
Survey of RDF Storage Managers

Kiyoshi Nitta
Yahoo JAPAN Research

Tokyo, Japan
knitta@yahoo-corp.jp

Iztok Savnik
University of Primorska &

Institute Jozef Stefan, Slovenia
iztok.savnik@upr.si

Abstract—This paper surveys RDF storage manager imple-
mentations that belong to a kind of database system treating
locally stored RDF triples. They are systematically classified in
accordance with the properties of single and multiple process
technologies that include the following types: triple table, index
structure, query, string translation method, join optimization
method, cache, data distribution method, query process distribu-
tion method, stream process, and resource sharing architecture.
This classification is applied to 3store, 4store, Virtuoso, RDF-
3X, Hexastore, Apache Jena, SW-Store, BitMat, AllegroGraph, and
Hadoop/HBase. While the classification structure is presented for
each of them, detecting differences between them has become
easy. The classification revealed that there will be room for further
improvement of the efficient query process by developing multi-
process technologies.

Keywords— databases; RDF databases; distributed database
systems; query processing system; database system implementa-
tion.

I. INTRODUCTION

Resource description framework (RDF) data are widely
used in the Internet and their volume is growing steadily.
The linked open data (LOD) project promotes the acceleration
of the accumulation of RDF data to provide freely accessi-
ble on-line resources [1]. The LOD project leverages RDF’s
advantages by providing a data publishing principle. Each
data element can be distributed to any site of the Internet.
Distributed data are connected by RDF links that are also RDF
data and can be located on arbitrary sites. This strategy lowers
the barrier for publishers to distribute their data freely and
contributes to the accumulation of a huge amount of RDF data.
There are two major approaches to access those RDF data [2],
[3]:

(A-1) Local Cache
(A-2) Federated Search

Systems based on (A-1) gather a subset of RDF data on local
computational resources to accelerate the processing of queries
on frequently referenced data. After accepting user queries,
systems based on (A-2) distribute sub-queries to several search
services distributed over the Internet and integrate replies from
them to obtain updated data that is as fresh as possible.
While most practical access methods may be constructed by
combining these two approaches, technologies used in (A-1)
will play an important role for query process efficiency. This
paper surveys the challenges and solutions for developing RDF
storage managers based on (A-1).

There are three notable survey papers related to RDF
storage managers. The RW’11 tutorial [2] gives the most com-
prehensive survey about scalable RDF processing technologies

including centralized RDF repositories, distributed query pro-
cessing, and scalable reasoning. This tutorial precisely explains
distributed query processing system architectures that include
semantic web search engines, federated systems, and P2P
systems. The SIGMOD’12 tutorial [3] classified approaches
for query processing over linked data into a centralized storage
approach and distributed storage approach [2]. The centralized
storage approach contains triple-stores based on relational
database management systems, matrix, XML, and graph. Sakr
and Al-Naymat [4] classified triple-stores based on relational
database management systems into three categories: a) vertical
(triple) table stores, b) property (n-ary) table stores, and c)
horizontal (binary) table stores. This classification scheme
is also explained in the above tutorials [2], [3]. The core
classification structure introduced in these papers is almost the
same.

Each survey paper provides a classification structure that
classifies research efforts so far by focusing on the distinguish-
ing aspects of researches. These survey papers provide useful
insights and perspectives about component technologies of
RDF storage managers. However, most researches implement
prototype or practical systems that are equipped with combi-
nations of useful technologies. It will be useful for researchers
interested in RDF storage manager implementations to provide
another type of classifications that gives several attributes to
each research system. The contributions of this paper can be
summarized as follows:

• Provides systematic classification of RDF storage
manager implementations.

• Easily detects differences between given RDF storage
manager implementations.

• Pick up attributes concerning effective processes by
multi-process environments.

