
O|R|P|E - A Data Semantics Driven Concurrency
Control Mechanism

Tim Lessner∗, Fritz Laux†, Thomas M Connolly‡
∗freiheit.com technologies gmbh, Hamburg, Germany

Email: tim.lessner@freiheit.com
†Reutlingen University, Reutlingen,Germany

Email: fritz.laux@reutlingen-university.de
‡University of the West of Scotland, Paisley, UK

Email: thomas.connolly@uws.ac.uk

Abstract—This paper presents a concurrency control mechanism
that does not follow a ‘one concurrency control mechanism fits
all needs’ strategy. With the presented mechanism a transaction
runs under several concurrency control mechanisms and the
appropriate one is chosen based on the accessed data. For
this purpose, the data is divided into four classes based on
its access type and usage (semantics). Class O (the optimistic
class) implements a first-committer-wins strategy, class R (the
reconciliation class) implements a first-n-committers-win strategy,
class P (the pessimistic class) implements a first-reader-wins
strategy, and class E (the escrow class) implements a first-n-
readers-win strategy. Accordingly, the model is called O|R|P|E.
Under this model the TPC-C benchmark outperforms other CC
mechanisms like optimistic Snapshot Isolation.

Keywords–Multimodel concurrency control; transaction pro-
cessing; optimistic concurrency control; snapshot isolation; per-
formance analysis.

I. INTRODUCTION

The drawbacks of existing concurrency control (CC) mech-
anisms are that pessimistic concurrency control (PCC) is likely
to block transactions and is prone to deadlocks, optimistic
concurrency control (OCC) may experience a sudden decrease
in the commit rate if contention increases. Snapshot Isolation
(SI) better supports query processing since transactions gen-
erally operate on snapshots and also prevents read anomalies,
but depending on the implementation of SI, either pessimistic
or optimistic, it is also subject to the previously mentioned
drawbacks of PCC or OCC. Semantics based CC (SCC) such
as the mechanism proposed in [1] remedies some problems
of PCC or OCC. It performs well under contention, reduces
the blocking time, and better supports disconnected operations.
However, its applicability is limited since data and transactions
have to comply with specific properties such as the commu-
tativity of operations. In addition to the previously mentioned
drawbacks, neither PCC nor OCC nor SCC support long-lived
and disconnected data processing. However, these properties
are essential to achieve scalability.

This paper presents a mechanism originally introduced in
[2] that combines OCC, PCC, and SCC and steps away from
the ‘one concurrency control mechanism fits all needs’
strategy. Instead, the CC mechanism is chosen depending on
the data a transaction accesses. To address scalability, the
mechanism was designed with a focus on long-lived and
disconnected data processing.

Consider, for example, the whole sales scenario of the
TPC-C [3]. With PCC using shared and exclusive locks,
the likelihood of deadlocks increases for hotspot fields such
as the stock’s quantity or the account’s debit or credit. If
transactions are long-lived, PCC is even worse since deadlocks
manifest during write time and a significant amount of work
is likely to be lost [4], [2]. With OCC, deadlocks cannot
occur. However, hot-spot fields like an account’s debit or credit
would experience many version validation failures under high
load causing the restart of a transaction. Like PCC, validation
failures manifest during the write-phase of a transaction and
a significant amount of work is likely to be lost. Both PCC
and OCC cannot ensure that modifications attempted during a
transaction’s read-phase will prevail during the write-phase.
Wheras PCC is prone to deadlocks (in the case of shared
locks), OCC is prone to its optimistic nature itself.

O|R|P|E resolves these drawbacks and data can be classi-
fied in CC classes. For example, customer data such as the
address or password can be controlled by a PCC that uses
exclusive locks only and performs lock pre-claiming [5]. Such
a rigorous measure ensures ownership of data and should be
used if data is modified that belongs to one transaction. For
example, account data or master data should not be modified
concurrently and given the importance of this data a rigorous
isolation is justififed. The debit or credit of an account can be
classified in CC class R, which guarantees no lost updates and
no constraint violations. Such a guarantee is often sufficient
for hot-spot fields. Class E can be used to access an item’s
stock, for example. Class E is able to handle use cases such
as reservations. It should be used if during the read-phase a
guarantee is required that changes will succeed during the
write-phase. Class O is the default class. It avoids blocking
and under normal load it represents a good trade-off between
commit and abort-rate.

