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Abstract—Dataconda is a software program, freely available to
academics on www.dataconda.net, which solves classification and
regression problems in a relational database, as opposed to a sin-
gle table. The user selects a class attribute contained in a table of a
relational database, and the software builds and selects predictors
by exploring the whole database and aggregating information,
without any user intervention. For example, Dataconda may find
that the best predictor for “customer value” is the amount of
money spent by the customer in cheap electronics, even if the
user has not built any such attribute. This demo will introduce
a brief theoretical background, illustrate how to use Dataconda
in sample databases, and show how to easily extend it.
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I. THEORETICAL BACKGROUND ON ATTRIBUTE
GENERATION

Preparing a flat mining table from a relational database is a
critical task of the data mining process, because it determines
both the predictive performance of the statistical model and the
discovery of new knowledge. This task is typically performed
manually by an analyst, whereas Dataconda aims at performing
it automatically. The main advantage of an automatic approach
over a manual one is the ability to find unexpected patterns
more easily.

As an example, let us consider the entity relationship
diagram of Figure 1, which shows a database of Purchases,
Products, and Clients. A client makes 0-to-n purchases through
time. Each purchase involves only one product, but a product
may be sold in 0-to-n purchases. The goal is to find predictors
of the binary attribute Return (target attribute) of the table
Purchases (target table), which indicates whether a purchase
was later returned to the store.

Figure 1. Entity-relationship diagram of a database of purchases

Dataconda adds to the table Purchases new attributes that
summarize information from other tables, in the hope that
they are good predictors of Return. The attribute generation
procedure is typically referred to as Propositionalization [1]

and works in two steps: in the first step, the procedure
generates a path that starts from the target table; in the second
step, a “Roll-up” procedure iteratively joins the tables of the
path in order to add a new attribute to the target table, which
summarizes the information along the path. The summarization
is performed by using refinements, i.e., where conditions in the
Structured Query Langauge (SQL) or aggregation operators
like average (AVG), sum (SUM), etc. This procedure ultimately
results in the addition of a large number of attributes to the
target table.

In the example of Figure 1, the first step could generate the
path Purchases → Clients → Purchases. In the second step,
the Roll-up procedure will iteratively join the tables of the path
in order to generate a new attribute for the table Purchases. For
example, one attribute that can be generated along this path is
the average value of Return among the client’s past purchases,
which represents the client’s past return rate.

The initial Propositionalization work in [1] has been im-
proved in [2] with the addition of more aggregation operators;
however, the method in [2] does not allow the same table
to be traversed twice during step 1 of the procedure, which
drastically limits the space of the possible predictors. The
method in [3] increases the number of possible refinements;
however, their methodology is unsuitable to handle temporal
data, because the automatic generation would generate predic-
tors that use future information. These problems are overcome
by Dataconda [4].

II. USING DATACONDA
This section gives a brief overview of how to use Data-

conda. The software and the complete tutorial [5] can be found
online.

A. Declare Tables and Relationships
The first step is to load the tables of an existing relational

database and to declare the relationships among them (0-to-n
or 0-to-1 ). Then, the user needs to define which “aggregating
functions” and “refinements” may be used on each attribute.

Figure 2 shows the Dataconda configuration for a database
similar to that of Figure 1. Aggregating functions (e.g., AVG,
SUM) are used to aggregate a set of values into one. For exam-
ple, applying the operator AVG on the attribute Return enables
the generation of an attribute representing the proportion of a
client’s purchases that were returned.

Refinements, which are the same as “where” conditions in
SQL, allow the aggregations to be performed on a subset of
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rows, as in the attribute AVG(Return) where Online = 1, which
represents a client’s return rate among online purchases.

Figure 2. Snapshot of Dataconda

B. Generate Attributes
The user can then select a target table and a target attribute

in it, and Dataconda will generate all possible predictors for
the target attribute that can be obtained using the aggregating
functions and refinements defined in the previous step. Prac-
tically, the set of columns of the target table is “expanded”
with the generated predictors. This process may take seconds
or hours, depending on the size of the database and on the
number of total predictors to build.

C. Output of Dataconda
The output of the attribute generation procedure consists

of several files, which will be located in the same folder as
the data:

• The files data.csv and data.arff, which contain the flat
table (in two different formats);

• A file attributes.txt with the English description of
each generated attribute;

• A file Analysis Output.txt, which contains the detailed
result of the attribute selection procedure.

D. Select Attributes
After generating attributes, Dataconda will find the best

predictors through the default attribute selection procedure,
which is based on a Lasso regression [6]. Depending on
whether the dependent variable is a numeric or a categorical
attribute, a linear or logistic Lasso regression is executed with
decreasing values of the shrinkage coefficient λ, so as to
retrieve the first 20 attributes that enter the set of selected pre-
dictors. Then, these 20 attributes are regressed by themselves
against the dependent variable, and only the significant ones
(with p-value ≤ 0.05) are finally returned. Figure 3 shows how
the selected predictors are displayed in Dataconda.

The choice of implementing this Lasso-based attribute
selection procedure is justified by its computational speed: it
takes a time between 0.1 and 1.9 seconds to analyze a data
set of about 500 records and 222 attributes. However, this
demo will compare the attribute selection and classification
performance of several other data mining techniques.

E. Extending Dataconda
Dataconda can be extended in two ways: by modifying

the default attribute selection procedure or by introducing new
aggregating operators.

Figure 3. Selected predictors

The attribute selection procedure can be modified by
changing the file RTemplate.R, which contains the attribute
selection procedure executed by Dataconda at the end of the
attribute generation procedure.

To add new aggregating operators, the user needs to extend
the interface IAggregatingFunction by specifying the name,
description, and logic of the new aggregating operator. Then,
the new code needs to be compiled into a dll, which then
needs to be placed in the same folder as the executable
file Dataconda.exe. At start-up, Dataconda will load the new
operator and will display it in the graphical interface together
with the default operators (see Figure 2) .

III. CONCLUSION
Preparing a flat mining table from a relational database

is a critical task of the data mining process, because it
determines the predictive performance and the discovery of
new knowledge. This task is typically performed manually by
an analyst who, guided by domain knowledge, constructs a
set of attributes that will hopefully result in a high predictive
performance. Aside from being very time consuming, this
process is also unlikely to discover unexpected knowledge,
as the attributes in the mining table are those that the analyst
“suspects” being related to the target attribute.

By automatically generating new attributes, Dataconda can
discover new knowledge more easily, and it could also lead
to a higher predictive performance than the manual process.
To assess the validity of this claim, more experimentation is
needed both on simulated and on real-world data sets.
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