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Abstract—Data Integration of heterogeneous data sources relies
either on periodically transferring large amounts of data to a
physical Data Warehouse or retrieving data from the sources on
request only. The latter results in the creation of what is referred
to as a virtual Data Warehouse, which is preferable when the use
of the latest data is paramount. However, the downside is that it
adds network traffic and suffers from performance degradation
when the amount of data is high. In this paper, we propose
the use of a readCheck validator to ensure the timeliness of
the queried data and reduced data traffic. It is further shown
that the readCheck allows transactions to update data in the
data sources obeying full Atomicity, Consistency, Isolation, and
Durability (ACID) properties.

Keywords–data validation; virtual data integration; ETags; row-
version validation.

I. INTRODUCTION

For the Data Integration scenario (see Figure 1), we assume
a set of heterogeneous data sources {Dij} belonging to and
managed by a (disparate) set of contracting parties {Ci}, which
provide Views Vi for a Requester R (e.g., a regulatory body,
enterprise, or government). The databases that store the data
in a variety of formats adopted by the different contractors,
remain under the control of their respective owners. We also
note that in our example the regulatory body R is normally
concerned with aggregated data rather than with individual
records and the contractors are generally also responsible for
the privacy and security of the data they hold. But, importantly,
in all our examples R is concerned with the current situation
and up-to-date aggregations are required and queried from a
Global View V of the live data set {Dij}. These requirements
make it undesirable to create and store a single big data set at
R.

To illustrate the situation let’s take the Ebola outbreak in
West Africa in 2014. The World Health Organization (WHO)
takes the role of R in our model and C1 is given by the
Choithram Memorial Hospital in Freetown. The demographic
information about Sierra Leone shall be provided by Statistics
Sierra Leone, C2 in our model. There are more hospitals Ci in
Sierra Leone, Guinea, and Liberia as well as official statistics
offices. We leave them out to not overload our example. C1

records all patient data, diagnosis and treatment but provides
only non-sensitive data as an aggregated view V1 to the WHO.
C2 also provide a view V2 of a portion of the statistical data
collected. To not complicate the integration we assume that
both views provide the residence of the patient and the location
(city/quarter or village) in the same coding.

With V1 and V2 provided, R can build an integrated view
V providing data that allow the analysis of the distribution and

Figure 1: Schema and relationships of the virtual data integra-
tion scenario

spreading of the disease. It is evident that the data must be up-
to-date (live data) in order to monitor the spreading and allow
decisions for improving quarantine and treatment. We continue
this example in more detail and implement it in Section IV-B.

Big Live Data as discussed here consists of data sets that
are subject to real-time updates (live data) and big not just
in terms of size in bytes but also in the sense that they span
multiple areas of responsibility and ownership. The scenarios
we have in mind include international and other regulatory
bodies, where data belong to and is managed by separate
entities (including governments), and in business examples
such as supply chain, manufacturing, project management and
construction, where each contractor or company produces their
data but an overseeing body must have access to a global
view of this data to support decision-making at the highest
level to enable the management and coordination of the data
contributors.

The term ”Big Data” is usually applied to scenarios char-
acterised by the ”4 Vs”. We consider that all of these apply to
the scenarios presented here:

• Velocity refers to the significant volumes of new data
that can be created and/or updates made at speed in the
individual Dij . Because of velocity, it is not feasible to
keep making fresh collections of all data at R.

• Volume refers to the significant volumes of data held
across many separate data sources Dij , which are required
wholly or in part to provide the live data for R.
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• Variety refers to the range of possible data models
(e.g., relational, NoSQL, XML) and data types used by
the Dij . A live (on-line access to Dij) implementation
of V will need to resolve transformation and semantic
issues associated with a variety of data types. It is the
responsibility of Ci to provide a consistent View Vi and
it is R’s task to transform these views into a Global View
V .

• Veracity refers to the range in the data quality (from
high to lower levels) of the data held in the separate
Dij . The Ci have a responsibility to ensure the reliability
and veracity of their data. A live implementation of V
should aim for maximum coherency and consistency of
the overall data collected, but as a minimum, any data at
R should be on consistent results from the Dij (resp. Vi)
as at a particular time.

