain
the FT for any failure without having to create and annotate
a FT for each failure.

They all have been extended to cope with occurrences
of temporal events. Temporal extensions for FPTN [24]
and HiP-HOPS [25] have been influenced by the DFT
methodology. Focusing on non-repairable systems, the order
of events is examined in order to identify specific sequence
of events leading to failures. Integration of CFT concepts
with state-based techniques resulted in SEFT formalism,
which is able to handle availability and maintainability
properties of repairable systems.

Transformation of CFP approaches into dependability
analysis formalisms is an ongoing research subject (see Sub-
section II-C). HiP-HOPS extracts FTA and FMEA models
thanks to its underlying logic and SEFT applies a translation
algorithm to generate DSPN models.

Other interesting extensions include mechanisms to auto-
mate and reuse analysis concepts. Failure Propagation and
Transformation Calculus (FPTC) [26] approach introduces
notations to indicate nominal behaviour within FPTN models
and concepts to generalise and manage FPTN equations.
Moreover, an algorithm is implemented handling the general
inability of CFP approaches to cope with cyclic dependen-
cies of feedback structures. In [27], general failure logic
annotation patterns were defined for HiP-HOPS. Similarly,
the CFP approach presented in [28], emphasizes the reuse
of failure propagation properties specified at the port level
of components. These specifications centre on the physical
properties of different types of flows, which allow reusing
failure behaviour patterns for functional architectures.

The evolution of CFP approaches focus on reusability,
automation and transformation properties. Since the anno-
tations of components failure behaviour depend upon de-
signers subjective considerations, reusing failure annotations
leads to reducing the error proneness. Based on the fact
that different dependability analyses have to be performed
when designing a dependable system, definition of a unique
consistent model covering all analyses would benefit these
approaches. This is why recent publications in this field
centre on integrating existing approaches (cf. Subsection
II-C and Section IV).

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

C. Model-Based Transformational Approaches

The main aim of the transformational models is to con-
struct dependability analysis models (semi-)automatically.
The process starts from a compositional design description
using computer science modelling techniques. The failure
behaviour is specified either by extending explicitly the
design model or developing a separate model, which is
allocated to the design model. Transformation rules and
algorithms extract dependability analysis models from it.

These approaches lead to adopting a trade-off decision
between dependability design and analysis processes. On
one hand, the automation and reuse of analysis techniques
in a manageable way makes it a worthwhile approach
for design purposes. The impact of design changes on
dependability attributes are straightforwardly analysed. On
the other hand, from purist’s point of view of classical
analysis techniques, the automation process removes the
ability of these techniques to identify and analyse hazards
or malfunctions in a comprehensive and structured way.

Architectural description languages (ADLs) provide an
adequate abstraction to overcome the limitations. Simulink
[16], AADL [29] and UML [30] have been used for both
architectural specification and failure behaviour specifica-
tion. UML is a widely used modelling language, which has
been extended for dependability analyses following model
driven architecture (MDA) concepts. Namely, profiles [31]
allow extending and customizing modelling mechanisms to
the dependability domain.

Lately, a wide variety of independently developed exten-
sions and profiles have come up for dependability analysis
[32]. However, some generally applicable metamodel is
lacking. In an effort to provide a consistent profile CHESS
ML [33] emerged. Its high-level specifications are trans-
formed into Intermediate Dependability Model (IDM) in
order to facilitate transformations. CHESS ML development
is currently ongoing and seems to provide all necessary
mechanisms to model dependable systems and extract either
event-based (FMECA, FPTC) or state-based (SPN) analysis
models.

CFP approaches have been shifted towards the transforma-
tional paradigm. The toolset for FPTC approach [26] relies
on a generic metamodel in order to support transformations
from SysML and AADL models. In [34], a metamodel is
developed so as to extract CFT models from functional
architecture models specified in UML. This process permits
the generation of reusable CFT models consistent with
the design model. In the same line, integration of HiP-
HOPS model with EAST-ADL2 automotive UML profile
is presented in [35]. Translations from high-level ADLs to
well established CFP analysis techniques, enable an early
dependability analysis and allow undertaking timely design
decisions.