There are Internet pages that classify RDF storage man-
agers. A Wikipedia page [5] provides the most comprehensive
list of RDF storage managers (triplestores) with license and
API function information. The W3C page [6] provides bench-
mark results of RDF storage managers for storing large-scale
RDF data sets. While this paper provides internal functional
information, those Internet pages may provide a useful per-
spective of RDF storage managers by combining information.

The rest of this paper is organized as follows. The Clas-
sification of RDF Storage Managers Based on Local Cache
Approach section introduces a classification framework of
RDF storage managers. The RDF storage managers section
reports each characteristic of existing RDF storage managers
using the classification framework. The Challenges section

148Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

discusses a few challenges inspired by comparing RDF storage
managers. This paper is concluded in the Conclusion section.

II. CLASSIFICATION OF RDF STORAGE MANAGERS
BASED ON LOCAL CACHE APPROACH

RDF storage managers in the local cache approach
can be classified in accordance with several aspects. RDF
storage managers are represented by RSM(S,M), where
S and M show attributes of single and multiple pro-
cess issues, respectively. Attribute set S has structure
S(Ts, Is, Qs, Ss, Js, Cs, Ds, Fs). Attribute Ts is the triple ta-
ble type. It has one of the values of vertical (v), property (p),
and horizontal (h). These classes of triple tables are introduced
and defined by Sakr et al. [4]. Attribute Is is the index
structure type of triple table. It has one of the values of 6-
independent (6), GSPO-OGPS (G), and matrix (m). Attribute
Qs is the query type. It has one of the values of SPARQL
(S) and original (o). Attribute Ss is the translation method
type of URI and literal strings. It has one or combonation
of the values of URI (U), literal (l), long (o) and none (n).
Values URI and literal mean ID translations of URI and
literal strings, respectively. Value long means that only long
URIs and literals are translated to identifiers. Attribute Js is
the join optimization method type. It has one of the values
of RDBMS-based (R), column-store-based (c), conventional-
ordering (o), pruning (p), and none (n). Attribute Cs is the
cache type. It has one of the values of materialized-path-index
(m), reified-statement (r), and none (n). Attribute Ds is the
dabase engine type. It has one of the values of RDB (R) and
custom (c). Attribute Fs is the inference feature type. It has one
or combination of the values of TBox (T), ABox (A), and no (n).
While value TBox means inference features on the ontology
level, value ABox means ones on the assertion level.

Attribute set M has structure M(Dm, Qm, Sm, Am). At-
tribute Dm is the data distribution method type. It has one of
the values of hash (h), data-source (d), and none (n). Attribute
Qm is the query process distribution method type. It has one of
the values of data-parallel (p), data-replication (r), and none
(n). Attribute Sm is the stream process type. It has one of
the values of pipeline (p) and none (n). Attribute Am is the
resource sharing architecture type. It has one of the values of
memory (m), disk (d), and nothing (n).

Because some implementations do not disclose internal
mechanisms, all attributes can have value unknown (). TABLE
I shows the summary of the classification. The details are de-
scribed in the next section. The values in the table correspond
to the characters in parenthesis of the above description of
possible values.

III. RDF STORAGE MANAGERS

This section provides a detailed description of each RDF
storage manager system. As there are many such systems, we
omitted some systems due to space limitations.

A. 3store

The attributes of this implementation are as follows:
Ts = vertical, Qs = SPARQL, Ss = string id, Js =
RDBMS based, Ds = RDB, Fs = TBox, Dm = none,
Qm = none, Sm = none. 3store [7] was originally used

for semantic web applications in particular for storing the
hyphen.info RDF data set, which describes computer science
research in the UK. The final version of the database consisted
of 5,000 classes and about 20 million triples. 3store was imple-
mented on top of the MySQL database management system.
It included simple inferential capabilities e.g., class, sub-class,
and sub-property queries, that are mainly implemented by
means of MySQL queries. Hashing is used to translate URIs
into an internal form of representation.