In this paper, we refer to the veracity property as correctness,
and apply this concept both for current results, which should be
consistent and up to date, and for stored results, which should
be a correct snapshot of the state of affairs at the time they
were computed. We note that most Big Data implementations
have difficulty with correctness if the data is subject to change.

A. Contribution

In our scenario, R should also be able to check that the
most recent results obtained from the Ci are still correct,
and perform other checks for validation, maybe including
supplementary data gathered from other sources. Greater care
over data curation, ownership and provenance in such complex
scenarios can help to achieve a higher fidelity of data. The
present paper proposes the use of a readCheck validator in
order to check the timeliness of a query result and reduce the
data traffic between the sources and the requester. The same
mechanism can be used to implement an optimistic concur-
rency control mechanism for heterogeneous and geographically
distributed data sources. This enables distributed live updates
to the underlying data sources obeying full Atomicity, Consis-
tency, Isolation, and Durability (ACID) properties.

B. Structure of the Paper

With the following overview of Related Work on data
integration the context for our validation concept will be
settled. Section III introduces the concepts of Row Version
Validation (RVV) and ETags for Web data caching, which are
the basis for a generalised data validation. Then, these concepts
are combined and applied to query processing for joined
and aggregated data over a virtual Data Warehouse (DWH).
The technical realisation of the validation mechanism via
Representational State Transfer (REST) services is explained
in Section IV and applied to general query processing over
a virtual DWH. The extended syntax for the global schema
design is presented in Subsection IV-B and illustrated with
an example. The paper ends with a summary of our findings
from the pilot implementation and gives an outlook on ideas
for future work.

II. RELATED WORK

Since the beginning of 1980 many papers on data inte-
gration have been published. The research of Inmon [1] and

Jarke [2] concentrated on the DWH approach using Extract-
Transform-Load (ETL) techniques [3]–[6], schema matching
[7] and integration [8], [9]. Kimbal et al. [10] present methods
on how to support the whole DWH live-cycle including schema
design, ETL methods, and how to implement and deploy such
a system. Later, the focus changed to real-time ETL or virtual
DWH [11], [12]. Myronovych and Boreisha [13] discuss how
XML Web Services can be used for the ETL process in the
context of Enterprise Information Integration.

Since for legal and practical reasons, the use of ETL
techniques are not available in our case, the focus will be on
how R can manage to collect correct information using the
REST architectural style proposed by Fielding [14]. This will
lead us to consider the use of HyperText Transfer Protocol
(HTTP) [15] techniques such as ETags [16], and how these
can relate to database transaction concepts.

In this paper, we turn to the question of data validation. If R
has collected the result of a query from the set of contractors,
and wishes to publish a report, or take action as a result, how
can R check that the data obtained from the contractors are
still current?

For performance reasons data is often cached. Usually
cached data is only valid during a time defined by a Time-To-
Live (TTL) indicator. After that it is considered stale and will
be evicted from the cache. Many works on cache management
has been published over the years (DBLP reports 477 matches
to ”cache management”), but most of the propositions are
specific to certain architectures (e.g. OLAP [17], J2EE [18]),
require support from the network nodes [19] or are optimised
for special use cases [20]. Some require column stores [21],
a middle tier [22], [23] or database support [24] [25]. As we
do not expect any specific architecture or technology from the
data sources, most of these sophisticated caching is not usable
for us.

Caching of query results is however desirable to avoid
unnecessary network and processing load. This is dealt with
today on the Internet by considering validators for cached data.
This departure from stateless HTTP is extremely useful in our
context because it enables us to set up mechanisms similar to
ACID transactions for the extreme cases of distributed data
considered here. HTTP offers ETags [16] in response to allow
caching of results, and ETags can be used for validating a
step in a transaction. ETags are very similar to the RVV
concept [26] or Multi-Version Concurrency Control (MVCC),
successfully used in PostgreSQL [27], SQL server [28], Oracle
etc. to provide optimistic execution. In fact the ETag can
coincide with the RVV validator for requests that return only
one row of a base table.

