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Abstract—A distributed system can be characterized by the 
fact that the global state is distributed and that a common time 
base does not exist. A linearly ordered structure of time is not 
always adequate for distributed systems and many authors 
have adopted a generalized non-standard model of time which 
consists of vectors of clocks. The paper present an improved 
algorithm where these clock-vectors are partially ordered and 
form a lattice. By using timestamps and a simple clock update 
mechanism the structure of causality is represented in an 
isomorphic way and the causal consistency is obtained. Finally, 
is presented the implementation of this new algorithm which 
allow to compute a consistent global snapshot of a distributed 
system for replicated services, where messages may be received 
out of order. 
 

Keywords- temporal ordering; distributed systems; causal 
consistency; events structure; clock-vectors 

I. INTRODUCTION 

An asynchronous distributed system consists of several 
processes without common memory which communicate 
solely via messages with unpredictable (but non-zero) 
transmission delays. In such a system the notions of global 
time and global state play an important role but are hard to 
realize. Since in general no process in the system has an 
immediate and complete view of all process states, a process 
can only approximate the global view of an idealized 
external observer having immediate access to all processes. 

The fact that a priori no process has a consistent view of 
the global state and a common time base does not exist is 
the cause for most typical problems of distributed systems. 
Control tasks of operating systems and database systems 
like mutual exclusion, deadlock detection, and concurrency 
control are much more dificult to solve in a distributed 
environment than in a classical centralized environment. 
The great diversity of the solutions to these problems 
exemplifies many principles of distributed computing to 
cope with the absence of global state and time. To simplify 
the design and the validation of algorithms for asynchronous 
systems, one can try to simulate a synchronous distributed 
system on a given asynchronous systems, simulate global 
time (i.e., a common clock) and simulate global state (i.e., 
common memory), and then use these simulated properties 
to obtain the desired result. The first approach is realized by 
so-called synchronizers [1] which simulate clock pulses in 

such a way that a message is only generated at a clock pulse 
and will be received before the next pulse. The second 
approach does not need additional messages and the system 
remains asynchronous in the sense that messages have 
unpredictable transmission delays. This approach has been 
proposed by Lamport [2]. He shows how the use of virtual 
time implemented by logical clocks can simplify the design 
of a distributed mutual exclusion algorithm. The last 
approach was pursued by Chandy and Lamport in their 
snapshot algorithm [3], one of the fundamental paradigms of 
distributed computing. More recent approaches ([4], [5], [6], 
[7], [8], [9]) proved that to maintain the data consistency, 
the special synchronization operations are reduced to the 
minimum and are delivered using a global ordering 
algorithm. Almost all this algorithms assure a time 
complexity linear to network delays by utilizing timestamp 
estimations. 

The organization of the informational flow as a linear 
sequence of discrete events is inappropriate for 
asynchronous distributed systems, where information is 
distributed and perception is delayed. Distributed 
environments require a distributed notion of time and a 
theory of distributed time provides a natural framework for 
solving problems in distributed environments.  