Architecture Analysis and Design Language (AADL) cap-

tures the system architectural model in terms of components
and their interactions describing functional, mapping and
timing properties among others. The core language can be
extended to meet specific requirements with annex libraries.
Behaviour and error model annexes are provided with the
tool. The error annex links system architecture components
to their failure behaviour specification making possible the
analysis of the dependability attributes of the system. It has
been used for both state-based [36] and event-based [37]
analysis.

AltaRica [38] is a dependability language, which enables
describing the behaviour of systems when faults occur. The
model is composed of several components linked together
representing an automaton of all possible behaviour scenar-
ios, including those cases when reconfigurations occur due
to the occurrence of a failure [39]. It is possible to process
such models by other tools for MC or generation of FTs [40].
Transformations from AADL to AltaRica are presented in
[41], based on MDA concepts so as to perform dependabil-
ity analyses and avoid inconsistencies while working with
different formalisms.

In [42], a method for RAMS analysis is defined centred
on SysML [43] modelling language from where a FMEA
model is deduced. SysML diagrams define a functional
model connected to a dysfunctional database enabling the
identification of FMs. This database contains the link be-
tween system architecture and failure behaviour giving the
key for FMEA extraction. Further, the methodology for
dependability assessment is extended using AltaRica, AADL
and Simulink models. They address reliability and timing
analysis and simulation of the effects of faults respectively.

Definition of a model for the extraction of all necessary
formalisms for dependability analysis is the common goal
for the aforementioned works. Interconnections between dif-
ferent formalisms in order to take advantage of the strengths
of each ADL, allow analysing dependability properties ac-
curately. AltaRica and AADL cover adequately the analysis
of reliability, availability and maintainability attributes. Ex-
traction of the main CFP approaches from ADLs should
help to analyse comprehensively system safety properties.
Moreover, Simulink model simulations allow evaluating the
effects of failure and repair events in the system. Thereby,
integrations between language specific models like in [42]
helps evaluating accurately all dependability aspects of a
system.

D. Classification of Techniques

In order to classify the covered approaches, Table I groups
them taking into account limitations specified in Section II.

Approaches gathered within the group 5 contain all
necessary features in order to analyse dynamic systems
consistently and in a manageable way. Compositional failure
annotation, dynamic behaviour and automatic extraction of
analysis models are the key features addressed by these

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

Table I
SUMMARY OF LIMITATIONS OVERCOME BY APPROACHES

Group Approach Limitations
1 [9] [13] [14] [20] L1

2 [10] [22] [26] L2, L4

3 [23] [28] [37] L2, L3, L4

4 [17] [24] [39] L1, L2, L4

5 [21] [18] [25] [33] [36] [42] L1, L2, L3, L4

approaches. Utilization of failure annotation patterns pro-
mote flexibility and reuse and consequently, reduce the error
proneness. Nevertheless, as noted in [44], characterization of
the failure behaviour of components depends on the com-
ponent context, which conditions compositional and reuse
properties. Moreover, automatic generation of the analysis
model does not completely alleviate the dependency on the
knowledge of the analyst. However, it lets managing and
specifying the failure behaviour in a clear and consistent
way.

III. DEPENDABLE DESIGN: TRADE-OFF BETWEEN
DEPENDABILITY AND COST

Generally, dependability design decisions and objectives
are related to trade-off decisions between system depend-
ability attributes and cost. Dependability requirements often
conflict with one another e.g., safety-availability compro-
mise when a faults leads the system to a safe shutdown
in order to prevent it from propagating. The time at which
design decisions are taken, determines the cost that the
design process can incur.

Designing a dependable system within considered require-
ments requires a process to match and tune combination of
architectural components so as to find an optimal solution
satisfying design constraints. For the sake of analysing
the applicability of the aforementioned analysis techniques,
three demonstrative works are chosen. Their underlying
structure is illustrated in Figure 1.

Dependable design methodologies are proposed by Be-
nard et al. [45] and Clarhaut et al. [46]. The former focuses
on quantification and comparison of RAMS properties of
alternative components. The latter overcomes static-logic
limitations by integrating temporal functions. Their design
methodology is based on the operational model, which aims
at mapping the functional model onto a compatible physical
model (cf. Figure 1).