Xiong Fengguang and his colleagues [29] present a frame-
work for virtual data integration of heterogeneous data sources
using XML as interface. Jinqun Wu [30] implements the
approach using Web services as data adapters. The adapter
also provides access to metadata which is helpful for data
discovery and query optimization. The implementation uses
two caches, one for the metadata and the other for query
parsing and result caching. However, it is not explained, how
the freshness of data is ensured. As XML tends to be very
verbose the performance of the conversion to and from XML is
unclear. Naoki Take et al. [31] also propose virtual integration
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for operation support systems. The authors argue to use a
mediated relational schema as integration basis. A wrapper
maps event data to a virtual table which can be accessed if
the necessary parameter is provided in the WHERE-clause.
This is similar to our approach, but we prefer the REST style
for accessing non-relational resources. The performance results
confirm that queries to a virtual integration database are one
magnitude slower than to a materialized one. This clearly calls
for some caching when using a virtual mediated schema.

III. CONCEPTS FOR DATA VALIDATION

First, we present the ideas of RVV and ETags as basis for
our general validation mechanism, called readCheck. Second,
the readCheck is used to validate the freshness and consistency
of queried data and build an optimistic concurrency control
protocol on it.

A. Row-version validation

The RVV protocol is a type of version control mechanism,
which can be used for a form of optimistic concurrency con-
trol, alongside or in preference to other versioning measures
such as MVCC. The model implementations of RVV in the
Laiho/Laux paper [26] envisage a sequence generator to ensure
uniqueness of RVV values, so that new values of this sequence
are added as a special row-version column in base tables
on each INSERT or UPDATE. Some Database Management
Systems (DBMSs) include row versioning mechanisms that
can be used for this. Otherwise the code for doing this is
implemented as database triggers on these tables.

Our scenario is a bit different as such a guarantee is hard
to provide by the contractors (not all data sources Dij need to
be databases). On the other hand as we will see, if ETags are
part of the service offered to R by the Ci they can provide a
suitable version stamp instead. In an RVV transaction, a read-
write transaction or ”long transaction” consisting of a sequence
of read actions followed by some write actions, we should have
the following steps:

1) The first read action (selection query) also reads and
records the version stamp(s). Note: With MVCC or read-
ing from a cache this may already be stale data.

2) The version stamp obtained can be optionally used as a
validation predicate in later SQL-operations, or included
in a precondition. The precondition would only need to
compare the old version stamp with the new one to ensure
that the data has not been changed in the meantime. If
the version stamp is no longer valid, it is best to start
again from the beginning as some of the data being used
is already out of date.

3) In the same way the RVV predicate is then included in
the search condition of the write actions (UPDATE or
DELETE) to the database (bypassing the cache if any).

4) If no rows are affected in step 3) the transaction failed.
This may be because a) the version stamp obtained in step
1 was already outdated (possible with optimistic concur-
rency control), b) there have been intervening update(s) by
concurrent transaction(s), or c) the row has been deleted
by a concurrent transaction.

Case 4c) can be detected by a new read action without the
RVV predicate in the same transaction. If the result is NOT

FOUND then case 4c) is true, otherwise 4a) or 4b) apply. In
these cases, it may be worth starting the RVV transaction again
from the beginning with new search values depending on the
application.

B. RVV and complex selections

RVV is just for one row, and in the Laiho/Laux model
is an integer value associated with a base table row that is
changed if any change is made to a value in the row. If we
were to define a view using a join, or embedded arrays, then
we could extend the idea of RVV for such a complex row so
that it comprises all base table rows selected for that row of
the view, and would change if any of these where changed.
For example in whatever join of two base tables, J = A ./ B
say, the RVV of each resultant row j of J will include the
RVVs from the contributing rows of the base tables. We could
therefore implement RVVs to allow compound values, so that
the RVV for a join could be a comma-separated list of values
or a vector of integers.