Section II defines these four CC classes with different
data access strategies used by the mechanism. In case of
a conflict, class O implements a first-committer-wins strat-
egy, class R implements a first-n-committers-win strategy,
class P implements a first-reader-wins strategy, and class E
implements a first-n-readers-win strategy. The number n is
determined by the semantics of the accessed data, e.g., by
database constraints. According to the classes, the mechanism
is called O|R|P|E. The “|” indicates the demarcation between
data.

147Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Section III proofs the correctnes of the model. Section
IV briefly describes the prototype implementation. Section V
highlights some advantages of O|R|P|E, because it provides
an application flexibility in choosing the best suitable CC
mechanism and thereby significantly increases the commit rate
and outperforms optimistic SI. Finally, the paper summarizes
related work (see Section VI) and provides an outlook (see
VII).

II. MODEL

A. Transaction
To support long-lived and disconnected data processing,

which both supports scalability, O|R|P|E models a transaction
as a disconnected transaction τ , with separate read- and write-
phase, i.e., no further read after the first write operation
(see Definition II.1, taken from [2]). To disallow blind writes
O|R|P|E guarantees that in addition to the value of a field, the
version of a data field has to be read, too.

DEFINITION II.1: Disconnected Transaction:

1) Let ta be a flat transaction that is defined as a pair
ta = (OP,<) where OP is a finite set of steps of the
form r(x) or w(x) and <(⊆ OP ×OP) is a partial
order.

2) A disconnected transaction τ = (TAR, TAW)
consists of two disjoint sets of transactions.
TAR = {taR1 , . . . , taRi } to read and TAW =
{taW1 , . . . , taWj } to write the proposed modifications
back.

3) A transaction has to read any data item x before being
allowed to modify x (no blind writes).

4) If a transaction only reads data it has to be labelled
as read only.

B. CC Classes
Class O is the default class and is implemented by an

optimistic SI mechanism, which is advantageous since reads
do not block writes and non-repeatable or phantom phenomena
do not happen. However, SI is not serializable [6], [7].

As stated, the drawback of optimistic mechanisms prevails
if load increases, because many transactions may abort during
their validation at commit time. An abort at commit time is
expensive, because significant amount of work might be lost.
A circumstance particularly crucial for long-lived transactions
(see [2]).

Regarding the strategy, optimistic SI follows a “first-
committer-wins” semantics revealing another drawback of O.
It is the lack of an option allowing a transaction to explicitly
run as an owner of some data. Consider, for example, the
private data of a user such as its password or address. A
validation failure should be prevented by all means, since it
would mean that at least two transactions try to concurrently
update private data. Although technically this is a reasonable
state, for this kind of data a pessimistic approach that acquires
all locks at read time is more appropriate. Such a mecha-
nism follows a “first-reader-wins” (ownership) semantics and
directly leads to class P . Lock acquisition at read time enables
a strict sequential access and preclaiming (all reads and locks
appear before the first write) prevents deadlocks during the
write-phase if exclusive locks are used.

The decision if a data item is classified as O or P is based
on the following properties [2]:

1) Mostly read (mr): Is the data item mostly read?
If ’Yes’, there is no need for restrictive measures
and the data item should by classified for optimistic
validation. A low conflict probability is assumed.

2) Frequently written (fw): fw is the opposite of mr.
3) unknown (un): It means neither mr nor fw apply,

i.e., it is unknown whether an item is mostly read or
written or approximately even.

4) Ownership (ow): if accessing a data item should
explicitly cause the transaction to own this item for
its lifetime?

EXAMPLE II.1: Classify data items in class O and P (taken
from [2]).

This example is based on the TPC-C [3] benchmark and
its “New-Order” transaction. Note that an additional table
Account has been introduced to keep track about a customer’s
bookings (column debit and credit). It also defines an over-
draft limit (column limit). The following tables are used in
our example: Customer (id, name, surname), Stock (StockId,
ItemId, quantity), Account (AcctNo, debit, credit, limit), and
Item (ItemId, name, unit, price). Table I shows an initial
classification.

