
Parallel In-Memory Distance Threshold Queries on Trajectory Databases

Michael Gowanlock
Department of Information and Computer Sciences and

NASA Astrobiology Institute
University of Hawai‘i, Honolulu, HI, U.S.A.

Email: gowanloc@hawaii.edu

Henri Casanova and David Schanzenbach
Department of Information and Computer Sciences

University of Hawai‘i, Honolulu, HI, U.S.A.
Email: henric@hawaii.edu, davidls@hawaii.edu

Abstract—Spatiotemporal databases are utilized in many applica-
tions to store the trajectories of moving objects. In this context,
we focus on in-memory distance threshold queries that return
all trajectories found within a distance d of a fixed or moving
object over a time interval. We present performance results for a
sequential query processing algorithm that uses an in-memory R-
tree index, and we find that decreasing index resolution improves
query response time. We then develop a simple multithreaded
implementation and find that high parallel efficiency (78%-90%)
can be achieved in a shared memory environment for a set
of queries on a real-world dataset. Finally, we show that a
GPGPU approach can achieve a speedup over 3.3 when compared
to the multithreaded implementation. This speedup is obtained
by abandoning the use of an index-tree altogether. This is an
interesting result since index-trees have been the cornerstone of
efficiently processing spatiotemporal queries.

Keywords-spatiotemporal databases; query parallelization.

I. INTRODUCTION

Many applications require analyzing moving object tra-
jectories (e.g., users with Global Positioning System devices,
animals in ecological studies, stellar bodies in astrophysical
simulations). Two relevant queries over moving object trajec-
tories, which we term distance threshold queries, are: (i) Find
all trajectories within a distance d of a given fixed point over
a time interval [t0, t1]; and (ii) Find all trajectories within a
distance d of a given trajectory over a time interval [t0, t1].

For instance, consider an astrobiology application that
studies the habitability of the Milky Way [1]. The Milky
Way is expected to host many rocky low-mass planets, some
of which may be able to support complex life. The dangers
to complex life include transient radiation events, such as
supernovae, or close encounters with flyby stars. To model
habitability one must quantify these events, which can be
formulated as distance threshold queries: (i) Find all stars
within a distance d of a supernova explosion, modeled as a
fixed point, over a short time interval t; and (ii) Find the stars,
and corresponding time periods, that host a habitable planet
and are within a distance d of a moving star, s, over the star’s
lifetime ts. Given that a dataset of the Milky Way may contain
billions of stellar trajectories, distance threshold queries must
be performed efficiently.

Our objective is to design efficient distance threshold query
processing algorithms, and we make the following contribu-
tions:

1) We propose a sequential algorithm that relies on an
efficient trajectory indexing strategy.

2) We investigate parallelization in a multi-proc/multi-core
environment and a General-Purpose computing on Graph-
ics Processing Units (GPGPU) environment. The con-
trasting architectures require different algorithms and data
structures to achieve good performance.

3) We outline performance bottlenecks and suggest methods
for their resolution in a distributed memory environment.

II. RELATED WORK

A trajectory is a set of points traversed by an object over
time. Linear interpolation is used when processing queries that
fall in between the points (i.e., one assumes that the points are
connected by line segments). Most works on moving object
databases propose sequential query processing algorithms that
utilize an R-tree index [2] or variations of it (e.g., TB-trees [3],
STR-trees [3], 3DR-trees [4], and SETI [5]). The R-tree
indexes spatiotemporal data using hyperrectangular minimum
bounding boxes (MBBs), where each line segment belonging
to a trajectory is stored in one MBB at a leaf node. The non-
leaf nodes contain the dimensions of the MBB that contains
all MBBs in its sub-tree. Given a query MBB, an index search
returns all leaf node MBBs that overlap the query MBB.

Except in [6], distance threshold queries have received little
attention. The most related queries are k Nearest Neighbors
(kNN) queries [7], [8], [9], [10]. In some sense a distance
threshold query is a kNN query with an unknown value of k,
since there is no a-priori limit to the number of query matches.
Therefore, kNN query processing algorithms cannot be applied
to process distance threshold queries.