If the RVV model of Laiho/Laux [26] is extended in this
way it can be used to validate the results of join queries, or
more complex selections where a row in the selection embeds
values from rows of other tables.

If the business application wishes to make a change to
a derived table (update or delete) such RVVs can then be
used to validate and carry out the operation on the relevant
base table rows. The semantics of updating a value in a row
of a derived table will often be reasonable, and it could be
meaningful to support a delete operation on a derived table. A
use case for updating or deleting data could arise from new or
changed/corrected information that arise from sources external
(e.g., a regulatory body or multinational organisation) to the
owner of data source.

All of the above in our scenario remains within an indi-
vidual Vi, and an RVV as seen from R could be extended
to identify the contractor(s) involved, so that the results of
R’s queries could be updatable, depending on the permissions
granted to R.

C. ETags as version stamps

As not all data sources are databases or have SQL in-
terfaces, another mechanism is needed to avoid stale data.
Fielding and Reschke propose in RFC 7232 [16] a header field
in an HTTP request, called ETag. This ETag should serve as a
validator for the freshness of data. An Etag should be returned
for any GET request for a Web resource, possibly returning
a lot of data. If we generalise its use to arbitrary queries,
we would like the ETag validator to confirm that the results
obtained for the query are still valid. In fact, ETags can be used
in subsequent requests as preconditions; that is, if a requested
ETag is no longer valid, the server should reply according to
the HTTP protocol with ”412 Precondition failed”. Thus, the
ETag protocol has useful similarities with the RVV protocol
above. If the GET is a REST request in our scenario, in general
the data returned will be related or linked in some way but will
not in general come from a single row or base table, but the
ETag will be effectively a version stamp for the returned data.
Moreover, if the returned data is for a single row in a base
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table (or more complex selection as above), then the RVV if
available can be used as ETag for the result.

In our scenario, we consider particular sorts of selection
and aggregation queries that combine data gathered from the
Vi, and if REST is used we can hope to have an ETag ei
from each one that contributes data. This will give R a version
stamp ~e for the overall selection or aggregation, by combining
the contributing ETags in some suitable way, from which we
can extract any required ei by string manipulation.

Where aggregation occurs it is not really practical or desir-
able for validators to identify all of the rows that contributed
to the result. But we would like the ETag to let us discover
whether the base tables involved have been modified since our
results were computed, by extending it to indicate the extent of
information read (e.g., tables, or specific rows if practicable)
and for each table the most recent version stamp of the rows
accessed.

For performance reasons the ETag could be applied to
a hierarchical data structure, beginning on the detail level
of a data element and propagating up to the top level of a
database. So if a query request is executed and the result has
been previously cached, it is sufficient to ask the underlying
data source to test if the ETag of the requested aggregate has
changed since the last time. If there was no change, the last
result is still valid. If the query involves multiple sources and
only some have changed, it is possible to build the new result
by refreshing only the changed values in the cache.

With this framework, we can specify a Versioned REST
protocol for our scenario analogous to the one described in
III-A. In the four-step protocol it is only necessary to replace
a query with a GET-request and the RVV with the ETag
validator.

D. Management of distributed transactions using readCheck

It is possible to extend ETag and RVV concepts to imple-
ment ”long transactions” for the virtual integration scenario
and call it readCheck. The readCheck needs to include in
addition to the ETag or RVV value a unique transaction iden-
tifier (server, database, timestamp, taNo). It is then possible
to use the readCheck validator in a similar way as the RVV
to provide an optimistic concurrency protocol. We only need
to arrange that readChecks are remembered in intermediate
results for any rows that have come from other servers and such
validators can be accumulated for checking at commit time.
For simple transactions, where all write actions are delayed
to the commit stage of the transaction, the readCheck can be
used to guarantee ACID behaviour. We note that some database
management systems offer snapshot isolation for transactions,
thus effectively delaying all changes to the database to follow
the commit process.

The validation machinery requires the following steps:

1) readCheck information is accumulated by the contractor
for all queries Q that are part of the transaction. With
proxies (or caching) the values read may already be stale.