Attributes name, surname, and id of a customer are ex-
pected to be mostly read, but if modified by a transaction it
should definitively be the owner. The id of a customer, like all
ids, is expected to become modified rarely. If the id becomes
modified, ownership is required. In principal, all business keys
should be classified in P , because they are owned by the
application provider (see Rule II.1 (1)).

Stock.quantity is expected to become modified frequently
(fw) and to prevent the situation where an item was marked
as available during the read phase, but at commit time the item
is no longer available due to concurrent transactions, it is also
marked as ow. For the time being, however, quantity will be
classified as an ambiguity (see also Rule II.1 (3)), which will
be discussed below.

The Account.credit and Account.debit of a customer’s ac-
count might be accessed frequently depending on a customer’s
activity and un is a good choice. However, since multiple
transactions might concurrently update the balance, and an
owner is hardly identifiable, ¬ow is chosen. So, it is also an
ambiguity (see Rule II.1 (3)).

The Account.limit is the overdraft limit of a customer and
expected to be mostly read, hence, mr is a good choice. Since
it is neither owned by the customer nor by others, ¬ow is a
good choice (see Rule II.1 (2)).

Assuming the application is a high frequency trading
application, Item.Price might quickly become a bottleneck.
An exact prediction is not possible though, hence, un is a
good choice. Property ow would not be a good choice, because
transactions of different components (dc) might simultaneously
calculate the price (see Rule II.1 (3)).

The ambiguities A of Example II.1, see class A in Table
I, highlight that classes O and P and their properties are not
sufficient. Particularly, hot spot items such as Stock.quantity
would benefit from a CC mechanism that allows many winners
and resolves the drawbacks of OCC and PCC.

148Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE I. CLASSIFICATION OF EXAMPLE II.1

x mr fw un ow CC class
Customer.name 1 0 0 1 P

Customer.surname 1 0 0 1 P
Customer.id 1 0 0 1 P

Stock.StockId 1 0 0 1 P
Stock.ItemId 1 0 0 1 P

Stock.quantity 0 1 0 1 A
Account.debit 0 0 1 0 A
Account.credit 0 0 1 0 A
Account.limit 0 0 1 0 A

Item.name 1 0 0 1 P
Item.unit 1 0 0 1 P
Item.price 0 0 1 0 A

Laux and Lessner [1] propose the usage of a mecha-
nism that reconciles conflicts –class R–. Their approach is
an optimistic variant of O’Neil’s [8] Transactional Escrow
Method (TEM). Both approaches exploit the commutativity
of write operations. If operations commute, it is irrelevant
which operation is applied first as long as the final state can
be calculated (see [1], [2] for further details) and no constraint
is violated.

Unlike TEM, the reconciliation mechanism requires a
dependency function. Consider, for example, two transactions
that update an account and both read an initial amount of
10e , one credits in 20e and the other debits 10e . Once both
have committed, it is relevant that no constraint was violated
at any time and the final amount has to be 20e . Usually, a
database would write the new state for each transaction causing
a lost update. A dependency function would actually add or
subtract the amount (the delta!) and would always take the
latest state as input. In other words, reconciliation replays the
operation in case of a conflict. However, this is only possible
if no further user input is required. In the example above this
means the user wants to credit 10e (or debit 20 e) independent
of the account’s amount as long as no constraint is violated!
Another requirement is that each dependency function has to
be compensatable (see also [2]).

The reconciliation mechanism [1] follows a “first-n-
committers-win” semantics and the number of winners n
is solely determined by constraints. The correctness of the
mechanism is proven in [1] which also introduces “Escrow
Serializability”, a notion for semantic correctness.

TEM grants guarantees to transactions during their read-
phase. For example, a reservation system is able to grant
guarantees to a transaction about the desired number of tickets
as long as tickets are available. The consequence is that
transactions need to know their desired update in advance (see
[8] for further details).

Whereas TEM [8] is pessimistic (constraint validation
during the read phase) and works for numerical data only,
Reconciliation [1] is optimistic (constraint validation during
the write phase) and works for any data as long as a depen-
dency function is known. The proof that E, like R, is escrow
serializable can be found in [2].