The functional model is developed in a top-down hier-
archical manner tracing from system level functions up to
lower level functions. At the lowest level, physical compo-
nents are linked with corresponding functions. Dependability
considerations lead to characterizing hardware components
through failure modes (FM) and redundancy structures. The
way in which dependability analysis is performed differ
both approaches. While the former uses MCS to analyse the

Functional
Model

Physical Model

Compatibility
Analysis

Operational
Model

Failure Model

Fault Tolerance
Strategies

Recovery
Strategies

Dependability
Analysis

Reconsideration

C
om

pr
is

es

Functional
Requirements

Cost FM Redundancy
Structures

Performance
Requirements

Dependability
Requirements

Counteracts

Means

V & V

Architecture
Evolution
Algorithm

Candidate
Architectures

Figure 1. Abstract Design Process (Adapted from [45])

impact of allocations of functions into physical components;
the latter focuses on identifying component-wise temporal
failure contributions to the system-level undesired event.

In [47], HiP-HOPS approach is extended with recovery
strategies. These capabilities are formally represented using
patterns. They characterize the potential to detect, mitigate
and block affecting component failures identified in the
failure model. Dependability analysis is performed by means
of FTA and FMEA.

Trade-off analysis between dependability and cost deter-
mines optimal architectures. In [47], fault tolerant configu-
rations are introduced without violating user constraints and
an evolutionary optimization algorithm is used to converge
through dependability and cost requirements. Similarly [46]
identifies set of optimal candidate architectures by minimiz-
ing failure contributions and cost of necessary components
to accomplish system functions.

IV. DEPENDABLE DESIGN VERIFICATION: FAULT
INJECTION APPROACHES

Fault Injection (FI) techniques focus on evaluating system
behaviour in the presence of faults according to target de-
pendability properties. The outcome of this process may lead
to considering design changes. However, changes adopted
late in the design process are costly. This is why we focus
on FI approaches adopted at the preliminary design phase.
This process is based on the analyst’s knowledge to reason
about the functional and failure behaviour of the system.
As a result, the effectiveness of fault detection, isolation,
recovery and reconfiguration strategies are evaluated. Timely
evaluation of these properties provides a valuable feedback
for design purposes. However, difficulties arise from the
accuracy of the system behaviour, which requires an accurate
knowledge of the system.

Instead of focusing on purely verification oriented FI
approaches, we address integrative verification approaches.
These works result from the integration of design, analysis
and verification tasks. Covered approaches aim at combining
dependability analysis techniques examined within the group
5 (cf. Table I) with FI approaches. They express system

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

behaviour using a compositional model, which gathers nomi-
nal, failure and recovery behaviours. Integrating approaches
using model transformations, allows using a single design
model for dependability and verification analyses.

The system design model takes into account functional
and failure behaviour of components. Temporal logic lan-
guages are used to define system requirements. They de-
scribe how the truth values of assertions change over time,
either qualitatively (Computation Tree Logic (CTL), Linear
Time Logic (LTL)) or quantitatively (Continuous Stochastic
Logic (CSL), probabilistic CTL (PCTL)). Model-checking
(MC) engine assesses whether such requirements are met
or not by the design model, using a analysis model. To
do so, it is necessary to transform the design model into
the analysis model. When the analysis model fails to meet
these requirements, its effects are deduced automatically
identifying the paths that violate the conditions (counter-
examples (CEs)) [7]. The logical orientation of this analysis
process results in FMEA-like cause-effect analysis.

There are some limitations hampering the analysis and
interpretation of these approaches. Representation structures
of the results, state-explosion problems, technical specifica-
tion difficulties, qualitative nature of MC analysis and model
inconsistencies are some challenges to be addressed.

The COMPASS project [48] addresses these limitations
based on SLIM (System-Level Integrated Modeling) lan-
guage [49]. The semantics of SLIM cover the nominal
and error behaviour of AADL. The complete specification
of SLIM consists of a nominal model, a failure model
and a description of the effects of failures in the nominal
model (extended model). Due to its underlying formal se-
mantics, various types of analyses are possible: validation
of functional, failure, and extended models via simulation
and MC; dependability analysis and performance evaluation;
diagnosability analysis; and evaluation of the effectiveness
of fault detection, isolation and recovery strategies.