2) At any stage, the sequence of queries Q belonging to
a transaction can be decomposed to Qi and sent to the
respective databases (bypassing proxies or caches) to
check that ~r(Q) is still correct. If not, the data held by

the contractor is stale and the transaction will not be able
to commit.

3) The write action and implied commit needs to be sent to
the database itself (bypassing proxies or caches) accom-
panied by the list of readCheck data. If all readCheck data
is still valid the write action is performed. The database is
only locked while the serialization condition is checked.

It is recommended that the contractor should receive updated
readCheck data for the state after the transaction commits.

Assuming all the contractors have a way of rolling back
aborted transactions (better than taking a backup before-
hand), the readCheck mechanism would support the use of
an optimistic two-phase commit (2PC) protocol suitable for
distributed transactions. This can be realized as follows:

• Any serialization conflict will be detected if the read-
Check has changed since the start of the transaction.
As no changes to the database has be executed, the
transaction can simply be aborted.

• If no conflict was detected the 2PC is executed. If all
participating data sources agree, the write phase is entered
otherwise the transaction is aborted (no writes will take
place).

If during the write phase an error occurs, the affected data
source must nevertheless guaranty that the write will be
executed after the error is removed. This completes the 2PC
protocol.

IV. IMPLEMENTATION OF THE READCHECK MECHANISM

As a slight generalisation of the Laiho/Laux concept of
RVV, let us suppose that we have to hand a database im-
plementation in which the transaction serialisation mechanism
provides a monotonically increasing integer identifier r(d) that
it attaches as the RVV for any affected base table row d, and
define r(T ) as the integer identifying the most recent change
to table T .

Then, for any query Q on a single database, the readCheck
~r(Q) is a list or vector of integers defined recursively as
follows:

1) if Q selects only a single row d from a base table by
specifying a key value k, then ~r(Q) := (r(d)). (Example:
singleton query for Table T1, see Figure 2)

2) if Q selects specific rows d1, .., dn from a base ta-
ble, by specifying key values k1, ..kn, then ~r(Q) =
(r(d1), .., r(dn)).

3) if Q selects a single row d from a join of base ta-
bles T1, .., Tn by specifying key values, where d is
constructed from rows d1 in T1, d2 in T2 etc., then
~r(Q) = (r(d1), .., r(dn)).

4) if Q selects some other set of rows, or all rows, from a
base table T , then ~r(Q) := (r(T )) i.e., a vector containing
a single integer identifying the most recent change to table
T . (Example: predicate query for Table T2, see Figure 2)

5) if Q is a join, merge, union etc. of queries Q1 and
Q2, then ~r(Q) := ~r(Q1) × ~r(Q2) (Example: Q query
decomposition by rewrite on Views Vi, see Figure 2)

6) if Q is the result of aggregation or other SQL operation
on previous results from another query Q′, then ~r(Q) =
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~r(Q′), since the data for Q is no fresher than the data in
Q′.

The specific key values mentioned in 2) above must be explicit
at the outermost level of Q, and not computed as part of the
evaluation. This will allow efficient re-computation of Q as
there is no need to perform a full evaluation of the query. Only
those rows have to be retrieved that have changed its values
since the last result caching. Then, a sufficient condition for
the results of Q to be unchanged is that ~r(Q) is unchanged.

We note in passing that the calculation of ~r(Q) for a given
query is very efficient. This is obvious because the readCheck
vector has only a small dimension because of conditions 2) and
3). If a large set of rows or unknown data sets are selected,
the readCheck value of the table is used.

This definition can be adapted for a multi-database query
by creating a string representation combining the name of
each contributing database with a string version s(Q) of ~r(Q)
(provided that the database agent is required to generate equal
strings s(Q) for equal ~r(Q)). Such a combined string can then
be used as an ETag validator for the associated HTTP request
as described above.