The 3store query engine used RDQL query language
originally defined in the framework of the Jena project. RDQL
triple expressions are first translated into relational calculus.
Constraints are added to relational calculus expressions and
translated into SQL. The inference is implemented by a
combination of forward and backward chaining that computes
the consequences of the asserted data.

B. 4store

The attributes of this implementation are as follows:
Ts = vertical, Qs = SPARQL, Ss = string id, Js =
conventional ordering, Ds = RDB, Dm = hash, Qm =
data parallel, Am = nothing. 4store [8] was designed
and implemented to support a range of novel applications
that have emerged from the semantic web. RDF databases
were constructed from web pages including people-centric
information resulting from ontology with billions of RDF
triples. The requirements were to store and manage 15x109

triples. The design of 4store is based on 3store especially in
the way RDF triples are represented.

4store is designed to operate on clusters of low-cost servers,
and is implemented in ANSI C. It was estimated that the
complete index for accessing quads would require around 100
GB of RAM, which was the reason for distributing data to
a cluster of 64-bit multi-core x86 Linux servers with each
cluster storing an RDF data partition. The cluster architecture
is ”shared nothing” architecture. Cluster nodes are divided
into processing and storage nodes. Data segments stored on
different nodes are determined by a simple formula. The
formula uses resource identifiers (RID) that are indexes of
URIs, literals and blank nodes. When triples are distributed
to segments, RID of the triple subject is divided by number of
segments. The remaining part of this calculation determines
segment number of triple. One of the benefits of such a
design is parallel access to RDF triples distributed to nodes
holding segments of RDF data. Furthermore, segments can be
replicated to distribute the total workload to the nodes holding
replicated RDF data. The communication between nodes is
directed by processing the nodes via TCP/IP. There is no
communication between data nodes.

URIs are represented using resource identifiers that are
similarly to those of 3store that were obtained by means of
hashing. Triples are represented as quads. Each quad in a
particular segment is stored in three indexes. Two of them
are implemented using radix tries because of O(k) time com-
plexity. The third index is used to access graphs by using a
hash table.

The 4store query engine is based on relational algebra.
A Rasqal SPARQL parser is used for parsing SPARQL
queries. Queries are processed by SPARQL blocks. First, the

149Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE I. PROPERTIES OF RDF STORAGE MANAGERS

S M
Ts Is Qs Ss Js Cs Ds Fs Dm Qm Sm Am

3store v S U R R T n n n
4store v S U o R h p n

Virtuoso v G S Ulo R R TA n n n
RDF-3X v 6 S Ul o R n n n

Hexastore v 6 o Ul n n n n
Apache Jena p S Ulo R r R n n n

SW-Store h Uo c m c n n n
BitMat v m S Ul p c p

AllegroGraph S c h p m
Hadoop/HBase h c p m

UNION expressions are collapsed. Next, FILTER expressions
are evaluated. Joins are then performed on the remaining
blocks. Finally, any remaining FILTERs, ORDER BYs, and
DISTINCTs are applied. The primary source of optimization
is the conventional join ordering. However, they also use
common subject optimization and cardinality reduction. In
spite of considerable work on query optimization, 4store lacks
complete query optimization as it is provided by relational
query optimizers.

C. Virtuoso

The attributes of this implementation are as follows:
Ts = vertical, Is = GSPO OGPS, Qs = SPARQL,
Ss = string id, Js = RDBMS based, Ds = RDB,
Fs = TBox,ABox, Dm = none, Qm = none, Sm = none.
Virtuoso [9]–[11] is a multi-model database management
system based on relational database technology. Besides the
functionality of the relational database management system, it
also provides RDF data management, XML data management,
content management, and a Web application server.

The approach of Virtuoso is to treat triple-store as a table
composed of four columns. The main idea of the approach
to RDF data management is to exploit existing relational
techniques and add functionality to the RDBMS to deal with
features specific to RDF data. The most important aspects that
were considered by Virtuoso designers are: extending SQL
types with the RDF data type, dealing with unpredictable sizes
of objects, providing efficient indexing and extending relational
statistics to cope with the RDF store based on a single table
as well as efficient storage of RDF data.

