DEPEND 2011 : The Fourth International Conference on Dependability

Dependable Ordering Policies for Distributed Consient Systems

Matei Dobrescu, Manuela Stoian, Cosmin Leoveanu

General IT Directorate
Insurance Supervisory Commission

Bucharest,

Romania

mdobrescu@csa-isc.ro

Abstract—A distributed system can be characterized by the
fact that the global state is distributed and thaa common time
base does not exist. A linearly ordered structurefaime is not
always adequate for distributed systems and many #oors
have adopted a generalized non-standard model ofntie which
consists of vectors of clocks. The paper present amproved
algorithm where these clock-vectors are partially odered and
form a lattice. By using timestamps and a simple otk update
mechanism the structure of causality is representedn an
isomorphic way and the causal consistency is obtad. Finally,
is presented the implementation of this new algofitm which
allow to compute a consistent global snapshot of distributed
system for replicated services, where messages niagyreceived
out of order.

Keywords- temporal ordering; distributed systems; causal
consistency; events structure; clock-vectors

I. INTRODUCTION
An asynchronous distributed system consists ofragéve

processes without common memory which communicateistributed and perception

solely via messages with unpredictable (but nowjzer
transmission delays. In such a system the notiérggobal
time and global state play an important role bet zeird to
realize. Since in general no process in the sydtaman
immediate and complete view of all process stagspcess
can only approximate the global view of an idealize
external observer having immediate access to algsses.
The fact that a priori no process has a consistiemt of
the global state and a common time base does gt iex
the cause for most typical problems of distribusgdtems.
Control tasks of operating systems and databasermnsys
like mutual exclusion, deadlock detection, and corency
control are much more dificult to solve in a distiied
environment than in a classical centralized envirent.
The great diversity of the solutions to these peoid
exemplifies many principles of distributed compgtito
cope with the absence of global state and timesiiplify
the design and the validation of algorithms foma$yonous
systems, one can try to simulate a synchronousitiistd
system on a given asynchronous systems, simulatgalgl
time (i.e., a common clock) and simulate globatesi@e.,
common memory), and then use these simulated pireper
to obtain the desired result. The first approaateaized by
so-called synchronizers [1] which simulate clockspa in

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

such a way that a message is only generated atk pllse
and will be received before the next pulse. Theosdc
approach does not need additional messages arsystem
remains asynchronous in the sense that messages hav
unpredictable transmission delays. This approachb®en
proposed by Lamport [2]. He shows how the use dliai
time implemented by logical clocks can simplify tthesign

of a distributed mutual exclusion algorithm. Thestla
approach was pursued by Chandy and Lamport in their
shapshot algorithm [3], one of the fundamental gigras of
distributed computing. More recent approaches (B],[6],

[71, [8], [9]) proved that to maintain the data s@tency,

the special synchronization operations are reduoethe
minimum and are delivered using a global ordering
algorithm. Almost all this algorithms assure a time
complexity linear to network delays by utilizingn@stamp
estimations.

The organization of the informational flow as aefm
sequence of discrete events is inappropriate
asynchronous distributed systems, where informai®on
is delayed. Distributed
environments require a distributed notion of tinmed aa
theory of distributed time provides a natural fravoek for
solving problems in distributed environments.

While a synchronous distributed computing model
provides processes with bounds on processing tinte a
message transfer delay, which can be used to sdétéct
process crashes and allow consequently the nohentas
processes to progress with safe views of the systewe,
the asynchronous model is characterized by thenabsef
time bounds (this model is sometimes calliahe-free
model). In these systems one can only assume aar upp
bound on the number of processes that can crastiefote
them bym) and consequently design protocols relying on
the assumption that at least £ m) processes are aliva,
being the total number of processes. In a distithut
environment, the main drawback is the consensuslqmg
that has no deterministic solution when even a Ising
process can crash. Tlgensensugproblem can be stated as
follows: each process proposes a value, and hdedide a
value, unless it crashes, such that there is desihecided
value to be proposed for assuring validity. Theosgbility
of solving consensus has motivated researchersintb f
distributed computing models, weaker than the syorabus
models but stronger than the asynchronous moaelshich

for

30

DEPEND 2011 : The Fourth International Conference on Dependability

consensus can be solved. In such a model we canilukes
the target in terms of distributed time, adiraeslice of
logical simultaneity in the temporal relations eegsed by a
time model The timed asynchronousmodel considers
asynchronous processes equipped with physical sléck
ensure temporal ordering.