While a synchronous distributed computing model 
provides processes with bounds on processing time and 
message transfer delay, which can be used to safely detect 
process crashes and allow consequently the non-crashed 
processes to progress with safe views of the system state,  
the asynchronous model is characterized by the absence of 
time bounds (this model is sometimes called time-free 
model). In these systems one can only assume an upper 
bound on the number of processes that can crash (let denote 
them by m) and consequently design protocols relying on 
the assumption that at least (n − m) processes are alive, n 
being the total number of processes. In a distributed 
environment, the main drawback is the consensus problem, 
that has no deterministic solution when even a single 
process can crash. The consensus problem can be stated as 
follows: each process proposes a value, and has to decide a 
value, unless it crashes, such that there is a single decided 
value to be proposed for assuring validity. The impossibility 
of solving consensus has motivated researchers to find 
distributed computing models, weaker than the synchronous 
models but stronger than the asynchronous models, in which 
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consensus can be solved. In such a model we can describe 
the target in terms of distributed time, as a timeslice of 
logical simultaneity in the temporal relations expressed by a 
time model. The timed asynchronous model considers 
asynchronous processes equipped with physical clocks to 
ensure temporal ordering.  
 Resuming, one can say that the principles for temporal 
ordering in asynchronous distributed systems are: 1) Each 
machine maintains its own time; 2) There is no global 
shared clock; 3)  Each target has a list of files on which it 
depends; 4) At the target one compare the associated 
timestamps; 5)  If the target is older than some file that it 
depends on, then target is re-built. 
 A simple algorithm that respect these principles should 
ensure the following steps: 1) A time server maintains 
global notion of time; 2) Each machine periodically contacts 
time server asking for current global time; 3)  Machine 
updates local time with global time. For implementation, the 
problem to solve is to associate with each event a logical 
timestamp T such that if A⇒B then T(A) < T(B), where 
⇒means that event A precedes event B. Then, the ordering 
algorithm  keeps for  each i-th process a non-negative 
integer counter Ti, initially 0; when i-th process performs 
computation event, Ti←Ti + 1 and when i-th process sends 
a message m, it computes Ti←Ti + 1 and appends T(m) ←Ti 
to m. Finally, when i-th process receives message m, 
Ti←max{Ti, T(m)} + 1. For event A at i-th process, one 
define T(A) = Ti computed during A. A scheme for such a 
process is shown in figure 1 a. A better solution of Mattern 
is based on clock vectors [10], i.e. the i-th process keeps a 
vector Ti with n elements (see figure 1b).  Each element 
Ti[j] is a non-negative integer counter, initially 0. The 
following statements work: when i-th process performs any 
event, Ti[i] ←Ti[i]+ 1; when i-th process sends m, it also 
appends T(m) ←Ti to m; when i-th process receives m, it 
also computes Ti[j] ←max{Ti[j],T(m)[j] } for each j ≠ i; for 
event A at i-th process, define T(A) = Ti computed during A 
such that T(A) < T(B) = [ ∀ j: T(A)[j] ≤T(B)[j] ∃∨  j: 
T(A)[j] < T(B)[j]] . 

          

 
Figure 1. Ordered process using classical algorithms:  

a) Lamport; b) Mattern 

While in some sense the snapshot algorithm computes 
the best possible attainable global state approximation, 
Lamport's virtual time algorithm is not that perfect. In fact, 
by mapping the partially ordered events of a distributed 
computation onto a linearly ordered set of integers it is 
losing information. Events which may happen 
simultaneously may get diferent timestamps as if they 
happen in some definite order. For some applications (in our 
case the objective was the ordering of events in the alerts 
flow of an emergency system) this defect is noticeable. In 
this paper, we aim at improving Lamport's virtual time 
concept,  considering that a partially ordered system of 
vectors forming a lattice structure is a natural representation 
of time in a distributed system. In this non-standard model 
of time all events which are not causally related are 
considered simultaneous, thus representing causality in an 
isomorphic way without loss of information. 

 

II. EVENT STRUCTURES 
 

In an abstract setting, a process can be viewed as 
consisting of a sequence of events, where an event is an 
atomic transition of the local state which happens in no 
time. Hence, events are atomic actions which occur at 
processes. Usually, events are classified into three types: 
send events, receive events, and internal events. An internal 
event only causes a change of state. A send event causes a 
message to be sent, and a receive event causes a message to 
be received and the local state to be updated by the values of 
the message.  

Events are related: Events occurring at a particular 
process are totally ordered by their local sequence of 
occurrence, and each receive event has a corresponding send 
event. Formally, an event structure [11] is a pair (E;<), 
where E is a set of events, and „<” is a partial order on E 
called the causality relation. 

Event structures represent distributed computations in an 
abstract way. For a given computation, e < e' holds if one of 
the following conditions holds: 

1) e and e’ are events in the same process and e precedes 
e’, 

2) e is the sending event of a message and e’ the 
corresponding receive event 3) ∃e”  such that e < e” and 
e”< e’ . 

The causality relation is the smallest relation satisfying 
these conditions. 

A consistency mechanism guarantees that operations will 
appear to occur in some ordering that is consistent with 
some condition. Most of the research on this subject 
addressed strong consistency conditions like sequential 
consistency and linearizability. These conditions guarantee 
that operations appear to be executed in some sequential 
order that is consistent with the order seen at individual 
sites. Unfortunately, supporting either sequential 
consistency or linearizability requires a non-negligible cost. 
A way around this cost is to define conditions that provide 
weaker guarantees on the ordering of operations, and can be 

31

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-149-6



efficiently implemented. These conditions can be roughly 
classified into two categories: weak and hybrid conditions. 
Weak conditions provide very little guarantee on the relative 
ordering of events at different processes. These conditions 
admit very efficient implementations, but they are too weak 
to support conventional methods for concurrency control. 
Hybrid conditions distinguish between two types of 
operations, strong and weak. Strong operations appear to be 
executed atomically, in some sequential order that is 
consistent with the order seen at individual processes. The 
only guarantees provided for weak operations are those 
implied by their interleaving with strong operations. When 
the consistency mechanism offers hybrid conditions, one can 
define the synchronization as hybrid too. 

