
Exposing the Myth: Object-Relational Impedance Mismatch is a Wicked Problem

Christopher Ireland, David Bowers
Department of Maths and Computing

The Open University
United Kingdom

e-mail: cjireland@btinternet.com, D.S.Bowers@open.ac.uk

Abstract—Addressing a problem of software integration is a

fact of life for those involved in software development. The
popularity of both object and relational technologies means that
they will inevitably be used together. However, the combination
of these two technologies introduces problems. These problems
are referred to collectively as the object-relational impedance
mismatch.

A mismatch is addressed using one or more mapping
strategies, typically embodied in a pattern. A strategy is
concerned with correspondence between the schema of a
relational database and an object-oriented program. Such
strategies are employed in mapping tools such as Hibernate and
TopLink, and reinforce the received wisdom that the problem of
object-relational impedance mismatch has been solved.

In this paper, we observe that it is not clear whether each
strategy, as one possible solution, addresses the cause or a
symptom of a mismatch. We argue that the problem is not tame
and easily resolved; rather it is complex and wicked. We
introduce a catalogue of problem themes that demonstrate the
complex nature of the problem and provide a way both to talk
about the problem and to understand its complexity.

In the future, as software systems become more complex and
more connected, it will be important to learn from past
endeavours. Our catalogue of problem themes represents a shift,
in thinking about the problem of object-relational impedance
mismatch, from issues of implementation towards an analysis of
cause and effect. Such a shift has implications for those involved
in the design of current and future software architectures.
Because we have questioned the received wisdom, we are now in
a position to work toward an appropriate solution to the problem
of object-relational impedance mismatch.

Keywords—object-relational; impedance mismatch; wicked

problem; problem theme

I. INTRODUCTION
Addressing a problem of software system integration is a

fact of life for those involved in software development [26],
p46. Typically, an organization will employ a number of
software systems, possibly written using different
programming languages, each to a separate design, and running
on different operating systems on different hardware platforms.
Each software system will support different facets of the
organisation’s business activities.

An object-relational application is a software system that
combines technologies based on the concepts of both “ object”
and “relation”. Object-relational impedance mismatch is the
term we use to refer to a difference between the schema of an
object-oriented program and the schema of a relational
database. Despite the received wisdom that the problem of

object-relational mismatch has been “solved”, reinforced by
technologies such as Hibernate [2], TopLink [3] and LINQ [4],
the resolution of a mismatch typically involves some form of
object-relational mapping, and costs significant time and effort
to address.

In this paper, we explore the nature of object-relational
impedance mismatch. We demonstrate that, contrary to the
received wisdom, the problem of object-relational impedance
mismatch is not tame and easily resolved but, rather, it is
wicked and complex. We provide a new way both to talk about
the problem and to understand its complexity. Such
understanding provides a sound foundation for work toward an
appropriate solution to the problem.

This paper is structured as follows: in Section II. we
illuminate the received wisdom. In Section III we expose the
wicked nature of impedance mismatch. In Section IV we
introduce a catalogue of problem themes as a lens through
which we can understand the problem. In sections V and VI we
use problem themes to demonstrate the complex nature of
impedance mismatch and expose relationships between themes.
Finally, in Section VII, we set out the limitations of a
perspective on impedance mismatch based on problem themes,
before presenting our conclusions and proposing future work in
Section VIII.

II. OBJECT-RELATIONAL IMPEDANCE MISMATCH
An object-relational mismatch can occur only when an

object-oriented program uses a relational database for
persistence. A mismatch between an object-oriented program
and a relational database does not materialise until a particular
mapping strategy is selected. An object-relational mapping
strategy (mapping strategy) sets out the correspondence
between classes in the schema of an object-oriented program
and the schema of a relational database. An object-relational
application comprises many such strategies. However it is not
always clear what each strategy addresses: the cause of or a
symptom of a mismatch.

The problem of object-relational impedance mismatch is
important in practice because addressing a mismatch costs both
time and effort. Contrary to the suggestion of [1], the
decoupling of a program and a database does not resolve a
mismatch. Problems still occur at the point where objects and
relations are combined, and they do not go away simply
because a persistence layer [2][3] or a hybrid language [4] is
used. A persistence layer embodies a number of mapping
strategies. Such a layer will only address the cause of a
mismatch if the mapping strategy employed is an appropriate
solution.

21Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

In contrast we define an acceptable solution as one that
gives the illusion that a mismatch is solved even if it addresses
only a symptom of the mismatch. Such a solution might
reinforce a belief that the mismatch has been avoided even
though its cause has not been addressed. However, it should
not be concluded that a mismatch is inevitable and that there is
no alternative but to deal just with the symptoms. In the next
section we explore the misconception that underpins this
received wisdom by demonstrating the true nature of the
problem of object-relational impedance mismatch.

III. A WICKED PROBLEM
Rittel and Webber [5] observe that some problems cannot

be resolved in a linear way. They label such problems as
wicked. A tame problem is particularly suited to a linear
resolution because it is well defined; it has a clear and well-
defined stopping point, when a solution is found from a list of
possible solutions; and it is possible to choose a solution
because there is a set of pre-defined criteria for making such a
choice.

A wicked problem is less straightforward. Rittel and
Webber describe ten characteristics of a wicked problem. In
essence, a wicked problem is a problem that resists resolution
because its definition is incomplete, the requirements of
multiple stakeholders change, and there is no single definitive
and optimal solution, so a choice of solution typically involves
a compromise.

The concepts of tame and wicked problems represent the
two extremes of a continuum along which a given problem
may be positioned, depending on its particular characteristics.
The characteristics of a wicked problem were derived from
work on planning policy in the 1960s. Conklin [6], p21
subsequently refined them so they could be applied to areas
other than planning policy. In Table I, we use each of
Conklin’s characteristics to explore the extent to which the
problem of object-relational impedance mismatch may be
considered wicked.

Object-relational impedance mismatch is an exemplar of a
wicked problem. There is no single problem or solution. Each
problem involves a number of stakeholders both within and
outside an organisation, such as programmers, designers,
analysts, software vendors and language designers.
Furthermore, a problem is not addressed in isolation. The
solution to a problem is a mapping strategy but each strategy
involves a compromise because data about an object will not fit
neatly into the schema of a relational database. Consequently, a
choice of a particular strategy may cause another problem.

The search for a solution involves accepting compromises
(or satisficing [6], p14). The result is a mapping strategy that
produces the best fit rather than the optimal fit, and a solution
that is somehow acceptable rather than appropriate.
Furthermore, any choice of solution has implications for the
design of an object-relational application. Consequently, we
can think of an object-relational application as a complex
collection of interrelated problems; what Ackoff [11] termed a
mess.

Thinking about object-relational impedance mismatch as a
wicked problem raises new questions about how we understand
and address a mismatch. Such questions (Table I) expose issues
with the received wisdom that the problem of object-relational

impedance mismatch has been solved. We present next a new
vocabulary to describe the problem of impedance mismatch.
This vocabulary provides a way both to structure the mess and
to understand the complex nature of the problem.

TABLE I. OBJECT-RELATIONAL IMPEDANCE MISMATCH FRAMED AS A
WICKED PROBLEM

Characteristic of a Wicked
Problem [6]

The problem of Object-Relational
Impedance Mismatch

You don’t understand the
problem until you have
developed a solution.
Every solution exposes new
aspects of the problem.
There is no single definition
of the problem instead an
interlocking set of issues and
constraints from different
stakeholders.

There is no mismatch between an object-
oriented program and a relational database
until a decision is made to use a particular
mapping strategy.
There are many mismatches and there are
many mapping strategies each of which
may be a potential solution.
Each solution involves a compromise [7].
There are issues such as those of a
consistent identity and the preservation of
semantics [8]. How do we understand the
nature and consequence of a compromise?

Wicked problems have no
stopping rule. There is no
single definition of the
problem and so there is no
definitive solution.

A problem does not exist in isolation and a
solution to one problem may cause another
problem.
There are a number of object, relational,
and mapping technologies.
A solution is chosen based on some criteria
[9] but how do we know that these criteria
are appropriate for making such a choice?

Solutions are not right or
wrong simply
better/worse/good enough.
Stakeholders each interpret
the solution based on their
objectives.