Resuming, one can say that the principles for tealp
ordering in asynchronous distributed systems ayeEdch
machine maintains its own time; 2) There is no glob
shared clock; 3) Each target has a list of filaswdich it

While in some sense the snapshot algorithm computes
the best possible attainable global state apprdioma
Lamport's virtual time algorithm is not that petfeln fact,
by mapping the partially ordered events of a disted
computation onto a linearly ordered set of integérss
losing information. Events which may happen
simultaneously may get diferent timestamps as #yth
happen in some definite order. For some applicat{onour
case the objective was the ordering of events énatlerts
flow of an emergency system) this defect is notiealn

depends; 4) At the target one compare the assdciatdhis paper, we aim at improving Lamport's virtuahe

timestamps; 5) If the target is older than sonte that it
depends on, then target is re-built.

A simple algorithm that respect these principlesusd
ensure the following steps: 1) A time server manga
global notion of time; 2) Each machine periodicalbntacts
time server asking for current global time; 3) Mae
updates local time with global time. For implem¢iota, the
problem to solve is to associate with each eveldgial
timestampT such that ifA= B then T(A) < T(B), where
—> means that event A precedes event B. Then, theiogde
algorithm keeps for eachth process a non-negative
integer countefT;, initially 0; wheni-th process performs
computation evenfTi<Ti + 1 and whern-th process sends
a messagm, it computesTi<Ti + 1 and appends(m) «T;
to m. Finally, when i-th process receives message
Ti—max{Ti, T(m} + 1. For eventA at i-th process, one
define T(A) = T, computed durindA. A scheme for such a
process is shown in figure 1 a. A better solutibiMattern
is based on clock vectors [10], i.e. the i-th pesckeeps a
vector T; with n elements (see figure 1b).
Tili]
following statements work: when i-th process pearferany
event, Ti[i] «Ti[i]+ 1; when i-th process sends, it also
appendsT(m) «T; to m; when i-th process receives, it
also computedi[j] «—max{T[j],T(m)[j] } for eachj # i; for
eventA at i-th process, defing(A) = T; computed duringh
such thatT(A) < T(B) = [Uj: TAWI] <T@ LLj:
TA <T@ -

D 6 H K o P R
TN S 4 5 fs fe
E F I NL 3

:-4%5"-/

i B 7 N
— £

6
o P R
LI
o /S35 /s
o /i)
3
¢
3

g

ra

H K

I 2 3
D G
! 1 V.
0 A
0 0 0\o0
E F I
1 3 3
0 1 3

B C
0 o
i

(]

L e

J

A
3 —
0
1

Ln it

0 0
4 6

Figure 1. Ordered process using classical algosthm
a) Lamport; b) Mattern

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

Each element
is a non-negative integer counter, initially 0. Theprocess are totally ordered by their local sequente

concept, considering that a partially ordered esystof
vectors forming a lattice structure is a naturgresentation
of time in a distributed system. In this non-staddanodel
of time all events which are not causally related a
considered simultaneous, thus representing caysaliain
isomorphic way without loss of information.

IIl. EVENTSTRUCTURES

In an abstract setting, a process can be viewed as
consisting of a sequence of events, where an egeah
atomic transition of the local state which happéms:o
time. Hence, events are atomic actions which ocur
processes. Usually, events are classified intoethypes:
send events, receive events, and internal eventsntarnal
event only causes a change of state. A send eeeises a
message to be sent, and a receive event causessagedo
be received and the local state to be updatedeoyatues of
the message.

Events are related: Events occurring at a particula

occurrence, and each receive event has a corresgosehd
event. Formally, an event structure [11] is a p&r<),
whereE is a set of events, and ,<” is a partial orderton
called the causality relation.

Event structures represent distributed computatioas
abstract way. For a given computatiens e'holds if one of
the following conditions holds:

1) eande’ are events in the same process apcecedes
e’
2) e is the sending event of a message a&hdhe
corresponding receive event Be” such thate < e” and

e<e’.

The causality relation is the smallest relatioris§ghg
these conditions.