Let’s now consider that a model of a distributed 
consistent system (DCS) system is composed of a finite set 
of sequential processes P1, P2,…  Pn, one for each node. The 
processes interact with the application program at the same 
node using call and response events. The processes P1, 
P2,…  Pn interact through a finite set of x∈X shared objects 
via message-send and message-receive events. The process 
Pi can be also modeled as an automaton with states and a 
transition function that takes as input the current state and a 
call or message-receive event, and produces a new state, a 
set of response events and a set of message-send events. 

A history of a process describes what steps the process 
takes and times they occur; it must satisfy certain 
“consistency” conditions. An execution of a set of processes 
is a set of histories, one for each process. 

An execution of a set of processes is a set of histories, 
one for each process, together with a one-to-one 
correspondence between the messages sent by Pi to Pj and 
the messages received by Pj from process Pi. We use the 
message correspondence to define the delay of any message 
in an execution to be the real time of receipt minus the real 
time of sending. The execution is admissible if the delay of 
every message is less than d, for fixed d ≥ 0, and for every 
Pi, at any time at most one call at Pi is pending. 

Every object is assumed to have a serial specification. 
The specification defines a set of operations, which are 
ordered pairs of call and response events, and a set of 
operations sequences, which are the allowable sequences of 
operations on that object. As an example, in the case of a 
read/write object, the ordered pair of events [Readi (x), 
Returni (x,v)] forms an operation for any process Pi, object 
x, and value v, i.e. (v, (r(x,v))) as does [Writei (x,v), Acki (x)] 
(w(x,v)). 

 

A. Legal Operations in Distributed Consistent Systems 

An execution history of a DCS is a partial order 

( )HHH →= ,
)

, formally: 

U
i

ihH =  

21 oo H→  if: 

1) 21: ooP ii →∃  (in that case H→  is called a 

process-order relation 

2) ( ) ( )vxrvxw ,,,∃  such that ( ) 1, ovxw ∈ and 

( ) 2, ovxr ∈  ( in that case H→  is called a read-
from relation) 

3) 313 : ooo H→∃  and 23 oo H→  (transitivity) 

Let’s now consider a history
∧
H . Informally, an operation 

Ho∈ is legal if it does not read overwritten values, i.e.  
the legality of an operation (causal dependency) is defined 
as follows: 

Definition 1. An operation o is legal if 

( ) ':, oovxr ∃∈∀ such that: 

oo H→′  (o’ precedes o) 

( ) ovxw ′∈, (o’ is the operation that wrote v into x) 

"o∀ such that oxwooo HH ′′∉→′′→′ )(:  (there is 
no overwriting operation) 

Definition 2 A history ( )HHH →= ,
)

 is causally 
consistent if, for each process Pi  there exists a linear 

extension of H
)

 in which all operations issued by Pi are 
legal. In other words, the order of all operations of Pi 
maintains causal dependency of the operations .  

As an example let see Figure 2, where appears the model 
of an execution that is only possible in a causally consistent 
system. This shows processes Pi, Pj and Pk modifying 
concurrently different objects. The operation oi,1 updates 
object y at the same time that oj,1 updates object x. The 
second concurrent update occurs when oj,3 writes to object x 
and  ok,4 writes to object y. Pk is able to read the update of Pj 
in ok,1 but the update w(y,1) from Pi is not seen until ok,3. 
These executions are acceptable because the two objects are 
written concurrently and hence Pk makes no assumptions 
about which object will be updates first. The model in 
Figure 2 shows that the execution 2H

)
 is not serializable 

since there does not exist a linear extension of 2H
)

 in which 
all operations are legal. However, 2H

)
 is causally consistent 

as there exists, for each process Pi, a linear extension 
including all write operations plus all read operations issued 
by Pi , in which all operations are legal. 

 
Figure 2. Causal consistency executions 
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The causal ordering of messages deals with the notion of 
maintaining the same causal relationship that holds among 
“message send” events with the corresponding “message 
receive” events. Events that occur at a single site are ordered 
in time in the normal way. Informally, an event a at a site s 
is ordered temporally after an event b at site t if, and only if, 
there is a sequence of messages, the first one originating 
from site t after the event b, the next message being sent 
from the destination site of the first message after the first 
message is received there, and so on, with the last message 
being received at site s before the event a. The following 
execution examples show how inconsistencies can appear if 
the system does not ensure causal synchronization. 