The initial solution for storing RDF triples is the use of a
quad table storing attributes: subject (S), predicate (P), object
(O), and graph (G). Columns S, P, and G are represented as
IRI ID. Column O is represented by ID only if it is longer
than 12 characters. The mapping between IRIs and local IDs
is stored in a table, and the mapping between the long values
of O and IDs is stored in a separate table.The quad table is
represented using two covering indexes based on the GSPO
and OGPS attributes. Since S is the last part of OGPS we
can represent it using bitmaps. We have one bitmap for one
distinctive value of OGP. Compression is used on page level,
which still allow random page access.

Virtuoso includes SPARQL into SQL. SPARQL queries
are translated into SQL during parsing. In this way, SPARQL
has all aggregation functions. SPARQL UNION is translated
directly into SQL, and SPARQL OPTIONAL is translated into
left outer join. Since RDF triples are stored in one quad table,
relational statistics is not useful. Virtuoso uses sampling during
query translations to estimate the cost of alternative plans.
Basic RDF inference on TBox is done using query rewriting.
For ABox reasoning Virtuoso expands semantics of owl:same-
as by transitive closure.

D. RDF-3X

The attributes of this implementation are as follows:
Ts = vertical, Is = 6 independent, Qs = SPARQL,
Ss = string id, Js = conventional ordering, Ds = RDB,
Dm = none, Qm = none, Sm = none. The triple-store RDF-
3X reported by Neumann and Weikum [12], [13] built six
independent indexes of SPO, SOP, OSP, OPS, PSO and POS
(S, P, and O represent the subject, predicate, and object of the
RDF triple element, respectively.) from one large triple table.
The indexes are compressed using a byte-wise method that was
carefully chosen to improve query process performance. They
also constructed aggregated indexes for SP, PS, SO, OS, PO,
and OP. They focused on join ordering to optimize the query
process. The optimization uses selectivity statistics calculated
for given queries using selectivity histograms and statistics of
frequently accessed paths. Although it is equipped with a table
to treat long URI strings as simple IDs, it has been pointed
out that its translation performance was very bad [14].

They compared the RDF-3X system with PostgreSQL and
MonetDB. They tried Jena2, Yars2, and Sesame 2.0, but those
systems could not finish storing benchmark data in 24 hours in
their experimental environment. The benchmark data contained
the Barton data set (5.1× 107 triples, 1.9× 107 IDs, and 285
types of properties), YAGO data set (4.0 × 107 triples, 3.3 ×
107 IDs, and 93 types of properties), and LibraryThing data
set (3.6 × 107 triples, 9.3 × 106 IDs, and 3.3 × 105 types of
properties). RDF-3X exceeded other systems by large margins.
The source code is available for non-commercial purposes.

150Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

E. Hexastore

The attributes of this implementation are as fol-
lows: Ts = vertical, Is = 6 independent, Qs =
original(customwrapped), Ss = strings id, Js =
unknown(itseemsnone), Cs = none, Dm = none, Qm =
none, Sm = none. The Hexastore [15] approach to the
RDF storage system uses triples as the basis for storing RDF
data. The problems of existent triple-stores investigated are
the scalability of RDF databases in a distributed environment,
complete implementation of the query processor including
query optimization, persistent indexes, and other topics pro-
vided by database technology.

Six indexes are defined at the top of the table with three
columns, one for each combination of three columns. The
index used for the implementation has three levels ordered
by the particular combination of SPO attributes. Each level
is sorted, giving in this way the means to use ordering for
optimization during query evaluation. The proposed index
provides natural representation of multi-valued properties and
allows fast implementation of merge-join, intersection, and
union.