Each solution involves a compromise
either in the design of a program or in the
design of a database. For example, Ambler
[7], Chapter 14 lists a number of pros and
cons for each mapping strategy. How then
do we make an informed choice of an
appropriate solution?

Each problem is essentially
unique and novel because
there are so many factors
and conditions.

There are a number of mapping strategies
but each must be interpreted in the context
of a particular object-relational application.
On the surface, defining a mapping
strategy appears to be a straightforward
activity. For example, a class corresponds
to a table and an attribute corresponds to a
column, but as [10] observes, a quagmire
of issues rapidly develops. How then do we
understand and avoid this quagmire?

Every solution is a one-shot
operation. It has
consequences and changes
the context.

A choice of solution impacts the design of
a program and the design of a database.
Once a particular mapping strategy is
implemented in an object-relational
application how easy it is to adopt a
different strategy?

There are no given
alternative solutions. It is a
matter of creativity to devise
new solutions and a matter
of judgement to decide
which are valid and worth
pursuing.

A one-solution-fits-all approach may not
be appropriate but to what extent do we
accept the available mapping strategies as a
given?
Are there other possibilities for a solution
outside the code of an object-relational
application?

IV. PROBLEM THEMES
Neward [12] refers to the problem of an object-relational

impedance mismatch as “a quagmire of issues”. In this section
we set out to understand the problem of object-relational
impedance mismatch. The objective is to make sense of the
problem and the different interpretations of object-relational
impedance mismatch.

22Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Copeland & Maier [13], Neward [12] and Ambler [7],

p105-113 each characterise object-relational impedance
mismatch in a different way. Copeland & Maier are concerned
with issues of concept and data structure, Neward focuses on
problems of implementation and Ambler is concerned with
technical and cultural difficulties.

It is not clear how each characterisation relates to the
others, whether a particular characterisation refers to the cause
of a mismatch or a symptom, whether the list of
characterisations is complete, or why each characterisation was
chosen. Ambler and Neward consider issues beyond those of
technology but it is not clear whether Copeland & Maier,
Ambler and Neward describe the cause or a symptom of a
mismatch.

Each characterisation draws attention to a collection of
mismatches that together represent a particular problem. In this
section, we consolidate the characterisations described by
Copeland & Maier, Neward and Ambler, along with
contributions from others, as a catalogue of problem themes.
An early version of this work can be found in [14][15].

A problem theme is defined as a collection of mismatches.
A problem theme reflects a particular characterisation, such as
the “object-to-table mapping problem” and the “schema
ownership problem” described by Neward, or the “cultural
impedance mismatch” described by Ambler, and helps to make
sense of a collection of mismatches. A mapping strategy is one
solution to a mismatch. It follows that a mapping strategy is
also (part of) one solution to a problem theme. The
relationships between a theme, a mismatch and a mapping
strategy are summarised in Figure 1.

Problem
Theme

Mismatch Mismatch Mismatch

Mapping
Strategy

Mapping
Strategy

Mapping
Strategy

Mapping
Strategy

Mapping
Strategy

Mapping
Strategy

Figure 1. A Problem Theme, Mismatches and Mapping Strategies

A problem theme is important for two reasons. A problem
theme provides a way to understand one aspect of object-
relational impedance mismatch. It makes it possible to talk
about and focus on a specific problem rather than use the
general term object-relational impedance mismatch. Table II
summarizes the concern of each problem theme.

In summary, a problem of object-relational impedance
mismatch displays the characteristics of a number of problem
themes. Problem themes provide a way to understand
impedance mismatch. Each theme is concerned with a
collection of mismatches. In the context of a problem theme it
is possible to talk about the problem of a specific subtype of
object-relational impedance mismatch. In the next section, we

use the catalogue of problem themes to move toward an
understanding of the complex nature of impedance mismatch.

TABLE II. PROBLEM THEMES

Problem
Theme

Concern

Structure The structure problem theme is concerned with any
difference of data structure between the schema of an
object-oriented program and the schema of a relational
database, and so adopts a broad interpretation of the
notion of structure. The essence of a structure problem is
the extent to which an object-oriented data structure can
be, and should be, described by a relational data structure.
Problems of the structure theme are important because
they are concerned with a description of the data
processed by an object-relational application.