Similarly, Güdemann and Ortmeier [50] proposed an inter-
mediate (IM) tool-independent model called Safety Analysis
Modelling Language (SAML). SAML describes a finite
state automata, which is used to characterise the extended
system model. This model specifies the nominal behaviour,
failure occurrences, its effects and the physical behaviour
of the surrounding environment. From this single model,
quantitative and qualitative MC analyses are performed. The
former identifies minimal critical sets using CEs to indicate
time-ordered combinations of failures causing the system
hazard. The latter calculates per-demand and per-time failure
probabilities.

TOPCASED project [51] aims at developing criti-
cal embedded systems including hardware and software.
TOPCASED integrates ADLs and formal methods. The
approach transforms high-level ADL models (SysML, UML
and AADL) into an IM model specified in Fiacre language
[52]. Fiacre specifies behavioural and timing aspects of high-

level models making use of timed Petri nets primitives.
Subsequent transformations of the IM model into MC tools
(TINA and CADP), make possible the formal verification
and simulation of the specified requirements. TINA [53]
analyse requirements specified in the state variant of LTL
proposition logic (State/Event LTL (SELTL)) focusing on
timeliness properties. CADP [54] transforms Fiacre models
into LOTOS programs, which are handled by its underlying
tools for validation via MC and simulation.

Albeit these approaches provide a means to extract clas-
sical dependability models from high-level models, none of
them focus on integrating existing CFP approaches. There
are some incipient works linking CFP and verification ap-
proaches. They are influenced by HiP-HOPS [55] and FPTC
[56]. Both approaches address the integration of qualitative
design models with quantitative analysis via probabilistic
MC. These approaches in particular and CFPs in general,
provide useful resources when characterizing the failure
behaviour of systems. The pros and cons of the covered
works are summarized in the Table II.

The addressed works integrate well known tools and
formalisms. However, integration of analysis and verification
approaches when designing a dependable system is an
ongoing research subject. There is an increasing interest in
reusing and generalizing CFP approaches (e.g., transforma-
tion of CFP approaches into metamodels [26] [34] [35] and
integration of CFP and verification approaches [55] [56]).

V. HYBRID DESIGN PROCESS

The goal of this section is not to provide a new design
approach. Our aim is to make use of the reviewed analysis,
design and verification approaches so as to outline a consis-
tent and reusable model-based design process. This process
emerges from the structure of the integrative verification
approaches (cf. Section IV).

The separation of dependability analysis and verification
tasks may lead to hampering the system design since results
identified from either task need to be reconsidered during the
design process (cf. Section III). On one hand, dependability
analyses characterized by transformational approaches (cf.
Section II-C), allow tracing from design considerations
towards dependability analysis models. These approaches
evaluate the dynamic system behaviour, as well as the effect
of particular component failure occurrences at system level.
On the other hand, purely verification oriented approaches
mainly focus on the verification of the adequacy of the de-
sign model with respect to RAMS requirements. This is why
we centre on covering integrative verification approaches.

When matching and tuning design components so as to
find optimal design solutions satisfying design constraints,
possible inconsistencies may arise due to the independent
considerations of these approaches. This is why we should
focus on outlining a model-based hybrid design process,
which unifies design, analysis and verification tasks. This

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

Table II
SUMMARY OF FAULT INJECTION APPROACHES

Works Design
Model

Analysis
Model
(*Auto)

Reqs.
(*Auto) Results Specific Features Future works

[49] SLIM NuSMV*,
MRMC*

CTL*,
LTL*,
CSL*

DFT,
FMEA,

Prob. Calc.

Req. patterns; Integrated verification
and dependability and performance

analyses of extended models.

Manual extension of the nominal model;
Redundant FTA-FMEA results;

State-explosion.

[50] SAML
NuSMV*,
PRISM*,
MRMC*

CTL,
PCTL

Time-Ord.
CE,

Prob. Calc.

Combination of qualitative and
quantitative analyses on the same

model.

Manual extension of the nominal model;
Transf. ADLs (Simulink, Scade) into

SAML; Req. patterns.

[52] Fiacre TINA,
CADP

LTL,
SELTL

Timing,
Prob. Calc.

Req. patterns; Integrated design,
analysis and verification approaches.

State Explosion;
Back annotation of results.

[55] Simulink PRISM* CSL Prob. Calc. Systematic generation of analysis
models from CFP design models.