F. Apache Jena

The attributes of this implementation are as follows:
Ts = property, Qs = SPARQL, Ss = string id, Js =
RDBMS based, Cs = reified statement, Ds = RDB,
Dm = none, Qm = none, Sm = none. In terms of the
body of knowledge grown from the database community, Jena
is a database programming language environment based on
RDF for Java [16], [17], [18], [19]. It provides a simple
abstraction and interface for manipulation of RDF graphs
represented in main memory and backed by the database
engine. The persistence of RDF graphs is achieved using a
SQL database through a JDBC connection. Jena supports a
number of database systems such as MySQL, Postgres, Oracle,
and BerkeleyDB. At the core interface for manipulation of
RDF graphs, Jena includes a range of RDF parsers, query
language, and I/O modules for N3, N-Triple, and XML/RDF.

RDF statements are in a database-back-end of Jena repre-
sented using three tables. The URIs of resources are converted
to indexes represented in one table. Larger literals are repre-
sented in another table while small literals are stored directly
in a statement table. Finally, triples are stored in statement
tables using indexes for resources and larger objects. Jena uses
additional optimizations for fast access to common statements
of a graph and reified statements. Furthermore, graphs can be
stored in different sets of tables to improve the speed of query
processing.

In Jena, persistence is achieved through persistent logical
graphs composed of specialized graphs optimized for storing
particular types of graphs. The database driver realizes access
to databases abstracted away from particular database systems,
each of which has their particular driver.

On a database level Jena includes three types of operations:
operation ‘add’ that inserts new triples in a database, operation
‘delete’ that removes RDF statements from a database, and
operation ‘find’ that retrieves RDF statements from a database.
Query language RDQL converts SPARQL statements into a

set of find patterns including variables that can be executed as
joins. While Jena1 includes a query processing engine that
does not include query optimization in a database system
sense, Jena2 passes on queries to the database engine. Query
optimization thus takes place in a database engine. Finally,
Jena2 includes mechanisms for efficient retrieval of reified
statements.

G. SW-Store

The attributes of this implementation are as follows: Ts =
horizontal, Ss = string id, Js = column store based,
Cs = materialized path index, Ds = custom, Dm =
none, Qm = none, Sm = none. Abadi proposes the use of
vertical partitioning for the representation of RDF databases
[20]. The advantages of using column-stores for storing RDF
are: efficient representation of NULL values; efficient imple-
mentation of multi-valued attributes; support for heterogeneous
records; efficient merge-joins of sorted columns; and reduced
number of unions in queries. To achieve fast access to selected
access paths, they are materialized.

Database management system SW-Store [21] is based on
vertical partitioning of RDF data. It has been shown that
storage system based on columns can significantly improve
some types of queries on RDF databases. Column-oriented
storage system in SW-Store is improved by using column-
oriented compression; optimization for fixed length tuples;
optimization of merge-join code; using column oriented query
optimization; and by materialized path expressions. Empirical
results support the proposed use of column-oriented store in
comparison to triple-store representation and property table
representation of RDF database.

While above presented novel features of column-oriented
data stores are important, it seems that the most important
contribution of SW-Store is to show the possibility to use
simple tools like sorting and map-based indexes on large-scale
distributed clusters of servers. The simplicity of tools, on one
hand, and the possibility of using database technologies like
query optimization on column-stores, on the other, can result
in very efficient query execution.

H. BitMat

The attributes of this implementation are as follows: Ts =
vertical, Is = matrix, Qs = SPARQL, Ss = string id,
Js = pruning, Ds = custom, Sm = pipeline. The triple-
store reported by Atre et al. [14] used a three dimensional
compressed matrix index named BitMat. It avoids maintaining
materialized triples as much as possible. Its query processing
algorithm of SPARQL joins consists of two phases. The first
phase performs efficient pruning of the triples. The second
phase performs variable binding matching across the triple pat-
terns to obtain the final results. Both two steps use compressed
BitMats without any join table construction.