Instance The essence of an instance problem theme is, where is the
canonical copy of state located? Problems of the instance
theme are important because they are concerned with the
ownership of and the responsibility for data.

Encapsulation The principle of encapsulation requires that the state of an
object can be determined only by its behaviour, so in an
object-oriented program the value of an attribute of an
object is accessed via a method. Problems of
encapsulation are important because, in a database, the
value of a column in a row has no such protection.
Consequently, once stored in a database, data may be
changed without the protection of the semantics encoded
in a method.

Identity The essence of an identity problem is how to identify
uniquely a collection of data values between both object-
oriented program and a relational database. Such problems
of identity are important to ensure the integrity of data
between an object-oriented program and a relational
database.

Processing
Model

The essence of a processing model problem is how to
represent in, maintain and retrieve from a database a
sufficient set of objects for processing. Such problems are
important because they concern issues of software
performance [16].

Schema
Ownership

The essence of the schema ownership problem is that the
team who design and implement an object-oriented
program can be different from the team who design and
implement a relational database. Such problems are
important because they concern the choices made by those
responsible, respectively, for the object-oriented program
and the relational database.

V. A COMPLEX MIX OF PROBLEMS
Problem themes classify mismatches that must be

addressed during the development of an object-relational
application. However, such concerns are not independent. We
explore in this section relationships between problem themes.
Each relationship is causal; collectively they describe the
complex nature of object-relational impedance mismatch.

A structure problem can be the consequence of an
ownership problem. A conceptual mismatch and a structural
mismatch, as described by Copeland & Maier, are not
independent. A conceptual framework determines the
semantics of a language, so a language such as Java is referred
to as an object-oriented language. Those who implement an
object-relational application make a choice of abstraction but
can use only the artefacts of a particular language to describe
that abstraction.

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Neward [12] refers to “the schema ownership conflict” and
“the dual schema problem”. Each demonstrates a relationship
between a schema ownership problem and a structure problem.
The schema ownership conflict describes a mismatch of
agenda. For example, a performance issue might mean that
those responsible for a database have to change a data structure
[17]. The dual schema problem occurs when a database must
be changed in order to accommodate another application. In
this case a structure problem is caused by a solution to a
schema ownership problem.

A choice of abstraction made in the design of one
application can produce a structure problem in another. Keller
[16] helps to reinforce a link between the schema ownership
problem and the structure problem. Whilst Neward is
concerned with accommodating a new application, for Keller
the problem is incorporating an existing data structure, from
another application, into the schema of an object-oriented
program.

A schema ownership problem can cause an instance
problem. Differences in perception between stakeholders of the
role of a program and a database in an object-relational
application bring into question the location of a canonical copy
of state. A solution to a schema ownership problem must
reconcile these different perceptions.

Problems of structure and identity are related. A choice of
language will decide the data structure to which an identity
refers. For example, in Java, an object has an identity whilst in
SQL the value of a primary key represents the identity of a
row. In order to address an identity problem it is important to
be clear about the structure to which an identity refers.

However, a solution to an identity problem can then cause a
structure problem. Keller [16] describes a solution to a
correspondence of identity between the schema of an object-
oriented program and the schema of a relational database. He
addresses an identity problem by introducing a surrogate
identifier, resulting in the need for a change to the structure of a
database schema.

An instance problem can cause an encapsulation problem.
Once data has been stored in a database, that data may be
modified independently of the logic employed in a program.
Such a change can occur if the instance problem is caused by a
schema ownership problem whereby those responsible believe
that a database maintains the canonical copy of state.

A structure problem can lead to an encapsulation problem.
Lodhi [18] observes that the way an association is represented
in a relational database can be different from an association
between two objects. Consequently the representation of an
association between objects as a foreign key in a relational
database does not necessarily preserve the encapsulation of an
object.

A structure problem can also lead to a processing model
problem. The process of normalisation can cause data about an
entity to be split across a number of tables. Consequently, in
the context of a reference between two objects, in order to
retrieve the data for a referenced object it may be necessary to
join a number of tables.

An instance problem can be caused by a processing model
problem. It may not be necessary to retrieve or store all the data
about an object in order to satisfy a request. However it may
still be necessary to retrieve all the data for an object in order to

create that object. As a result those responsible for an object-
oriented program might believe that a program maintains the
canonical copy of state.