A conflict-free run is depicted in Figure 3. This is 
normally the case, where due to the relatively low network 
roundtrip times are small compared to user interaction 
intervals. In this example, Process 1 modified and 
unselected the object (released the lock over the object) 
before Process 2 had sent a select message: Process 2 started 
without waiting for any synchronization or 
acknowledgement messages. 

 
Figure 3. Normal execution with no conflict. 

 
In Figure 4 it is presented a case when the system does 

not provide any causal consistency mechanism. P2 received 
the deselect message from P1 and immediately selected the 
same object (message m2,1 ) before P3 received the previous 
deselect message from P1. This case may occur if packets 
travel between sites through different paths, and their 
roundtrip times vary noticeably. If P2 modifies its local copy 
before m1,3  arrives to P3, the database becomes inconsistent. 
The last occurs because there is no causal synchronization. 

 
Figure 4.  Execution with conflict and no causal synchronization. 

 
The execution diagram depicted in Figure 5 shows the 

result of applying hybrid synchronization to the previous 
example. P3 does not start a flow, it does not send any 
update message, until it receives the message sent by m1,3. 
Therefore, P2 cannot start any object processing until the 
select strong select operation is globally ordered at every 
site. 

 
Figure 5. Causal synchronization 

 
Causal consistency is attractive because not only it can 

meet the sharing needs of many applications but it can also 
be implemented efficiently. It is possible to complete send 
and receive accesses to causally consistent objects without 
synchronisation among processes (or sites) that store copies 
of the objects. This can lead to a scalable architecture 
because coordination among a large number of nodes is not 
necessary with causally consistent shared objects. Among 
these, service-oriented architectures (SOA) are typical for 
the necessity to assure a dependable global ordering.  

 

III.  AN ALGORITHM  FOR DEPENDABLE GLOBAL 

ORDERING OPERATIONS IN SOA 

 
This algorithm is an improvement of the classical 

ordering algorithms based on timestamps. As framework 
We considered a service-oriented architecture (SOA), which 
actually is a collection of services. A service is a function 
that is well-defined and does not depend on the context or 
state of other services. These services communicate with 
each other in the same way as interact processes in a 
distributed system. Services is becoming a platform for 
information interaction between applications.  

Our approach can maintain the data consistency among 
multiple service replicas while we still guarantee the loose 
coupling and location transparency characteristics among 
the service replicas. In the informational flow, consistent 
operations are classified as either strong or weak. 
Informally, flows consistency guarantees two properties:  

1) Strong operations appear to be executed in some 
sequential order. 

2) If two operations are invoked by the same process and 
one of them is strong, then they appear to be executed in the 
order they were invoked. 

Each replica of the editor holds a local copy of the entire 
memory, a local timestamp counter and an array that keeps 
conservative about the values of all other timestamp 
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counters in the system. A weak operation is executed 
instantly on the local copy of the object. In case of writes, 
update messages are sent to all other processes, which 
update their local copies of the memory upon receiving 
these messages. Timestamps are used to enforce global 
ordering on the strong operations. Strong operations are 
timestamped with the local timestamp counter, and a 
message is sent to all processes; the initiating process then 
increments its local timestamp counter by 1. The execution 
of any strong operation is postponed until the timestamp of 
that operation is smaller than all the estimated timestamp 
counters of the system. If more than one strong operation 
can be executed together, they are executed according to 
their timestamps in increasing order. 

The algorithm guarantees that if process Pi estimates Pj 

counter as x, then the local timestamp of Pj is at least x (that 
is, the estimate is conservative). This implies that all strong 
operations ever invoked by Pj bearing timestamp smaller 
than x have arrived at Pi, and ensures that all strong 
operations are executed in the same order and that weak 
operations that were invoked later are also executed later. 

We assume a system of n processes, connected by an 
interconnection network, each maintaining a local copy of 
the entire database. Each process Pi has a local timestamp 
counter, ltsi, initially 0, and an array tsi such that tsi[j] 
contains Pi’s estimate of ltsi. Weak operations are executed 
locally and instantly. If a weak operation is a write of v to 
object x, then update messages are broadcast to all processes 
(an update message includes the new value v to object x to 
be updated). A process that receives an update message of v 
to object x, updates its copy of object x with v. For any 
strong operation (select or deselect messages), a strong-op 
message is sent to all other process; this message not only 
contains update information (path of the object to be 
selected) but also a timestamp lts. Process Pi suspends the 
execution of a strong operation with timestamp ts, until it 
knows that the counters are at least ts+1. When several 
pending strong operations may be executed, they are 
executed according to their timestamps and ids in increasing 
order. 