The BitMat index triple-store performed better than RDF-
3X [12] for some queries that require managing large number
of triples during join processes. They classified triple-pattern
join queries to three types: a) highly selective triple patterns,
b) triple patterns with low-selectivity but which generate few
results, and c) low-selectivity triple patterns and low-selectivity
join results. The BitMat system performed well processing
type b) queries.

151Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

I. AllegroGraph

The attributes of this implementation are as follows:
Qs = SPARQL, Ds = custom, Dm = hash, Qm =
data parallel, Am = memory. AllegroGraph [22] is a
triple store built on an object store AllegroCache. They are
proprietary products of Franz Inc. The precise architecture
of AllegroGraph has not been fully disclosed. The strongest
point is its capacity limit and processing speed. A clustered
version of AllegroGraph stored 1 trillion triples in about 14
days [23]. In the scalability ranking of triple stores edited by
W3C [6], AllegroGraph is ranked first as of August 2011. Its
benchmark experiments were performed using PC servers that
have huge memories (from 48GB to 1TB). AllegroGraph does
not necessarily perform materialization to process queries. We
could not find enough information about how the clustered
version distributes data and optimizes query processes.

J. Hadoop/HBase

The attributes of this implementation are as follows: Ts =
horizontal, Ds = custom, Qm = data parallel, Am =
memory. Hadoop [24] offers software environment for the
implementation of large-scale distributed systems processing
data on clusters of servers. It was initially designed to support
fast distributed processing of very large HTML graphs. Hadoop
allows for the implementation of data centers comprised of up
to many 1000 servers.

The basis of Hadoop includes a set of interfaces to dis-
tributed file system, general I/O operations, RPC, serialization,
and persistent data structures. A distributed file system HDFS
runs on large clusters of commodity machines. MapReduce
model allows for efficient manipulation of sequential data files
(SequenceFile) in distributed cluster of servers. Dictionary data
structure for indexing records based on keys (MapFile) is used
to support efficient implementation of operation map.

Sorted sequence files and map indexes provide program-
ming environment for the implementation database operations
such as selection, projection and joins. Hadoop includes data-
flow programming language Pig, which can realize some forms
of classical database operations. However, sorted files and
map-based index (dictionary) provide limited basis for the
implementation of database structures and operations. For
instance, merge joins can be implemented efficiently while
index-based joins and range queries can not be implemented
without extending the functionality of Hadoop.

HBase [25] is column-oriented database system imple-
mented on top of Hadoop. It was initially based on ideas
of Google’s Bigtable [26]: database comprises a large set of
columns describing HTML files that represent rows of the
table. HBase is designed for horizontal distribution of tables
into regions that are managed by one server. Map-reduce
techniques can be employed to process table rows. Abadi has
shown in [20] that RDF can be efficiently stored by means of
column-oriented stores.

IV. CHALLENGES

While an accompany paper provides a comprehensive list
of challenges on RDF storage managers, this section discusses
a few challenges inspired by viewing TABLE I.

Listed RDF repositories recorded more varied values with
S attributes than with M attributes in TABLE I. Most M
attributes have none or unknown values. This means that re-
searches so far have succeeded in achieving good performances
by developing single process technologies. While practical
semantic web applications tend to process large-scale data sets,
solutions based on data distribution parallelism have become
more popular. There will be room for further improvement
of efficient query processes by developing multi process tech-
nologies considering the situation.

Caching techniques have not been researched that much.
Only Apache Jena and SW-Store reported confirming the
efficiency of caching techniques. Those performances depend
upon types of queries and the number of different queries.
Technologies for automatic investigation and classification of
processing queries might become important to utilize caching
technologies.

Many researches have been carried out for developing
efficient join algorithms with index structures. This area has a
long history in the research of database management systems
[27]. While the accumulated RDF data-set is rapidly growing
and SPARQL queries are basically constructed from joins of
triple patterns, join operations will be applied more strongly
in semantic web applications. The multi-process technologies
mentioned above might produce breakthroughs of efficient join
operations.