An encapsulation problem can lead to a processing model
problem. In order to reference an object, a program must first
create an object. It may not be desirable or practical to load
data about all objects in a network from a relational database so
a decision must be made at which point to stop. That decision
is difficult because the network of references between objects
is encapsulated within the objects themselves.

In summary, object-relational impedance mismatch is a
complex mix of interrelated problems. Using problem themes
we have explored this complexity and demonstrated that
solving problems of any particular class can generate problems
of another. Consequently each such problem cannot be
addressed in isolation. In the next section we use these
relationships to understand the mess and to explore the
consequences for our understanding of impedance mismatch.

VI. RELATIONSHIPS BETWEEN PROBLEM THEMES
The previous section demonstrated that problem themes are

related. These relationships are summarised in Figure 2.

Schema
Ownership

Structure

Instance

Identity

Processing
Model Encapsulation

Figure 2. Problem Themes and Relationships

Two themes are related if a solution of one theme leads to a
problem of another theme. The arrows on each line in Figure 2
indicate the direction of influence between two problem
themes. It is possible to talk about a specific problem such as
that of schema ownership, structure or identity and see that
such problems are related. For example the line from the
problem theme of structure to the problem theme of identity
indicates that a solution to a structure problem can have a
consequence for an identity problem.

Because it is possible to make a connection between themes
it is also possible to explore the complex nature of object-
relational impedance mismatch. For example, in order to
address an identity problem it might be necessary to first
address a structure problem, but a structure problem might be
caused by a schema ownership problem. By exposing such
relationships between themes it is possible to begin to
understand the problem of object-relational impedance
mismatch in a systematic way.

Because the solution to one problem can cause another
problem, it follows that a problem should not be considered in

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

isolation. The relationships between problem themes help us to
understand problems of object-relational impedance mismatch.

Figure 2 shows that a structure problem can be caused by a
schema ownership problem. It is important that a solution to a
structure problem involves both those responsible for an
object-oriented program and those responsible for a relational
database. Because a solution to one problem can lead to
another, the relationships between themes provide a way for
those responsible for a solution to understand with whom to
consult when assessing its consequences.

Figure 2 also shows that a schema ownership problem is
related to a structure problem but a structure problem has a
consequence for a number of other problem themes. Similarly
an identity problem has a consequence for a number of
problem themes. The identity problem and the structure
problem are also related. An understanding of the structure
problem, the schema ownership problem and the identity
problem is therefore important to understanding object-
relational impedance mismatch.

The importance of a structure problem is reflected in the
many mapping strategies between the schema of an object-
oriented program and the schema of a relational database.
Many authors describe a correspondence of structure between
the schema of an object-oriented program and the schema of a
relational database. A mapping strategy is based on a perceived
correspondence, such as that between a class and a table (for
example [18][19][20]); a class hierarchy and a table or a
collection of tables (for example [7][21][22][23]); a
relationship and a foreign key or a table (for example
[7][19][24]); and an aggregation and a table or a column (for
example [16][25]). In order to understand such a choice of
mapping strategy and whether it results in an appropriate or an
acceptable solution first the cause of a mismatch of structure
must be understood.

There is a cycle in Figure 2. A solution to a structure
problem can cause an encapsulation problem. A solution to an
encapsulation problem can cause a processing model problem.
A solution to a processing model problem can cause an
instance problem. A solution to an instance problem can cause
another encapsulation problem. Because there are different
solutions to a problem a choice of solution must be made.

A choice of a mapping strategy can break a cycle if that
solution does not cause another problem. For example Shadow
Information [7], p228 introduces a change in the structure of an
object-oriented program that addresses an instance problem.
The implication is that it is important to understand the
consequences of a mapping strategy as well as the artefacts
involved in a correspondence.

In order to address one mismatch it may be necessary to
address another problem first. A Synthetic Object Identity
[16],p21 is a surrogate identifier used in a number of mapping
strategies. In order to address an identity problem a Synthetic
Object Identity introduces a change of structure. The question
remains whether this change of structure addresses the real
cause of a mismatch of identity, and so is an appropriate
solution, or whether the change of structure deals with the
symptoms and so is an acceptable solution. To answer that
question first the cause of a mismatch of identity must be
understood.