A consistency mechanisguarantees that operations will
appear to occur in some ordering that is consistétit
some condition. Most of the research on this subjec
addressedstrong consistency conditions likesequential
consistencyand linearizability. These conditions guarantee
that operations appear to be executed in some stgjue
order that is consistent with the order seen aividdal
sites. Unfortunately, supporting either sequential
consistency or linearizability requires a non-ngiglie cost.

A way around this cost is to define conditions theivide
weaker guarantees on the ordering of operatiorgscan be

31

DEPEND 2011 : The Fourth International Conference on Dependability

efficiently implemented. These conditions can bagidy
classified into two categoriesveakand hybrid conditions.
Weak conditions provide very little guarantee om ttblative
ordering of events at different processes. Thesalitions
admit very efficient implementations, but they swe weak
to support conventional methods for concurrencytrobn
Hybrid conditions distinguish between two types of
operationsstrongandweak Strong operations appear to be
executed atomically, in some sequential order tisat
consistent with the order seen at individual preess The
only guarantees provided for weak operations amseh
implied by their interleaving with strong operationWhen
theconsistency mechanisoffers hybrid conditions, one can
define the synchronization as hybrid too.

Let's now consider that a model of a distributed
consistent system (DCS) system is composed ofite fiet
of sequential process®s, P,,... P,, one for each node. The
processes interact with the application prograrnhatsame
node usingcall and responseevents. The processdy,
P,,... P,interact through a finite set af 1X shared objects
via message-senand message-receivevents. The process

P, can be also modeled as an automaton with statesand

transition function that takes as input the curgate and a
call or message-receive event, and produces a tae; 8
set of response events and a set of message-semtd.ev

1) [P:0, -, 0, (in that case— ,, is called a
process-orderelation

2) OMx,v),r(x,v) such thatw(x,v)do, and
r(X,V)DO2 (in that case- ,, is called aread-
fromrelation)

3) [b;:0, -, 0; ando, -, O, (transitivity)

O
Let's now consider a histo#y . Informally, an operation
O0LIH is legal if it does not read overwritten values. i.
the legality of an operation (causal dependencyjeitned
as follows:
Definition 1. An operation o

Or (X,V)D 0:[b'such that:

0 -, O (0 precedes)

W(X, V) 0o’ (o' is the operation that wroteinto x)

00" such thato' -, 0" -, 0:W(X) 0" (there is
no overwriting operation)
Definition 2 A history H —(H —»H) is causally
consistentif, for each procesd; there exists a linear

extension ofH in which all operations issued I are
legal. In other words, the order of all operatioois P,

is legal if

A history of a process describes what steps the procesnaintains causal dependency of the operations .

takes and times they occur;
“consistency” conditions. An execution of a sepofcesses
is a set of histories, one for each process.

An executionof a set of processes is a set of histories
one for each process,
correspondence between the messages seRitbyP, and
the messages received Byfrom processP,. We use the
message correspondence to defineditlayof any message
in an execution to be the real time of receipt mithe real
time of sending. The execution is admissible if detay of
every message is less thanfor fixedd =0, and for every
P, at any time at most one callRtis pending

Every object is assumed to havesexial specification
The specification defines a set operations which are
ordered pairs of call and response events, andt afse
operations sequencewhich are the allowable sequences of;
operations on that object. As an example, in tree aaf a
read/write object, the ordered pair of evefigead (X),
Return (x,v)] forms anoperationfor any proces$;, object
X, and valuey, i.e. {, (r(x,v)) as doegWrite; (x,v), Ack(X)]
(W(x,v))

A. Legal Operations in Distributed Consistent Systems
An execution historyof a DCS is a partial order
= (H .) formally:

H:Lijh

0

H

—H

o, if:

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

it must satisfy certain

As an example let see Figure 2, where appears tlaelm
of an execution that is only possible in a causatigsistent
system. This shows processs P, and P, modifying

concurrently different objects. The operation updates

together with a one-to-onebjecty at the same time thay, updates objeck. The

second concurrent update occurs whgrwrites to objeck
and o4 writes to objecy. Py is able to read the update @f
in o1 but the updatev(y,1) from P, is not seen untiby 3.
These executions are acceptable because the tect®hjre
written concurrently and hend®, makes no assumptions
about which object will be updates firsthe model in
Figure 2 shows thathe executionH 2 is not serializable
since there does not exist a linear extensiohl @f in which
all operations are legal. Howevet,2 is causally consistent
as there exists, for each proce8s a linear extension
including all write operations plus all read openas issued
by P;, in which all operations are legal.