No CE; State-explosion;
Dynamic behaviour.

[56] FPTC PRISM CSL CE Integration of CFP approach and prob.
model checking.

Fail Prone Manual transformation;
Translate CE to design model.

process relies on initial system requirements, models, trans-
formations and reuse of designer’s considerations and results
extracted from analysis and verification tasks (cf. Figure 2).

Functional
Model

Physical Model

Design
Model

Extend. Design
Model

Functional Requirements
Functional Patterns

Failure Modes

Redundancy Structures

2

Failure
 Model

Non-Functional
Data Repository

1
3

4

Functional
Data Repository

Failure

Results: Failure Effects/Sources
RAMS Reqs. & Faults to Inject

Results: Failure Effects/Sources

Failure

1) Functional Verification
2) Model Extension

3) Dependability Analysis

4) Dependability Verification

T2

T1

T3

T1) Transf. ExtendedDesign2Analysis
T2) Transf. ExtendedDesign2Verification

T3) Transf. Results2ExtendedDesign

Patterns

Effects
Redundancy

Structures

Formal
Verification

Model

Dep.
Analyisis

Model

T4

T4) Transf. Analysis2Verification

Figure 2. Hybrid Design Process

This design process starts from initial functional and phys-
ical considerations. Functional verification analysis evalu-
ates the adequacy of the allocation of the functional model
into the physical model according to functional require-
ments. The outcome of this process allows considering the
verified design model (operational model, cf. Figure 1).
Subsequently, this model is extended with the failure model
accounting for failure occurrences of the considered model.
Failure patterns aid in the construction of the failure model
allowing the reuse non-functional considerations. Further,
the effects of the considered failures and recovery strategies
are annotated in the extended design model in order to
counteract failure occurrences and its effects. With the aim
to carry out dependability analysis and formal verification
evaluations of the extended design model, twofold transfor-
mations need to be performed. The means to perform these
transformations have been presented in Subsection II-C and
Section IV respectively. Transformations of these models
make the evaluation of the adequacy of the extended design
model respect to RAMS requirements possible. Depend-
ability analysis and verification tasks enable finding further

failure effects and failure sources (apart from occurrence
probabilities) either by CEs or dependability specific models.
These results need to be transformed in order to reconsider
for design and analysis purposes. For the sake of reusing
and refining the design process, data repositories have been
considered consisting of annotation patterns for require-
ments and models (both functional and non-functional) and
reusable recovery strategies.

On one hand, the outlined design approach enables bene-
fiting from consistent design considerations. Moreover, data
repositories allow the reuse of designer’s considerations as
well as analysis results. Furthermore, user-friendly means
make the annotation processes more evident. On the other
hand, the automation of the extraction of dependability
models hides information about the failure behaviour. Ad-
ditionally, the flexibility of the approach depends on the
system context, which would determine the reusability of
functional and non-functional considerations.

VI. CONCLUSION AND FUTURE WORK

Designing a dependable system, poses a wide variety of
challenges on all its phases. This paper groups different
approaches in order to identify and classify them.

The listed limitations guided the evolution of the anal-
ysis techniques towards Compositional Failure Propagation
(CFP) and transformational approaches. Automatic extrac-
tion of analysis models from design models is an ongoing
research field, which leads to achieving consistency between
design and analysis models.

However, this is not the cure-all remedy, which alleviates
analysts from identifying and analysing failure behaviours,
but helps obtaining a manageable analysis compared to
the difficult and laborious traditional process. User friendly
resources, such as design components or failure annotation
libraries, enable the reuse of nominal and failure models.

When designing a new system, special care should be
taken, since reuse properties depend on the system context.

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

The reuse of failure annotations in the design process, eases
the architectural iterative refinement process. This makes
possible the analysis of different implementations using the
same component failure models.

For verification purposes, fault injection (FI) approaches
have been studied. Since the adoption of FI approaches is
made late in the traditional design process, we have consid-
ered integrative works. Their main objective is to address
consistently dependability analysis, design and verification
tasks at the preliminary design phase. An early integration
of these tasks would add value to the dependable design
process. There are many challenging tasks to address when
constructing an end-to-end dependable design methodology.
Integration of the CFP approaches within this methodology
or validation of the correctness of the faults to be injected
are some of the subjects to be addressed.