The decision if an item is member of R or E is based on
the following properties:

1) con: Does a constraint exist for this data item?
2) num: Is the type of the data item numeric?
3) com: Are operations on this data item commutative?

TABLE II. ILLUSTRATIVE CLASSIFICATION OF AMBIGUITIES OF
EXAMPLE II.1.

x con com num dep in gua CC class
Stock.quantity 1 1 1 1 0 1 E
Account.credit 1 1 1 1 1 0 R
Account.debit 1 1 1 1 1 0 R

Item.price 0 0 1 1 0 0 O

4) dep: Is a dependency function known for an operation
modifying the data item?

5) in: Is user input independence given for an operation
modifying the data item?

6) gua: Is a guarantee needed that a proposed modifi-
cation will succeed?

RULE II.1: Derivation of CC classes for data item x

1) ow → classify x in P (identify P).
2) ¬ow ∧mr → classify x in O (identify O).
3) all other combinations of ow and mr: classify x in

A (ambiguity).
4) com→ classify x in E ∪R

a) (con ∧ num ∧ com ∧ gua) → classify x in
E (identify E).

b) (in∧dep∧ com)→ classify x ∈ R (identify
R).

5) x ∈ A→ item x will be eventually in O.

EXAMPLE II.2 (Classification of data items in R and E): The
ambiguities of Table I are the input for this example. Table II
shows the result of the classification of these ambiguities.
Stock.quantity has a constraint value > 0 and is
numeric. The dependency function dep is known too. As
stated above, a dependency function performs a context de-
pendent write. For example, dependency function d would
be d(x, xread, xnew) = x + (xnew − xread). User input
independence in is not given. If placing the order fails at the
end, a replay would also fail. So, class R is not an option.
Since an order requires a guarantee that the requested amount
of items remains available, Rule II.1 (4 a)) applies.

Account.credit and Account.debit are classified
as R. Property dep is known, because operations are either
additions or subtractions. Property in is given, because the ac-
count has to be updated if the order is placed and no constraint
is violated. As the updates follow a dependency functions they
can be reconciled and should not raise an exception. Again,
only a constraint violation such as an overdraft can cause the
abort. Rule II.1 (4 b)) applies.

Item.price depends on a variety of parameters includ-
ing the last price itself. As a result, a price update might not be
commutative. Item.price remains ambiguous and remains
in O, because O is the default class. Rule II.1 (5) applies

III. CORRECTNESS

A transaction potentially runs under four different CC
mechanisms. Due to the CC classes’ individual semantics, each
class has a different notion for a conflict, too.

Usually, a conflict is given if two operations access the
same data item and the corresponding transaction overlap in
their execution time, and at least one operation writes the
data item [5]. Whereas for O this is a correct definition of a

149Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

conflict, for R and E it is not, because both can resolve certain
write conflicts. The resolution of conflicts is a key aspect and
advantage of SCC, and SCC questions the seriousness of a
conflict. In other words the meaning of a read-write or write-
write conflict is a interpreted. For R and E only a constraint
violation is a conflict. Moreover, the state read by an operation
is assumed to be irrelevant, otherwise commutativity is not
given. It follows that any final serialization graph SG−R and
SG − E for class R and E is non-cyclic because potential
conflicts are reconciled (see [2] for a thorough discussion).

For P , the common definition of a conflict is correct, but
the peculiarities of lock preclaiming during the read phase
mean that if a transaction wants to modify item p (let p ∈ P),
it has to acquire a lock on p during its read-phase to become
the exclusive owner. If not, the transaction does a blind write,
which is disallowed according to Definition II.1. Hence, every
write in P cannot encounter a concurrent write or read, because
if a transaction writes p it has to be the exclusive owner of P .

Lock preclaiming in P takes place at the begin of a read
phase. Consider the following schedule, for example (let disci
denotes the disconnect phase of transaction i and let o ∈ O
and p ∈ P):

ri(o), rj(p), rj(o), discj , wj(p), cj , ri(p), disci, wi(p), ci

Transaction i precedes j in class O and j precedes i in
P . Having contradicting orders, i.e., i → j in one, but j → i
in another class violates serializability. If lock preclaiming is
the first step carried out during a transaction’s read phase, this
unfavourable situation between classes O and P is avoided.
Consider the following schedule, for example:

ri(p), ri(o), rj(p), rj(o), disci, wi(p), ci, discj , wj(p), cj

Now, transaction j has to wait until transaction i has
committed, because j cannot be owner of p if i owns p.