Executing a strong select operation at process Pi is done 
by updating the list of selected objects in the local copy. If 
object x specified in the select message is marked as already 
selected by another operation, the operation is ignored and 
no action is taken. Otherwise, object x is added to the local 
selection list. Executing a strong deselect operation at 
process Pi is done by deleting the object x specified in the 
message from the selection list. 

Process Pi increases its timestamp in each of the 
following cases: 

1) After Pi sends a strong-op message to all processes. 
2) After Pi receives a strong-op message with 

timestamp equal to ltsi and for all j, tsi[j]≥ltsi. 
3) A strong operation with ts=ltsi-1 was executed in 

Pi, and there exists k such that tsi[k]≥ltsi. 
In the last two cases, a ts-update message is sent to all 

other processes. 
Let’s now discuss how the proposed algorithm offers 

dependable solutions. A crucial issue encountered in 

distributed systems is the way each process perceives the 
state of the other processes. To that end, the proposed model 
provides each process pi with three sets denoted idlei, activei 
and uncertaini. The only thing a process pi can do with 
respect to these sets is to read the sets it is provided with; it 
cannot write them and has no access to the sets of the other 
processes. These sets, that can evolve dynamically, are 
made up of process identities. Intuitively, the fact that a 
given process pj belongs to one of the three sets provides pi 
with some hint on the current status of pj . More 
operationally, if pj∈ idlei,  pi can safely consider pj as being 
crashed. If pj∉ idlei, the state of pj is not known by pi with 
certainty: more precisely, if pj∈activei, pi is given a hint 
that it can currently consider pj as not crashed; when 
pj ∈uncertaini, pi has no information on the current state 
(crashed or active) of pj. The specification of the sets idlei, 

activei and uncertaini, 1 ≤ i ≤ n, is the following: 
S1 - Initial global consistency. Initially, the sets activei, 

idlei and uncertaini of all the processes pi are identical. 
Namely, for t = 0, ∀ i, j: statei(t) = statej(t), where state is 
active, idle and uncertain respectively.  

S2 - Internal consistency. The sets of each pi define a 
partition idlei(t) ∪ activei(t)∪ uncertaini(t) = Π, ∀ i,t. and 
any two sets in idlei(t), activei(t) and uncertaini(t) have an 
empty intersection. 

S3 Consistency of the idlei sets:  an idlei set is never 
decreasing, i.e. idlei(t) ∀  idlei(t + 1), ∀ i,t 

S4 Consistent global transitions. The sets idlei and 
uncertainj of any pair of processes pi and pj evolve 
consistently. More precisely, ∀ i, j, k, t0 we have 
(pk∈ activei (t0)) ∩ (pk ⊆ idlei (t0 + 1))⇒ ∀ t1 > t0 : pk 
∉uncertainj (t1). 

As we can see from these specifications, at any time t 
and for any pair of processes pi and pj, it is possible to have 
activei(t) = activej(t) (and similarly for the other sets). 
Operationally, this means that distinct processes can have 
different views of the current state of each other process. 
The rules [S1-S4] define a distributed computing model that 
satisfies the strong consistency property. That property 
provides the processes with a mutually consistent view on 
the possibility to detect the crash of following a given 
process. More specifically, if the crash of a process pk is 
never known by pi (because pk continuously belongs to 
uncertaini), then no process pj will detect the crash of pk 
(because pk ∈ idlej ). Conversely, if the crash of pi is known 
by pj, the other processes will also know it.  

 

IV.  THE IMPLEMENTATION OF THE APPLICATION 

 
We will present an application that uses the proposed 

ordering algorithm in a distributed system for emergency 
management. The main objective is the consistent 
synchronization of alerts. That implies to have complete 
information about the temporal dimension of alerts, 
compatibility with the alert standards and with the software 
and hardware resources running the application.  The 
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participants in the alert process are computers acting as 
nodes in a network which communicate using standard ISO-
OSI protocols. The application is realized in Java, in order 
to be supported on a large set of hardware platforms.  