H2

I 3

a,

L%
wiy, l)

riv.2)
T
., a5
wial) rixd) wix 4]
”ﬁ. [] ”k.‘- a 1)
rix.0) wik, 3 rin) wify, 2)

Concurrent operations:

Figure 2. Causal consistency executions

riv.l

P

I

5

32

DEPEND 2011 : The Fourth International Conference on Dependability

The causal ordering of messages deals with themofi
maintaining the same causal relationship that haldsng

The execution diagram depicted in Figure 5 shoves th

“message send” events with the corresponding “ngessaresult of applying hybrid synchronization to theeyious

receive” events. Events that occur at a singlessiteordered
in time in the normal way. Informally, an evemtt a sites
is ordered temporally after an evdnat sitet if, and only if,
there is a sequence of messages, the first onenatiity

example.P; does not start a flow, it does not send any
update message, until it receives the messagebgant ».
Therefore,P, cannot start any object processing until the
select strong select operation is globally ordesedvery

from sitet after the evenb, the next message being sentsite.

from the destination site of the first messagerdtfie first
message is received there, and so on, with therlassage
being received at site before the evena. The following
execution examples show how inconsistencies caaaapp
the system does not ensure causal synchronization.

A conflict-free run is depicted in Figure 3. This i
normally the case, where due to the relatively festwork
roundtrip times are small compared to user inteact
intervals. In this example,
unselected the object (released the lock over thject
before Process 2 had sent a select message: PPosisted
without waiting for any synchronization or
acknowledgement messages.

s |User 1 selects
object X

~ | User 1 de
selects object X

P1

Object X can not be selacted by
any user during this pariod

L "
—» Modify
Flow X

I'|user 2 selects
object X
[—

Figure 3. Normal execution with no conflict

———a Sclectdeselect

In Figure 4 it is presented a case when the sysiees
not provide any causal consistency mechanByreceived
the deselect message frdfnand immediately selected the
same object (messag® ;) beforeP; received the previous
deselect message froR. This case may occur if packets
travel between sites through different paths, ahdirt
roundtrip times vary noticeably. H, modifies its local copy

Process 1 modified and

User 2 selects | ~._ User 2 stars |
object X editing X \

M m » W

X ‘ -
W
N
\\\ V
¥
A 4 -
-
P e———-T[=Te /s [-F][Ted

"
Flow X

—y Ordering UPD

——» Modify

&-/ \n

7

Ps

\
Y

gl

|

— Selection Flow

Figure 5. Causal synchronization

Causal consistency is attractive because not d¢rggn
meet the sharing needs of many applications bearitalso
be implemented efficiently. It is possible to coetgl send
and receive accesses to causally consistent ohjéitteut
synchronisation among processes (or sites) thed stupies
of the objects. This can lead to a scalable arctite
because coordination among a large number of nigdest
necessary with causally consistent shared objéetsong
these, service-oriented architectures (SOA) arécaydor
the necessity to assure a dependable global ogderin

. AN ALGORITHM FORDEPENDABLEGLOBAL

ORDERINGOPERATIONSIN SOA

This algorithm is an improvement of the classical
ordering algorithms based on timestamps. As franewo
We considered a service-oriented architecture (S@Ahjch
actually is a collection of services. A serviceaigunction
that is well-defined and does not depend on theesdror
state of other services. These services communigdte
each other in the same way as interact processes in

beforem ; arrives toP;, the database becomes inconsistentgjstributed system. Services is becoming a platfdom

The last occurs because there is no causal syrizhtiam.

Usar 1 selects
/ object X = l/
-

p, _mi1 mi2 m13

Usar 1 de
solacts objoct X

Pz

Ps

X as released
—p Solectidesalect

s ERRORI! Sorkii
— Moy VO

Figure 4. Execution with conflict and no causal@yonization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

information interaction between applications.

Our approach can maintain the data consistency g@mon
multiple service replicas while we still guarantbe loose
coupling and location transparency characteriséinoong
the service replicas. In the informational flow,nsistent
operations are classified as either strong or weak.
Informally, flows consistency guarantees two preéipsr

1) Strong operations appear to be executed in some
sequential order.