Therefore, we hypothesize that instead of developing in-
dependent approaches to identify, analyse and verify depend-
ability requirements, future directions will focus on integrat-
ing different approaches. This process requires tracing verifi-
cation results to the initial dependable design model and vice
versa. Consequently, accounting for these considerations,
we have sketched an abstract integrative design process.
The integration of the approaches should allow undertak-
ing timely design decisions by reducing costs and manual
failure-prone annotations. Additionally, it will alleviate the
need to clutter a model with redundant information. In this
field, challenging work remains to do sharing information
between existing approaches so as to take advantage of
complementary strengths of different approaches.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Trans. Dependable Secur. Comput., vol. 1,
pp. 11–33, January 2004.

[2] M. Rausand and A. Høyland, System Reliability Theory: Mod-
els, Statistical Methods and Applications Second Edition.
Wiley-Interscience, 2003.

[3] A. Arora and S. Kulkarni, “Component based design of
multitolerant systems,” IEEE Trans. on Sw. Eng., vol. 24,
no. 1, pp. 63–78, 1998.

[4] M. Hiller, A. Jhumka, and N. Suri, “An approach for
analysing the propagation of data errors in software,” in Proc.
of DSN’01, 2001, pp. 161–170.

[5] W. Vesely, J. Dugan, J. Fragola, Minarick, and J. Railsback,
“Fault Tree Handbook with Aerospace Applications,” NASA,
Handbook, 2002.

[6] US Department of Defense, Procedures for Performing, a
Failure Mode, Effects, and Criticality Analysis (MIL-STD-
1629A). Whasington, DC, 1980.

[7] C. Baier and J.-P. Katoen, Principles of model checking. MIT
Press, 2008.

[8] Y. Prokhorova, L. Laibinis, E. Troubitsyna, K. Varpaaniemi,
and T. Latvala, “Derivation and formal verification of a mode
logic for layered control systems,” in Proc. of APSEC’11,
2011, pp. 49–56.

[9] J. Dugan, S. Bavuso, and M. Boyd, “Dynamic fault-tree
models for fault-tolerant computer systems,” IEEE Trans. on
Reliability, vol. 41, no. 3, pp. 363–377, 1992.

[10] B. Kaiser, P. Liggesmeyer, and O. Mäckel, “A new component
concept for fault trees,” in Proc. of SCS’03, 2003, pp. 37–46.

[11] A. Galloway, J. McDermid, J. Murdoch, and D. Pumfrey, “Au-
tomation of system safety analysis: Possibilities and pitfalls,”
in Proc. of ISSC’02, 2002.

[12] C. Price and N. Taylor, “Automated multiple failure FMEA,”
Reliability Eng. & System Safety, vol. 76, pp. 1–10, 2002.

[13] M. Ĉepin and B. Mavko, “A dynamic fault tree,” Reliability
Eng. & System Safety, vol. 75, no. 1, pp. 83–91, 2002.

[14] Rao, K. Durga, V. Gopika, V. V. S. Sanyasi Rao, H. S.
Kushwaha, A. K. Verma, and A. Srividya, “Dynamic fault tree
analysis using Monte Carlo simulation in probabilistic safety
assessment,” Reliability Eng. and System Safety, vol. 94,
no. 4, pp. 872–883, 2009.

[15] G. Manno, F. Chiacchio, L. Compagno, D. D’Urso, and
N. Trapani, “MatCarloRe: An integrated FT and Monte Carlo
Simulink tool for the reliability assessment of dynamic fault
tree,” Expert Systems with Applications, vol. 39, no. 12, pp.
10 334–10 342, 2012.

[16] “MathWorks,” http://www.mathworks.com; Last access:
2012/06/13.

[17] S. Distefano and A. Puliafito, “Dynamic reliability block
diagrams vs dynamic fault trees,” In Proc. of RAMS’07, vol. 8,
pp. 71–76, 2007.

[18] I. Lopatkin, A. Iliasov, A. Romanovsky, Y. Prokhorova, and
E. Troubitsyna, “Patterns for representing FMEA in formal
specification of control systems,” in Proc. HASE’11, 2011,
pp. 146–151.