Based on these findings it is possible to state Theorem III.1.
The corresponding proof III.1 exploits that for R, P , and E
the corresponding serialization graphs are non-cyclic.

THEOREM III.1: Let SG − G be the global serialization
graph, which is the union of SG−O, SG−R, SG−P , and
SG−E. The global serialization graph SG−G is non-cyclic
if SG−O is non-cyclic.

PROOF III.1 (By contradiction): Given that tai is serialized
before taj (i → j) in SG − O. In P , no other transaction
can access an item in P if transaction tai has read the item.
This includes taj and it is impossible to have a serialization
order j → i in P . Since i and j can be arbitrarily changed
there is a contradiction if i → j exists in one, and j → i in
another class. SG−R and SG−E are negligible because any
conflict is finally reconciled and both serialization graphs are
non-cyclic.

COROLLARY III.1: SG−O sets the global serialization order
for P .

If a ta does not modify data in O, then P sets the order. If
a ta does not modify data in P , then R sets the order, because
it is prone to validation conflicts as opposed to E that already
has a guarantee to succeed.

IV. PROTOTYPE REFERENCE IMPLEMENTATION OF
O|R|P|E

The prototype of O|R|P|E is not a full database system.
It was implemented using the JAVA programming language
and Figure 1 illustrates its architecture. A client API provides
access to the data and depending on the operation’s type read
or write, the operation is executed by a dedicated pool. Pools’
“reads” and “writes” represent an read- and write-lane. In
addition, a pool to handle the termination (commit and abort)
has been implemented. Pools’ reads and writes handle all
incoming and outgoing operations and the classification has
been placed directly into the index. Depending on an item’s
classification the corresponding CC mechanism is plugged in.
Once an item has been read or written, the additional pools’
“read-callback” and “write-callback” deliver the results back
to the clients. Pool WFG (Wait-for-Graph) is used to handle
access to the WFG. Deadlocks may occur during the read-
phase of a transcation if the transcation accesses data items in
class P . Deadlocks can occur in class P during the read-phase,
because lock acquisition is not globally ordered.

Having separate pools to handle incoming and outgoing
operations means that the prototype supports disconnected
transactins, because the entire communication is asynchronous.
There is no single thread that represents a specific client or
transaction. Figure 2 illustrates the message flow within the
prototype. A read operation is passed to the “reads” pool. Each
read is executed asynchronously and the complete read set is
sent back to the client via a dedicated callback pool. To support
asynchronous writes, a write operation is passed to the “writes”
pool and if all writes have been applied the write set is sent
back to the client. Clients always sent their complete write-set.

Data is kept solely in memory and no data is written to
disk unless the operating system needs to swap data to disk
due to memory limitations. The only output to disk is to write
logging events that are used for performance evaluation. Other
functionality that has been implemented includes:

• CC mechanisms O, R, P and E as well as P ;
• The prototype supports constraints.
• The prototype supports selects, range-selects, updates,

and inserts. The deletion of an item is an update that
invalidates a data item.

• A WFG implementation.

V. PERFORMANCE STUDY

The performance study has been carried out based on the
prototype presented in the previous section (Section IV). As
benchmark, the TPC-C++ benchmark [7] has been chosen,
because we also conducted a study comparing O|R|P|E with
Serializable SI, which is beyond the scope of this paper.

The performance study measures the response-time (resp. -
time), the abort rate (ab-rate), the degree of concurrency (deg.
conc.), and commits per second. The degree is the quotient
of the serial estimated time over the elapsed time of the
experiment. In addition, the arrival rate λ of new transactions
has been varied to be set to the optimum (minimised abort
rate and response time, maximised degree of concurrency).
This optimum λ has been taken to conduct fair and calibrated
comparisons. Each experiment has been repeated three times
and the mean value is reported. Values refer to the execution

150Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 1. Architecture of the prototype.