2) If two operations are invoked by the same procesl
one of them is strong, then they appear to be ¢eddn the
order they were invoked.

Each replica of the editor holds a local copy & émtire
memory, a local timestamp counter and an arraykbeps
conservative about the values of all other timeptam

33

DEPEND 2011 : The Fourth International Conference on Dependability

counters in the system. A weak operation is executedistributed systems is the way each process pasdive
instantly on the local copy of the object. In cadenrites, state of the other processes. To that end, theopeapmodel
update messages are sent to all other processash whprovides each procepswith three sets denotedle;, active
update their local copies of the memory upon recgiv and uncertain. The only thing a procesg can do with
these messages. Timestamps are used to enforcel globespect to these sets is to read the sets it isdaw with; it
ordering on the strong operations. Strong operatiare cannot write them and has no access to the sé¢te afther
timestamped with the local timestamp counter, and @rocesses. These sets, that can evolve dynamicaiéy,
message is sent to all processes; the initiatioggas then made up of process identities. Intuitively, thetftltat a
increments its local timestamp counter by 1. Thecakon given procesg; belongs to one of the three sptevidesp,
of any strong operation is postponed until the stamp of with some hint on the current status of . More
that operation is smaller than all the estimatedestamp operationally, ifp,Llidle;, p; can safely consideg;as being
counters of the system. If more than one strongatipem crashed. lfpLlidle, the state ofy is not known byp; with
can be executed together, they are executed angotdi certainty: more precisely, if;[lactive, p; is given a hint
their timestamps in increasing order. that it can currently considep; as not crashed; when
The algorithm guarantees that if proc&estimates?, p,Uuncertain, p; has no information on the current state
counter ax, then the local timestamp Bf is at leask (that (crashed or active) gf;. The specification of the seidle;,
is, the estimate is COT(S%WS“VS)' This implies Etlbstronlglg activeanduncertainj 1 <i <n, is the following:
operations ever invoked bl bearing timestamp smaller S1 - Initial global consistency. Initially, the setctive,

than x have arrived atP;, and ensures that all strong idl d tain of all th dentical
operations are executed in the same order andwbak dle; and uncertain ot all theé processep; are iaentical.

operations that were invoked later are also exedater. Namely, fort = 0, L1, j: state(t) = statg(t), wherestateis
We assume a system ofprocesses, connected by an active idle anduncertainrespectively.]
interconnection network, each maintaining a loaabyc of S2 - Internal consistency. The sets of epcllefine a

the entire database. Each procBshas a local timestamp partitionidle(t) ¢ active(t) U uncertain(t) = I1, Uit. and
counter, Its;, initially 0, and an arrayts such thatts][j] any two sets indle(t), active(t) and uncertain(t) have an
containsP;'s estimate ofts;. Weak operations are executed empty intersection.

locally and instantly. If a weak operation is aterofv to S3 Consistency of thalle sets: anidle; set is never
objectx, thenupdatemessages are broadcast to all processesecreasing, i.gdle(t) O idlg(t + 1), it
(anupdatemessage includes the new valut objectx to S4 Consistent global transitions. The satie; and

be updated). A process that receives an updateagesdv uncertain of any pair of processep and p; evolve

to objectx, UPdaé(ils its cgpy IOf objeot W'th)V- For any consistently. More precisely[] i, j, k, t we have

strong operationsglector deselectmessages), a strong-op : — .

message is sent to all other process; this messatgenly (Bkua(?ecrt':;i?; gog) N (pcidler (to + 1)= Ut > to = pe
l .

contains update information (path of the object ke e .
selected) but also a timestaritg. Process; suspends the As we can see from these specifications, at ang tim
execution of a strong operation with timestatgpuntil it ~ &nd for any pair of processpsandp;, it is possible to have

knows that the counters are at letstl. When several 2ctive(t) = activg() (and similarly for the other sets).
pending strong operations may be executed, they a perationally, this means that distinct processes ltave

executed according to their timestamps @tsdn increasing ~ different views of the current state of each otpescess.
order. The rules [S1-S4] define a distributed computingdeldhat

Executing a strongelectoperation at procedd is done ~ Safisfies the strong consistency property. Thatpery
by updating the list of selected objects in thealampy. If ~ Provides the processes with a mutually consistézw on
objectx specified in the select message is marked as giread® Possibility to detect the crash of following gaven
selected by another operation, the operation isrgghand ~Process. More specifically, if the crash of a pssog is
no action is taken. Otherwise, objedis added to the local N€vVer known byp, (becauseps continuously belongs to
selection list. Executing a strondeselectoperation at Uncertain), then no procesp will detect the crash opx
processP, is done by deleting the objextspecified in the (Pecausey Lidle). Conversely, if the crash pfis known
message from the selection list. by p;, the other processes will also know it.