[19] “Event-B and the Rodin platform,” http://www.event-b.org;
Last access: 2012/06/13.

[20] M. Bouissou, “A generalization of Dynamic Fault Trees
through Boolean logic Driven Markov Processes (BDMP),”
in Proc. of ESREL’07, vol. 2, 2007, pp. 1051–1058.

[21] B. Kaiser, C. Gramlich, and M. Forster, “State/event fault
trees a safety analysis model for software-controlled sys-
tems,” Reliability Eng. System Safety, vol. 92, no. 11, pp.
1521–1537, 2007.

[22] P. Fenelon and J. A. McDermid, “An integrated tool set for
software safety analysis,” J. Syst. Softw., vol. 21, pp. 279–290,
1993.

[23] Y. Papadopoulos, M. Walker, D. Parker, E. Rüde, R. Hamann,
A. Uhlig, U. Grätz, and R. Lien, “Engineering failure anal-
ysis and design optimisation with HiP-HOPS,” Engineering
Failure Analysis, vol. 18, no. 2, pp. 590–608, 2011.

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

http://www.mathworks.com
http://www.event-b.org

[24] R. Niu, T. Tang, O. Lisagor, and J. McDermid, “Automatic
safety analysis of networked control system based on failure
propagation model,” in Proc. of ICVES’11, 2011, pp. 53–58.

[25] M. Walker and Y. Papadopoulos, “Qualitative temporal analy-
sis: Towards a full implementation of the fault tree handbook,”
Control Eng. Practice, vol. 17, no. 10, pp. 1115–1125, 2009.

[26] R. Paige, L. Rose, X. Ge, D. Kolovos, and P. Brooke, “FPTC:
Automated safety analysis for Domain-Specific languages,” in
MoDELS Workshops ’08, vol. 5421, 2008, pp. 229–242.

[27] I. Wolforth, M. Walker, L. Grunske, and Y. Papadopoulos,
“Generalizable safety annotations for specification of failure
patterns,” Softw. Pract. Exper., vol. 40, pp. 453–483, 2010.

[28] C. Priesterjahn, C. Sondermann-Wölke, M. Tichy, and
C. Hölscher, “Component-based hazard analysis for mecha-
tronic systems,” in Proc. of ISORCW’11, 2011, pp. 80–87.

[29] P. Feiler and A. Rugina, “Dependability Modeling with the
Architecture Analysis & Design Language (AADL),” Techni-
cal Note CMU/SEI-2007-TN-043, CMU Software Engineer-
ing Institute, 2007.

[30] “The Unified Modeling Language,” http://www.uml.org/; Last
access: 2012/06/13.

[31] L. Fuentes-Fernández and A. Vallecillo-Moreno, “An Intro-
duction to UML Profiles,” UPGRADE, vol. 5, no. 2, pp. 5–13,
2004.

[32] S. Bernardi, J. Merseguer, and D. Petriu, “Dependability
modeling and analysis of software systems specified with
UML,” ACM Computing Survey, In Press.

[33] L. Montecchi, P. Lollini, and A. Bondavalli, “An intermediate
dependability model for state-based dependability analysis,”
University of Florence, Dip. Sistemi Informatica, RCL group,
Tech. Rep., 2011.

[34] R. Adler, D. Domis, K. Höfig, S. Kemmann, T. Kuhn,
J. Schwinn, and M. Trapp, “Integration of component fault
trees into the UML,” in MoDELS’10, 2010, pp. 312–327.

[35] M. Biehl, C. DeJiu, and M. Törngren, “Integrating safety
analysis into the model-based development toolchain of auto-
motive embedded systems,” in Proc. of LCTES ’10. ACM,
2010, pp. 125–132.

[36] A. Rugina, K. Kanoun, and M. Kaâniche, “A system de-
pendability modeling framework using AADL and GSPNs,”
in Architecting dependable systems IV, LNCS, vol. 4615.
Springer, 2007, pp. 14–38.

[37] A. Joshi, S. Vestal, and P. Binns, “Automatic Generation of
Static Fault Trees from AADL models,” in DNS Workshop on
Architecting Dependable Systems. Springer, 2007.