Figure 2. Message flow of the prototype.

of a transaction mix –deck– (42 New Order-, 42 Payment-, 4
Delivery-, 4 Credit check-, 4 Update Stock Level-, and 4 Read
Stock Level - transactions see [7], [3], [2]). The classification
of data shown in Table III is similar to the classification of
Examples II.1 and II.2.

Figure 3 illustrates the abort rate and degree of concurrency
for SI under full contention and shows the drawbacks of
optimistic SI: the higher the number of concurrent transactions,
the higher the abort rate. Also, the system starts thrashing if

TABLE III. TPC-C: CLASSIFICATION OF DATA ITEMS.

Item CC Class operation

Customer P read
CustomerCredit P update

CustomerBalance R read
Customer P read

CustomerBalance R update
Customer P read

CustomerCredit P read
StockQuantity E update

Customer P read
CustomerBalance R update

WarehouseYTD R update
DistrictYTD R update

StockQuantity E read only
StockQuantity E update

the degree of concurrency drops below one, which is the point
where a serial execution outperforms a concurrent. Table IV
#1-6 shows that the response-time increases with larger λ,
which is expected and normal behaviour. A good degree of
concurrency with a low abort rate is given by λ = 133 (see
Table IV #3).

Figure 3. TPC-C++, optimistic SI (class O), abort rate and degree of
concurrency.

Figure 4 shows the response-time and degree of concur-
rency for O|R|P|E for increasing λ. Unlike SI, O|R|P|E has
no aborts caused by serialization or validation conflicts due
to the classification of hot-spot data items in R or E, which
prevents ww-conflicts. As shown by Figure 4, O|R|P|E has its
best degree with λ = 1000 transactions per second achieving
227 commits per second (see Table IV, #15).

Figure 4. Response time and degree of concurrency for increasing λ for
O|R|P|E .

The comparison of O|R|P|E and SI uses λ = 133 (Table
IV #3, and #7-9) for SI and λ = 1000 (Table IV #15-18) for
O|R|P|E . For SI, λ = 133 was considered as being the best
trade-off with respect to the degree of concurrency, λ = 1000
was considered as being the best trade-off for O|R|P|E. Figure
5 illustrates the degree and the response-time for O with SI and
O|R|P|E if both use the λ which reflect the best trade-off. As
the figure shows, SI has a better response-time for 1000, 2000,
and 3000 concurrent transactions, but then suddenly undergoes
thrashing and the response-time grows exponentially. However,

151Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 5. TPC-C++, SI and O|R|P|E : response-time and degree of
concurrency for λ = 133 (SI) and λ = 1000 (O|R|P|E).

TABLE IV. MEASURED VALUES OF ALL EXPERIMENTS #1-18.

tas λ resp.-time ab. rate commits deg.
/second conc.

1 1000 80 43 2% 71 1,39
2 1000 100 84 3% 80 1,57
3 1000 133 309 5% 82 1,63
4 1000 200 1640 20% 62 1,50
5 1000 400 2091 26% 61 1,57
6 1000 1000 2464 27% 62 1,61
7 2000 133 388 9% 90 1,87
8 3000 133 522 8% 91 1,89
9 4000 133 23416 46% 22 0,79

10 1000 80 5 4% 69 1,01
11 1000 100 5 4% 85 1,24
12 1000 133 8 4% 108 1,58
13 1000 200 14 4% 150 2,19
14 1000 400 213 4% 217 3,18
15 1000 1000 724 4% 227 3,32
16 2000 1000 1551 4% 234 3,41
17 3000 1000 3704 4% 184 2,69
18 4000 1000 4968 5% 174 2,55

O|R|P|E shows a moderate and stable increase of the response-
time even for 4000 concurrent transactions. It would be wrong
to conclude that SI has a better performance than O|R|P|E for
workloads below 4000 concurrent transactions, because λ has
to be taken into account and for O|R|P|E λ = 1000 as opposed
to λ = 133 for SI. Hence, under high contention O|R|P|E has
the lowest abort rate and considering the trade-off, O|R|P|E
has the shortest response-time. Furthermore, the abort rate is
independent of the contention.

The drawback of O|R|P|E is that a wrong classification of
data can quickly cause performance issues. For example, P as
well as E are expensive, because P requires locking during
the read-phase and E has to validate all constraints against
each other. There is also overhead to classify the data. If a
classification is not possible, class O is the default class –there
is a fallback–.