The application is composed from several classes, as 
follows: 

AlertNode – is the class for instantiation of the matricial 
logical clock of the node that contains the  function main() 
which launch the client and server execution threads.  In the 
initial state one must specify the node ID, the number of 
active nodes in the whole network and the port of the server 
which take the alert.  

AlertServerThread – is the class that implements the 
several able to receive alerts. For each connection a 
dedicated thread is created, so many clients can be 
simultaneously serviced. 

AlertProtocol – is the class that implements the 
communication  protocol between the server and the alert  
client. This class contains the function readAlert, that 
initiate the class CAPHandler, which  parses the  client alert 
in the Common Alerting Protocol (CAP) XML format. 
When the alert is received, one launch the method 
receiveAction of the matricial clock that implements the 
clock logic.  

MatrixClock – is the class that implements the matricial 
logical clock. 

AlertClientThread – is the class which allows to transmit 
alerts from client to server, only in CAP format.  

As an example, let now consider the following scenario, 
as shown in figure 6:  

 
 

Figure 6. An alert secenario 
 
The ellipses represent the network nodes, each node 

having an unique identifier. In the rectangle above the node 
appears the number of the listening port.   The arrows 
represent the direction of the transmitted alert, and the 
associated numbers represent the sequential order  for alerts 
transmission. On each node is running a software agent with 
double functionality (client and alert server). The alert is 
connection oriented, using TCP stream sockets. A socket is 
unique identified by an IP (node address) and a port (which 
directs the data to destination).   

When a node has to transmit an alert to other node, the 
server try to connect the destination node through a separate 
execution thread), but it maintains the idle state in order to 
accept other connections also.  The client is addressed by a 
command line, on the associated port. But it is noticeable 
that the client can interrogate periodically a data base were 

are registered the out of limits parameters, without a special 
command of the server, and can decide himself is another 
node must be alerted. Figure 7 shows the values of the 
timestamps at the matricial clocks, for the first steps of the 
scenario depicted in figure 6. At the end of the process the 
clocks have the value of the arrows end.  

 

 
Figure 7. Alerts flow and the matricial clocks of the nodes 

 
The main contribution of the proposed scheme is the 

correlation of alerts in emergency systems, introducing as a 
new element in the classical Lamport algorithm a matriceal 
clock which acts as a component of the advertising 
protocols structure. The efficiency of this mechanism is 
improved by adding a fault detection component of the  
timestamp assignment that verifies if each secondary vector 
of the matrix is smaller than the principal vector of the 
current node. 

The algorithm imposes to send dedicated messages for 
the matriceal clock refresh, at the same frequency as that of 
the information messages, if in a specified interval a process 
does not succed to perform a send-receive operation. 

 

V. CONCLUSIONS 

 
This paper proposed an improved global ordering 

algorithm for dependable distributed computing, that 
encompasses both the synchronous model and the 
asynchronous model. The algorithm guarantees the order of 
messages delivery to the application and respect temporal 
and causal relationships. In this aim the strong operations 
are timestamped with a local timestamp counter, and a 
message is sent to all processes. If more than one strong 
operation can be executed together, they are executed 
according to their timestamps and in increasing order. We 
have chose to focus on the distinction between performing a 
data operation locally at a process, based on its local state, 
and performing an operation that requires communication 
between processes before the control can be returned to the 
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application. When collaboration involves communicating 
via a single or multiple flows, causal relationships among 
messages sent over the flows must be maintained to 
preserve the context in which a message is sent. 

Other contributions which derive from the conceptual 
framework can be summarized as it follows: the 
implementation and testing of a general protocol for data 
replication in a distributed architecture; a scheduler for 
operations of a collaborative process; the definition of a 
formal consistency criteria of the flows framework; the 
classification of strong and weak operations that allows the 
implementation of this consistency criteria; the definition of 
the form that a process state perceives each other’s states by 
accessing the contents of three local non-intersecting sets, 
(uncertain, active, and idle). The proposed system has been 
implemented in JAVA and tested over a set networked 
LINUX workstations, equipped with QoS capabilities 

Future work will be oriented on: strong operations’ 
generalization for different type of operations, specially 
those operations that modify the topology of a scene tree, 
i.e. addition or deletion of nodes; the implementation of a 
policy that allows to support latecomers and early leaving in 
to the distributed system; the implementation of a multicast 
protocol for supporting many users simultaneously; the 
evaluation of the benefits of the admission control policies 
with respect to the media quality of the serviced clients, the 
average latency time, and the throughput of the system.  
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