Because the standard data access method for the RDF
data-set is W3C’s recommendation SPARQL, most RDF stor-
age managers can accept SPARQL queries. The semantics
of SPARQL is clearly described using RDF algebra [28],
[29], [30]. SPARQL-based RDF storage managers rarely cause
semantic mismatch due to the existence of proposed RDF
algebras. These papers also reveal that some kinds of SPARQL
expressions require huge computational cost. Most of these
expressions are constructed by using the OPTIONAL operator.
While this operator was introduced to make the query language
convenient enough, efficient processing of such queries will be
one of the most crucial challenges of RDF storage managers.

V. CONCLUSION

This paper surveyed the RDF storage manager implemen-
tations based on the local cache approach by introducing the
systematic classification structure RSM(S,M). This clas-
sification was applied to 3store, 4store, Virtuoso, RDF-3X,
Hexastore, Apache Jena, SW-Store, BitMat, AllegroGraph, and
Hadoop/HBase. The RSM structure was presented for each of
them, so detecting the differences between them became easy.
By having the M part in RSM structure, the classification
revealed that there will be room for further improvement
of the efficient query process by developing multi process
technologies.

VI. ACKOWLEDGEMENT

This work was supported by the Slovenian Research
Agency and the ICT Programme of the EC under PlanetData
(ICT-NoE-257641).

152Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

REFERENCES

[1] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story so far,”
Int. J. Semantic Web Inf. Syst., vol. 5, no. 3, pp. 1–22, 2009.

[2] K. Hose, R. Schenkel, M. Theobald, and G. Weikum, “Database
foundations for scalable rdf processing,” in Proceedings of
the 7th international conference on Reasoning web: semantic
technologies for the web of data, ser. RW’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 202–249. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2033313.2033317

[3] A. Harth, K. Hose, and R. Schenkel, “Database techniques for
linked data management,” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’12.
New York, NY, USA: ACM, 2012, pp. 597–600. [Online]. Available:
http://doi.acm.org/10.1145/2213836.2213909

[4] S. Sakr and G. Al-Naymat, “Relational processing of rdf queries: a
survey,” SIGMOD Rec., vol. 38, no. 4, pp. 23–28, Jun. 2010. [Online].
Available: http://doi.acm.org/10.1145/1815948.1815953

[5] “Triplestore,” http://en.wikipedia.org/wiki/Triplestore, 2013, [retrieved
Dec. 2013].

[6] “Largetriplestores,” http://www.w3.org/wiki/LargeTripleStores, 2011,
[retrieved Dec. 2013].

[7] S. Harris and N. Gibbins, “3store: Efficient bulk rdf storage,” in 1st
International Workshop on Practical and Scalable Semantic Systems
(PSSS’03), 2003, pp. 1–15, event Dates: 2003-10-20. [Online].
Available: http://eprints.soton.ac.uk/258231/

[8] S. Harris, N. Lamb, and N. Shadbolt, “4store: The design and im-
plementation of a clustered rdf store,” in Proceedings of the The 5th
International Workshop on Scalable Semantic Web Knowledge Base
Systems, 2009.

[9] O. Erling and I. Mikhailov, “Rdf support in the virtuoso dbms,” in
CSSW, 2007, pp. 59–68.

[10] ——, “Rdf support in the virtuoso dbms,” in Networked Knowledge -
Networked Media, ser. Studies in Computational Intelligence, vol. 221,
2009, pp. 7–24.

[11] OpenLink Virtuoso Universal Server: Documentation, OpenLink Soft-
ware Documentation Team, 2009.