VI. RELATED WORK

This paper is based on the findings of [2], which introduces
O|R|P|E. A vast amount of work [5], [9] has been carried out
in the field of transaction management and CC, but so far no
attempt was undertaken to use a combination of mechanisms
according to the data usage (semantics). Most authors use
the semantics to divide a transaction into sub-transactions

thus achieving a finer granularity that hopefully exhibit less
conflicts. Some authors [10] use the semantics of the data to
build a compatibility set while others try to reduce conflicts
using multiversions [11], [12]. The reconciliation mechanism
was introduced by [1] and is an optimistic variant of [8]
“Transactional Escrow Method”. Escrow relies on guaranties
given to the transaction before the commit was executed, which
is only possible for a certain class of transactions. OCC was
introduced by [13], which did not gain much consideration in
practice until SI, introduced by [14], has been implemented in
an optimistic way. SI in general gained much attention through
[6], [7], also in practice [15].

VII. OUTLOOK

The work carried out in [2] covers, in addition to the
presented result, various aspects of O|R|P|E such as replication
and runtime adaptation. However, a dynamic algorithm for an
automatic classification of data would be advantageous. Also,
a performance study that considers replication and runtime
adaptation is still missing.

REFERENCES
[1] F. Laux and T. Lessner, “Transaction processing in mobile computing

using semantic properties,” in Proceedings of the 2009 First Interna-
tional Conference on Advances in Databases, Knowledge, and Data
Applications, ser. DBKDA ’09. IEEE Computer Society, 2009, pp.
87–94.

[2] T. Lessner, “-ORPE- a high performance semantic transaction model
for disconnected systems,” Ph.D. dissertation, University of the West
of Scotland, 2014.

[3] TPC BENCHMARK C, Standard Specification, Revision 5.11, Transac-
tion Processing Performance Council Std., February 2010.

[4] A. Thomasian, “Concurrency control: methods, performance, and anal-
ysis,” ACM Comput. Surv., vol. 30, no. 1, pp. 70–119, Mar. 1998.

[5] J. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993.

[6] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha, “Making
snapshot isolation serializable,” ACM Trans. Database Syst., vol. 30,
no. 2, pp. 492–528, Jun. 2005.

[7] M. J. Cahill, U. Röhm, and A. D. Fekete, “Serializable isolation for
snapshot databases,” ACM Trans. Database Syst., vol. 34, no. 4, pp.
20:1–20:42, Dec. 2009.

[8] P. E. O’Neil, “The escrow transactional method,” ACM Transactions
On Database Systems, vol. 11, pp. 405–430, December 1986.

[9] G. Weikum and G. Vossen, Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control and Recovery.
Morgan Kaufmann, 2002.

[10] H. Garcia-Molina, “Using semantic knowledge for transaction process-
ing in a distributed database,” ACM Trans. Database Syst., vol. 8, no. 2,
pp. 186–213, Jun. 1983.

[11] S. H. Phatak and B. Nath, “Transaction-centric reconciliation in dis-
connected client-server databases,” Mob. Netw. Appl., vol. 9, no. 5, pp.
459–471, 2004.

[12] P. Graham and K. Barker, “Effective optimistic concurrency control in
multiversion object bases,” in ISOOMS ’94: Proceedings of the Inter-
national Symposium on Object-Oriented Methodologies and Systems,
ser. Lecture Notes in Computer Science, E. Bertino and S. D. Urban,
Eds., vol. 858. London, UK: Springer-Verlag, 1994, pp. 313–328.

[13] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Trans. Database Syst., vol. 6, no. 2, pp. 213–226, Jun.
1981.

[14] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil,
“A critique of ansi sql isolation levels,” SIGMOD Rec., vol. 24, no. 2,
pp. 1–10, May 1995.

[15] D. R. K. Ports and K. Grittner, “Serializable snapshot isolation in
postgresql,” Proc. VLDB Endow., vol. 5, no. 12, pp. 1850–1861, Aug.
2012.

152Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

	Introduction
	Model
	Transaction
	CC Classes

	Correctness
	Prototype Reference Implementation of O|R|P|E
	Performance Study
	Related Work
	Outlook
	References