ProcessP; increases its timestamp in each of the
following cases:

1) After P, sends a strong-op message to all processes.

2) After P; receives a strong-op message with . o

timestamp equal ths; and for allj, ts[j]>Its;. We will present an ap_plu_:atlon that uses the pregos

3) A strong operatiomwith ts=lts-1 was executed in ordering algorithm in a distributed system for egeercy

P,, and there existssuch thats[K]>lts;. management. The main objective is the consistent

In the last two cases, ta-updatemessage is sent to all Synchronization of alerts. That implies to have ptete
other processes. information about the temporal dimension of alerts,
Let's now discuss how the proposed a|gorithm 0ffer§0mpat|blllty with the alert Stand.ards and Wlth. EttEftware
dependable solutions. A crucial issue encountened i@nd hardware resources running the application. e Th

IV. THE IMPLEMENTATION OF THE APPLICATION

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6 34

DEPEND 2011 : The Fourth International Conference on Dependability

participants in the alert process are computerfi@as
nodes in a network which communicate using stant@d
OSI protocols. The application is realized in Jawagrder

are registered the out of limits parameters, witteoapecial
command of the server, and can decide himself adhan
node must be alerted. Figure 7 shows the valuethef

to be supported on a large set of hardware platform timestamps at the matricial clocks, for the fitgps of the

The application is composed from several classes, acenario depicted in figure 6. At the end of thecpss the
follows: clocks have the value of the arrows end.

AlertNode- is the class for instantiation of the matricial
logical clock of the node that contains the fumctinain()
which launch the client and server execution thsedd the
initial state one must specify the node ID, the hamof
active nodes in the whole network and the porhefgerver =
which take the alert.

AlertServerThread- is the class that implements the
several able to receive alerts. For each connection
dedicated thread is created, so many clients can t ™
simultaneously serviced.

AlertProtocol — is the class that implements the
communication protocol between the server andalbe
client. This class contains the functioeadAlert, that
initiate the clas€APHandlerwhich parses the client alert
in the Common Alerting Protocol (CAP) XML format.)
When the alert is received, one launch the metho *~
receiveActionof the matricial clock that implements the
clock logic.

MatrixClock— is the class that implements the matricial
logical clock.

AlertClientThread- is the class which allows to transmit

{1,0,0,0.00

)

=4

alerts from client to server, only in CAP format.
As an example, let now consider the following sciEna
as shown in figure 6:

Figure 6. An alert secenario

The ellipses represent the network nodes, each node V.

having an unique identifier. In the rectangle abthe node
appears the number of the listening port. Thevesr
represent the direction of the transmitted alerg @he
associated numbers represent the sequential dodealerts
transmission. On each node is running a softwagetagith
double functionality (client and alert server). Takert is
connection oriented, using TCP stream sockets. cketds
unique identified by an IP (node address) and & (@drich
directs the data to destination).

When a node has to transmit an alert to other nibee,
server try to connect the destination node thraugkparate
execution thread), but it maintains the idle staterder to
accept other connections also. The client is adeick by a
command line, on the associated port. But it iSceable
that the client can interrogate periodically a dagse were

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

Figure 7. Alerts flow and the matricial clocks bétnodes

The main contribution of the proposed scheme is the
correlation of alerts in emergency systems, intoiuy as a
new element in the classical Lamport algorithm ariveal
clock which acts as a component of the advertising
protocols structure. The efficiency of this meclsamiis
improved by adding a fault detection component fué t
timestamp assignment that verifies if each secgndector
of the matrix is smaller than the principal vectdr the
current node.