In summary, relationships between problem themes can be
used to visualise the mess, or what Neward referred to as a
quagmire. Exploring relationships between problem themes
demonstrates that object-relational impedance mismatch is a
complex problem, illuminates problems of particular
importance, and highlights that there are consequences from a
choice of solution. In the next section we highlight the
limitations of a perspective based on problem themes.

VII. THE LIMITATIONS OF PROBLEM THEMES
The problem themes represent a consolidation of the work

of others. However it is not clear whether they identified all
possible problems and explored all possible relationships, or
whether that was in fact their objective. It is also not clear from
the literature whether their categorisations of the problem are
simply observations based on experience or an exhaustive
search of the problem.

Copeland & Maier talk in general terms of concept and
structure, whereas Neward is concerned with specific problems
such as retrieving data for an object from a database. Whilst the
categorisation of Neward appears more comprehensive than
that of Copeland & Maier, because it describes more problems,
the level of abstraction can explain such a difference.
Consequently the catalogue of problem themes, the
relationships between themes, and the categorisations of
Copeland & Maier, Neward and Ambler must be considered as
partial but illustrative of the problem of object-relational
impedance mismatch.

Relationships between problem themes cannot be used to
locate the cause of a mismatch. In order to locate the cause of a
mismatch it is necessary first to explore the reason for that
mismatch between the schema of an object-oriented program
and the schema of a relational database. The reason for a
mismatch does not lie in a relationship between two problem
themes. For example, the answer to an identity problem is not
found by understanding that it may be caused by a mismatch of
structure. Why there is a mismatch of structure must be
understood first.

Choices of transformation in the design of an object-
oriented program and a relational database provide the context
for a mismatch. One mismatch is that of a data structure.
Differences of language and abstraction lead to such
mismatches, but a conceptual framework, respectively those of
an object and a relation, underpins each language and each
abstraction. Using problem themes it is clear that a problem of
structure can have consequences for other problem themes, but
it not clear whether a choice of abstraction, language or
conceptual framework is the root cause of a mismatch of
structure. In [15], we describe a framework, based on these
choices, for exploring the cause of a mismatch.

VIII. CONCLUSIONS AND FUTURE WORK
Contrary to the received wisdom, we do not know whether

a solution addresses the cause or a symptom of an object-
relational impedance mismatch. A mapping strategy is simply a
pragmatic solution to a problem in the implementation of an
object-relational application. Because we do not know the
cause of a particular mismatch, we cannot be sure whether such
a solution is appropriate or whether it is somehow acceptable.

25Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Object-relational impedance mismatch is a wicked
problem, and we introduce problem themes as a way of making
sense of such mismatches. Our catalogue of problem themes
provides a new vocabulary for describing the problem of
object-relational impedance mismatch. Each problem theme
focuses attention on a particular aspect of an object-relational
impedance mismatch. Problem themes also provide a structure
to the problem and demonstrate the complex nature of object-
relational impedance mismatch.

Problem themes provide an insight into distinct, but
interacting, aspects of object-relational impedance mismatch.
Problem themes have implications for those developing an
object-relational application. Relationships between themes
expose the “quagmire of issues” referred to by Neward and
demonstrate that those developing an object-relational
application must think about issues of more than one theme in
the design and implementation of a mapping strategy.

Our catalogue of problem themes suggests a shift in
thinking about the problem of object-relational impedance
mismatch from issues of implementation towards an analysis of
cause and effect. Because we have questioned the received
wisdom, we are in a position to work towards appropriate
solutions to problems of object-relational impedance mismatch.
Future work might explore also the extent to which such a shift
in thinking provides a way to illuminate other issues of
software integration.

The problem of object-relational impedance mismatch
involves a number of stakeholders. Our own future work will
concentrate on identifying a suitable mechanism to engage
those responsible for the design and implementation of an
object-relational application in an effective dialogue about a
problem and its cause.

REFERENCES
[1] M. L. Fussell, "Foundations of Object Relational Mapping," 17th March

2015, 2007; http://www.database-books.us/databasesystems_0003.php.
[2] Hibernate. 17th March 2015; www.hibernate.org.
[3] TopLink. 17th March 2015;

http://www.oracle.com/technetwork/middleware/toplink/overview/inde
x.html.