This readCheck mechanism has been implemented as
proof-of-concept using the Pyrrho [32] DBMS. This DBMS
is built as a relational database on the .NET framework with
pure optimistic concurrency control. It has been rigorously
developed to deliver serializable transactions providing full
ACID properties and support most of the SQL 2011 syntax. Its
API allows application data models based on versioned objects.
Each versioned value contains a readCheck string and updates
to versioned objects use PUT, POST and DELETE operations
similar to a REST service.

A. Query Scenario with ReadCheck

In order to illustrate the virtual integration and the use of
the readCheck mechanism lets assume a distributed query Q
issued by R against the Global View V .

As in Figure 2 the query Q is rewritten according to the
Views Vi and each decomposed query Qi is executed by the
respective contractor Ci. It is the contractor’s responsibility to
provide the readCheck vector for the query result.

For example, C1 executes Q1 and computes ~r(Q1) =
(r(d), r(T )) where r(d) will be just the RVV value for the
selected row d of table T1 and r(T2) is the RVV value of
the row that was last changed in T2. The reason for using this
value is that the select with predicate could comprise too many
rows to include all its RVV efficiently in the readCheck vector.

The price for this implementation is that it might happen
that the predicate query for table T2 is unnecessarily re-
executed when the original query Q is issued again. This
happens if a row in table T2 has been changed that is not
included in the query predicate. This ”false positive” could
be avoided if the readCheck only considers rows meeting
the predicate. The down side of such an approach would
be that the RVV of all rows included in the query must be
remembered along with the readCheck value. Nevertheless, it
is the responsibility of the Ci to determine how to calculate the
readCheck validator. In fact, the underlying data sources might

Figure 2: A general query scenario collecting data from
multiple data providers

not be relational nor provide an RVV. So the contractor would
need to establish its own readCheck mechanism in accordance
with the definition above.

Depending on the API the results res(Qi) are delivered to
R in a GET-response or as SQL result set. Finally R assembles
(e.g., joins, union, etc.) the partial results according to the
global view V .

B. Global schema design

Any data warehousing system needs a mechanism for cre-
ating a global schema. For our experiments we used a schema
extension for integrating REST Views into a database schema.
The BNF-schema definition has therefore been extended to
include REST views into a database in the following way:
(The . . . represent the former DDL syntax of Pyrrho that is not
shown for simplicity. The SQL syntax for Pyrrho can be found
in Chapter 7 of [32])

ViewDefinition := . . . | CREATE VIEW [ ViewSpecifica-
tion] id AS GET {Metadata} .

Metadata := . . . | string .

ViewSpecification := . . . | OF ’(’ TableClause [’,’ Table-
Clause]’)’ [UriType] .

UriType := [Abbrev id]’ˆˆ’( [Namespace id] ’:’ id | uri )
. We pick up the example from the introduction to illustrate
this syntax and implement it as follows:

/* C1: Hospital DB */
create table D (ID int(11) NOT NULL, name

varchar(45), rCode int, birthdate datetime,

admission datetime, diagnosis varchar(45), treatment
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Figure 3: Results from the queries of the example scenario

varchar(45), PRIMARY KEY (ID));

insert into D values

(1, ’Joe Soap’, 2, date’2003-04-12’,

date’2014-09-20’, ’Ebola’, ’IV fluid,

electrolytes’),

(2, ’Milly Soap’, 2, date’2007-10-12’,

date’2014-10-06’, ’Ebola’, ’IV fluid,

electrolytes’),

(3, ’Betty Boop’, 1, date’1996-10-12’,

date’2014-10-06’, ’bacterial infection’,

’antibiotics’),

(4, ’John Bell’, 3, date’2009-11-14’,

date’2014-09-10’, ’Ebola’, ’electrolytes’),

(5,’Benny Hall’, 2, date’2007-10-10’,

date’2014-10-06’, ’Ebola’, ’IV fluid,

electrolytes’);

create view E as select rCode, extract(year from

(admission-birthdate)) as age, admission, diagnosis,

treatment, count(*) as patients from D group by

rCode, age, admission, diagnosis, treatment;