[38] A. Arnold, G. Point, A. Griffault, and A. Rauzy, “The
AltaRica formalism for describing concurrent systems,” Fun-
damenta Informaticae, vol. 40, no. 2-3, pp. 109–124, 1999.

[39] B. Romain, J.-J. Aubert, P. Bieber, C. Merlini, and S. Metge,
“Experiments in model based safety analysis: Flight controls,”
in DCDS’07, 2007, pp. 43–48.

[40] P. Bieber, C. Castel, and C. Seguin, “Combination of fault
tree analysis and model checking for safety assessment of
complex system,” in Proc. of EDCC’02, vol. 2485. Springer,
2002, pp. 624–628.

[41] K. Mokos, P. Katsaros, N. Bassiliades, V. Vassiliadis, and
M. Perrotin, “Towards compositional safety analysis via se-
mantic representation of component failure behaviour,” in
Proc. of JCKBSE’08. IOS Press, 2008, pp. 405–414.

[42] R. Cressent, V. Idasiak, F. Kratz, and P. David, “Mastering
safety and reliability in a Model Based process,” in Proc. of
RAMS’11, 2011.

[43] “OMG Systems Modelling Language,” http://www.omgsysml.
org/; Last access: 2012/06/13.

[44] O. Lisagor, “Failure logic modelling: A pragmatic approach,”
Ph.D. dissertation, Department of Computer Science, The
University of York, 2010.

[45] V. Benard, L. Cauffriez, and D. Renaux, “The Safe-SADT
method for aiding designers to choose and improve depend-
able architectures for complex automated systems,” Reliability
Eng. & System Safety, vol. 93, no. 2, pp. 179–196, 2008.

[46] J. Clarhaut, S. Hayat, B. Conrard, and V. Cocquempot,
“Optimal design of dependable control system architectures
using temporal sequences of failures,” Ieee Transactions On
Reliability, vol. 58, no. 3, pp. 511–522, 2009.

[47] M. Adachi, Y. Papadopoulos, S. Sharvia, D. Parker, and
T. Tohdo, “An approach to optimization of fault tolerant
architectures using hip-hops,” Softw. Pract. Exp., 2011.

[48] “Correctness, Modelling and Performance of Aerospace Sys-
tems,” http://compass.informatik.rwth-aachen.de; Last access:
2012/06/13.

[49] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Nguyen, T. Noll, and
M. Roveri, “Safety, dependability and performance analysis
of extended aadl models,” Computer Journal, vol. 54, no. 5,
pp. 754–775, 2011.

[50] M. Güdemann and F. Ortmeier, “Towards model-driven safety
analysis,” in Proc. of DCDS 11, 2011, pp. 53 – 58.

[51] “The Open-Source Toolkit for Critical Systems,” http://www.
topcased.org; Last access: 2012/06/13.

[52] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel,
P. Gaufillet, F. Lang, and F. Vernadat, “Fiacre: an intermediate
language for model verification in the topcased environment,”
in ERTS’08, 2008.

[53] “TINA,” http://projects.laas.fr/tina; Last access: 2012/06/13.

[54] “CADP,” http://http://www.inrialpes.fr/vasy/cadp/; Last ac-
cess: 2012/06/13.

[55] A. Gomes, A. Mota, A. Sampaio, F. Ferri, and J. Buzzi,
“Systematic model-based safety assessment via probabilistic
model checking,” in ISoLA’10. Springer, 2010, pp. 625–639.

[56] X. Ge, R. Paige, and J. McDermid, “Probabilistic failure
propagation and transformation analysis,” in SAFECOMP’09,
2009, vol. 5775, pp. 215–228.

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

http://www.uml.org/
http://www.omgsysml.org/
http://www.omgsysml.org/
http://compass.informatik.rwth-aachen.de
http://www.topcased.org
http://www.topcased.org
http://projects.laas.fr/tina
http://http://www.inrialpes.fr/vasy/cadp/

	Introduction
	Review and Classification of Dependability Analysis Techniques
	Dynamic Solutions for Static-Logic Approaches
	Compositional Failure Propagation Analysis Approaches
	Model-Based Transformational Approaches
	Classification of Techniques

	Dependable Design: Trade-off between dependability and cost
	Dependable Design Verification: Fault Injection Approaches
	Hybrid Design Process
	Conclusion and Future Work
	References