The algorithm imposes to send dedicated messages fo
the matriceal clock refresh, at the same frequescthat of
the information messages, if in a specified inteavprocess
does not succed to perform a send-receive operation

CONCLUSIONS

This paper proposed an improved global ordering
algorithm for dependable distributed computing, ttha
encompasses both the synchronous model and the
asynchronous model. The algorithm guarantees tther af
messages delivery to the application and respecpdeal
and causal relationships. In this aim the strongratons
are timestamped with a local timestamp counter, and
message is sent to all processes. If more thanstineg
operation can be executed together, they are estbcut
according to their timestamps and in increasingeoriVe
have chose to focus on the distinction betweeropaihg a
data operation locally at a process, based orodl Istate,
and performing an operation that requires commtioica
between processes before the control can be retuonthe

35

DEPEND 2011 : The Fourth International Conference on Dependability

application. When collaboration involves commuriiogit [11] a golrfendFer, ltR-Tl\flaCE?% ,a?dbl\:l-ngynal, t‘_‘AgJHybridd_aﬂfdhptfi\;ﬁ
i i i i i oael 1or Fault-1oleran Istrioute omputing’roceedings o e
\#IZSas;g;re]glesg:]tmgcleﬁletﬂgwﬁ,ovigu?riljsrfl?)tleonrﬁ;maoiggd to Int. Conf. on Dependable Systems and Netwprkd,12-421, 2005
preserve the context in which a message is sent.
Other contributions which derive from the conceptua
framework can be summarized as it follows: the
implementation and testing of a general protocol data
replication in a distributed architecture; a scheduor
operations of a collaborative process; the definitof a
formal consistency criteria of the flows framewortke
classification of strong and weak operations thiate the
implementation of this consistency criteria; théigon of
the form that a process state perceives each sthiates by
accessing the contents of three local non-inteérsgdets,
(uncertain active andidle). The proposed system has been
implemented in JAVA and tested over a set networked
LINUX workstations, equipped with QoS capabilities
Future work will be oriented on: strong operations’
generalization for different type of operations.eaplly
those operations that modify the topology of a ectee,
i.e. addition or deletion of nodes; the impleméntatof a
policy that allows to support latecomers and ekadying in
to the distributed system; the implementation ofidticast
protocol for supporting many users simultaneoushe
evaluation of the benefits of the admission conpalicies
with respect to the media quality of the servickents, the
average latency time, and the throughput of thteays

REFERENCES

[1] C. J. Fidge, ,Timestamps in Message-Passing SysteatPreserve
Partial Ordering”. InProceedings of 11th Australian Computer
Science Conferencpp. 56-66, 1988

[2] L. Lamport, “Time, Clocks, and the Ordering of Etenn a
Distributed System’Comm. of the ACM21(7), pp. 558-565, 1978.

[3] K. M. Chandy and L. Lamport, ,Distributed Snapshd@stermining
Global States of Distributed SystemsACM Transactions on
Computer System3(1), pp.63-75,1985.

[4] H. Kopetz, A. Ademaj and A. Hanzlik, ,Combinatiof dock-state
and clock-rate correction in fault tolerant distitied systems"Real-
Time System&/ol. 33, pp.139-173, 2006

[5] Yang, J., Q. Zhang and N. Gu (2006) A Consisten@iniénance
Approach in Replicated ServiceBroc. of the Sixth IEEE Int. Conf.
on Computer and Information Technologp. 248 — 258

[6] A. Hanzlik, ,SIDERA - A Simulation Model for Time{lggered
Distributed Real-Time Systefhsint. Review on Computers and
Software(IRECOS), Vol. 1, N. 3, pp. 181-193, 2006

[7] R. Dobrescu and M. Dobrescu, A “flows consistenaybdel for
message ordering in collaborative distributed sgstel3th IFAC
Symposium on Information Control Problems in Mantifang, 2009

[8] V. Cholvi, A. Fernandez Anta, E. Jimenez, P. Mawnzav. Raynal.
"A Methodological Construction of an Efficient
Sequentially Consistent Distributed Shared Memarite Computer
Journal, 53(9),pp.1523-1534, 2010

[9] R. Jimenez-Peris, M. Patifio-Martinez, D. Serrandylilan and B.
Kemme, ,Leveraging the Scalability and Availabiliof Replicated
Databases with Autonomic Capabilitie8td Int. Conf. on Autonomic
Computing and Communication Syste&@G09.

[10] F. Mattern, “ Virtual Time and Global States of filsuted Systems”,
Proceedings of the Parallel and Distributed Algbrits pp.215-226,
1989

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6 36