/* C2: Statistics DB */
create table H (rCode int NOT NULL, location

varchar(45), inhabitants int, under10 int, 10to20

int, 20to30 int, over30 int, lastUpdated datetime,

PRIMARY KEY (rCode));

insert into H values

(1,’Central Freetown’,300000, 80000, 75000, 65000,

80000, date’2014-10-20’),

(2,’East End Freetown’,500000, 150000, 120000,

100000, 130000, date’2014-10-20’),

(3,’West End Freetown’,200000, 50000, 40000, 40000,

120000, date’2014-10-20’);

create view K as select rCode, location,

inhabitants, under10, lastUpdated from H;

/* Requester Schema */
create view V1 of (rCode int, age int, admissionDate

date, diagnosis char, treatment char, patients int)

as get ’http://servD1:8180/Hospital/Hospital/E’;

create view V2 of (rCode int, location char,

inhabitants int, under10 int, lastUpdated date)

as get ’http://servD2:8180/Statistics/Statistics/K’;

create view V as select * from V1 natural join V2;

The view definitions of V1, V2 and V here do not copy
data from database D11 or D21; the REST Views V1 and V2
are defined using a URL metadata string for the servers hosting
the databases. But R can obtain values from C1 and C2 using
RESTful operations.

For instance a) the percentage of young Ebola patients

under 10 years of age or b) the total number of treated patients
by quarters (of Freetown) and diagnosis can be analysed.

select location, diagnosis, patients/under10)*100 as

percentage from V where age < 10;

The result of this query is given in Figure 3. The RVV
and readCheck information for each row of the result table
are provided by the Pyrrho database. Activating the -v flag
prints these information on the right of the result table. So
the first row of the join has an RVV of ”Statistics:578:474”.
This is the concatenation of the RVV Statistics table H, log
position 578 (location ”East End Freetown”) from transaction
474 and the Hospital contribution to this row (which is blank
because of aggregation). The result of the above query is
produced from the view V which results from two REST
GET operations that produce two ETags and one RVV. ETag
”Hospital|1109|[76-0]” says that the transaction log position
was 1109 and any change to table 76 (table D) will invalidate
the data. The second REST operation on view K produces RVV
”Statistics:490:474” because it returns a single row from the
same transaction 474 (location ”East End Freetown” ) and the
ETag ”Statistics|831|[78-0]” with log position 831 and table
78 (table E).

Pyrrho’s open-source implementation of the REST view
automatically makes V2 an updatable view provided V2 has
the necessary permissions on the Statistics DB (owner C2)
and generates PUT, POST and DELETE operations on H that
result from updates on the view K resp. V2. These operations
can be used to curate the data, e.g. with:
update V set inhabitants = 199000, under10 = 49000

where rCode = 3;

and
delete from V2 where rCode = 5;

In real situations, things would not always be so simple,
and column renaming and conversion between types and
structures would result in a more complex definition of the
view V. It seems to us that the REST View concept could
be made interoperable, as B does not need to understand the
structure or implementation of A’s readCheck string, and only
requires the property that s(Q) is unchanged if the values read
during evaluation of query Q are unchanged.

V. CONCLUSION AND FUTURE WORK

This paper presents the beginnings of a formalism and
practical strategy to manage Big Live Data. We show that
such a virtual DWH can be based on the REST architecture
using a mechanism similar to RFC7232 ETags or row version
validators to ensure up-to-date and verifiable results. With the
help of readCheck an optimistic concurrency mechanism can
be implemented to support distributed transaction processing.
Such a contract would be subject to alteration (e.g., a change
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in contractual responsibility) and readCheck would help to
underpin a secure mechanism for managing such a change as
described in III-D.

The readCheck mechanism can be implemented efficiently
and be further used to optimise query processing so that only
changed data sets need to be re-queried and combined with
previous results. Our pilot implementation of these ideas using
the Pyrrho database and complex views shows the applicability
of the concept.

The data transformation from Vi to V assumes no data
conflict and at present is manually defined but we plan to
use metadata to support the data transformation and global
schema design. Another point for future work is data curation
and making data provenance transparent to the requester of a
query.
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