[12] T. Neumann and G. Weikum, “Rdf-3x: a risc-style engine for rdf,”
Proc. VLDB Endow., vol. 1, no. 1, pp. 647–659, Aug. 2008. [Online].
Available: http://dl.acm.org/citation.cfm?id=1453856.1453927

[13] ——, “The rdf-3x engine for scalable management of rdf data,” The
VLDB Journal, vol. 19, no. 1, pp. 91–113, Feb. 2010. [Online].
Available: http://dx.doi.org/10.1007/s00778-009-0165-y

[14] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler, “Matrix ”bit”
loaded: a scalable lightweight join query processor for rdf data,” in
Proceedings of the 19th international conference on World wide web,
ser. WWW ’10. New York, NY, USA: ACM, 2010, pp. 41–50.
[Online]. Available: http://doi.acm.org/10.1145/1772690.1772696

[15] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: sextuple
indexing for semantic web data management,” Proc. VLDB Endow.,
vol. 1, no. 1, pp. 1008–1019, Aug. 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1453856.1453965

[16] K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds, “Efficient rdf
storage and retrieval in jena2,” Enterprise Systems and Data Manage-
ment Laboratory, HP Laboratories Palo Alto, Tech. Rep. HPL-2003-266,
2003.

[17] B. McBride, “Jena: A semantic web toolkit,” IEEE Internet
Computing, vol. 6, no. 6, pp. 55–59, Nov. 2002. [Online]. Available:
http://dx.doi.org/10.1109/MIC.2002.1067737

[18] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne,
and K. Wilkinson, “Jena: implementing the semantic web
recommendations,” in Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, ser.
WWW Alt. ’04. New York, NY, USA: ACM, 2004, pp. 74–83.
[Online]. Available: http://doi.acm.org/10.1145/1013367.1013381

[19] A. Owens, A. Seaborne, N. Gibbins, and mc schraefel, “Clustered tdb:
A clustered triple store for jena,” in WWW2009, November 2009.
[Online]. Available: http://eprints.soton.ac.uk/266974/

[20] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach,
“Scalable semantic web data management using vertical partitioning,”
in Proceedings of the 33rd international conference on Very large
data bases, ser. VLDB ’07. VLDB Endowment, 2007, pp. 411–422.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1325851.1325900

[21] ——, “Sw-store: a vertically partitioned dbms for semantic web data
management,” The VLDB Journal, vol. 18, no. 2, pp. 385–406, Apr.
2009. [Online]. Available: http://dx.doi.org/10.1007/s00778-008-0125-y

[22] AllegroGraph 4.11 Introduction, Franz Inc., 2013.
[23] “Franz’ s allegrograph(r) sets new record on intel(r) xeon(r)

e7 platform,” http://www.franz.com/about/press room/Franz-Intel 6-7-
11.lhtml, 2011, [retrieved Dec. 2013].

[24] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.
[25] L. George, HBase: The Definitive Guide. O’Reilly Media, Inc., 2011.
[26] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
a distributed storage system for structured data,” in Proceedings
of the 7th USENIX Symposium on Operating Systems Design
and Implementation - Volume 7, ser. OSDI ’06. Berkeley, CA,
USA: USENIX Association, 2006, pp. 15–15. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267308.1267323

[27] R. Ramakrishnan and J. Gehrke, Database Management Systems,
3rd ed. New York, NY, USA: McGraw-Hill, Inc., 2003.

[28] R. Angles and C. Gutierrez, “The expressive power of sparql,” in
Proceedings of the 7th International Conference on The Semantic
Web, ser. ISWC ’08. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 114–129. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-
88564-1 8

[29] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of
sparql,” ACM Trans. Database Syst., vol. 34, no. 3, pp. 16:1–16:45, Sep.
2009. [Online]. Available: http://doi.acm.org/10.1145/1567274.1567278

[30] M. Schmidt, M. Meier, and G. Lausen, “Foundations of sparql query
optimization,” in Proceedings of the 13th International Conference on
Database Theory, ser. ICDT ’10. New York, NY, USA: ACM, 2010, pp.
4–33. [Online]. Available: http://doi.acm.org/10.1145/1804669.1804675

153Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