[4] J. Schwartz and M. Desmond, "Looking to LINQ," 17th March 2015,
2007; http://adtmag.com/articles/2007/04/04/looking-to-linq.aspx.

[5] H. Rittel and M. Webber, “Dilemmas in a General Theory of Planning,”
Policy Sciences, vol. 4, pp. 155-169, 1973.

[6] J. Conklin, Dialogue Mapping - Building Shared Understanding of
Wicked Problems, Chichester, England: Wiley, 2006.

[7] S. W. Ambler, Agile Database Techniques - Effective Strategies for the
Agile Software Developer: Wiley, 2003.

[8] C. Ireland, “Object-Relationla Impedance Mismatch: A Framework
Based Approach,” Mathematics and Computing, Open University,
Milton Keynes, 2011.

[9] F. Marguerie. "Choosing an object-relational mapping tool," 17th
March 2015, 2007;
http://madgeek.com/Articles/ORMapping/EN/mapping.htm.

[10] T. Neward, "Avoiding the Quagmire," 17th March 2015;
http://www.odbms.org/wp-content/uploads/2007/05/031.02-Neward-
Avoiding-the-Quagmire-May-2007.pdf.10

[11] R. Ackoff, "Systems, Messes, and Interactive Planning," Redesigning
the Future, New York: Wiley, 1974.

[12] T. Neward, "The Vietnam of Computer Science," 17th March 2015;
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+
Science.aspx.

[13] G. Copeland, and D. Maier, “Making Smalltalk a database system,”
ACM SIGMOD Record, vol. 14, no. 2, June 1984, pp. 316-325.

[14] C. Ireland, D. Bowers, M. Newton, Waugh, K., "A Classification of
Object-Relational Impedance Mismatch," Proc. of The First
International Conference on Advances in Databases, Knowledge and
Data Applications. March 2009, pp. p36-43.

[15] C. Ireland, D. Bowers, M. Newton, Waugh, K., “Understanding Object-
Relational Mapping: A Framework Based Approach,” International
Journal On Advances in Software, vol. 2, no. 2, 2009, pp. 202-216.

[16] W. Keller, "Mapping Objects to Tables: A Pattern Language," Proc. of
European Conference on Pattern Languages of Programming
Conference (EuroPLoP), 1997

[17] G. L. Sanders, and S. Seungkyoon, “Denormalisation effects in
performance of RDBMS,” in 34th Annual Hawaii International
Conference on System Sciences, Hawaii, January 2001, pp. 9.

[18] F. Lodhi, and M. A. Ghazali, "Design of a simple and effectve object-
to-relational mapping technique," Proc. of ACM Symposium on
Applied Computing, March 2007, pp. 1445-1449.

[19] K. Brown, and B. G. Whitenack. "Crossing Chasms: A Pattern
Language for Object-RDBMS Integration "The Static Patterns"," 30
December 2008; http://www.ksc.com/articles/staticpatterns.htm.

[20] S. Philippi, “Model driven generation and testing of object-relational
mappings,” Systems and Software, vol. 77, 2005, pp. 193-207.

[21] U. Hohenstein, "Bridging the Gap between C++ and Relational
Databases," Proc. of European Conference on Object-Oriented
Programming. 1996, pp. 398-420.

[22] L. Cabibbo, and A. Carosi, “Managing Inheritance Hierarchies in
Object/Relational Mapping Tools,” Lecture Notes in Computer
Science, vol. 3520, 2005, pp. 135-150.

[23] M. Pizzo, “An Application-Oriented Model for Relational Data,” The
Architecture Journal, no. 12, July 2007, pp. 19-25.

[24] L. Cabibbo, and R. Porcelli, "M2ORM2: A Model for the Transparent
Management of Relationally Persistent Objects," Proc. of Database
Programming Languages: 9th International Workshop. 2003, pp. 166 -
178.

[25] C. Russell, “Bridging the Object-Relational Divide,” ACM Queue, vol.
 6, no. 3, 2008, pp. 18-28.
[26] K. Roebuck, Object-Relational Mapping: High-impact Strategies - What

You Need to Know: Emereo Pty Limited, 2011.

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