III. SEQUENTIAL IMPLEMENTATION

In this section we evaluate a sequential implementation
of the TRAJDISTSEARCH distance threshold query processing
algorithm that we proposed in [11]. Given a query trajectory
line segment over a temporal extent, a query MBB is computed
based on the query threshold distance. TRAJDISTSEARCH then
searches a trajectory index for MBBs that overlap the query
MBB. TRAJDISTSEARCH is implemented in C++, re-using an
R-tree index implementation based on that initially developed
by A. Guttman [2] with source code available at [12].

80Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications



We run TRAJDISTSEARCH on one core of a dedicated 3.46
Ghz Intel Xeon W3690 processor with 12 MB L3 cache and
sufficient memory to store the entire index. We average query
response time over 3 trials. The variation among the trials
is negligible so that error bars in our results are not visible.
We ignore the overhead of loading the R-tree from disk into
memory, which can be done once before all query processing.
We measure the response time of TRAJDISTSEARCH for the
following datasets and queries, which are available at [13]:

• S1: A 4-D (3 spatial + 1 temporal) dataset, Galaxy,
containing star trajectories (for the application described
in Section I), with 1,000,000 trajectory segments cor-
responding to 2,500 trajectories of 400 timesteps each.
The query consists of 100 trajectories for 100% of their
temporal extent, with a variable query distance d.

• S2: Three 4-D synthetic datasets, Random, with trajecto-
ries generated via random walks, with ∼1,000,000 (1M),
∼3,000,000 (3M) and ∼5,000,000 (5M) line segments
corresponding to 2500, 7500 and 12500 trajectories,
respectively. The query consists of 100 trajectories for
100% of their temporal extent, with a fixed query dis-
tance, d = 15.

One indexing approach is to assign each trajectory segment
to its own MBB, minimizing index overlap, but maximizing the
number of entries in the index. By assigning multiple trajectory
segments to an MBB, index traversal time is decreased as
the index contains fewer entries. However, a larger number
of candidate segments is returned, many of which may not
overlap the query MBB, leading to higher segment processing
times. To explore the effect of varying the index resolution, for
each trajectory we place its first (temporally) r segments in an
MBB, its next r segments in another MBB, and so on. r = 1
corresponds to using a single MBB per trajectory segment.
Figure 1 plots response time vs. r for S1 and S2. A small r
value can lead to high response times. In Figure 1 (a) with
a value of r = 12, the response time with d = 5 is 31.6 s
in comparison to 186.5 s for r = 1, or a factor of 5.9 faster.
Grouping multiple line segments into MBBs in this manner
ensures that line segments of a trajectory are temporally
contiguous. We also attempted to split trajectories so as to
minimize MBB volumes using the MergeSplit algorithm [14],
but saw no performance improvement (see full details in [11]).

IV. SHARED-MEMORY PARALLEL IMPLEMENTATION

A. Multi-core OpenMP

TRAJDISTSEARCH can be easily parallelized using
OpenMP in a shared-memory setting because iterations of
its outer loop are independent. Figure 2 shows the response
time on the 6-core platform described in the previous section
vs. the number of threads for S1 and S2 with r = 12 and
r = 10, respectively (i.e., the “best” r values for the sequential
implementation). We see high parallel efficiency (78%-90%),
with parallel speedup between 4.69 and 5.44 with 6 threads
for query distances ranging from d = 1 to d = 5.

B. GPGPU with OpenCL

In TRAJDISTSEARCH, the R-tree is used to reduce the
number of line segments that must be processed. Unfortu-
nately, the index-tree traversal is memory-bound with non-

 0

 50

 100

 150

 200

 2  10  18  26

T
im

e
 (

s
)

Segments/MBB

Distance: 1
Distance: 2
Distance: 3
Distance: 4
Distance: 5

(a) Galaxy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  10  18  26  34  42  50  58

T
im

e
 (

s
)

Segments/MBB

1M
3M
5M

(b) Random datasets

Figure 1. Response time vs. the r for (a) S1 for the Galaxy dataset for
various query distances; and (b) S2 for the Random-1M, 3M, and 5M

datasets and a query distance of 15.

deterministic execution paths due to branches, making efficient
execution on a GPU challenging. As a result, we completely
forego the use of the index-tree entirely so as to exploit
the massive parallelism of the GPU. In the GPU version of
TRAJDISTSEARCH, all line segments of each trajectory in
the dataset are stored in the GPU’s global memory once and
for all before all query processing. These line segments are
sorted temporally based on their start times (line segments of
a trajectory may not be stored contiguously). On the host, for a
specified number of bins, B, we bin these line segments, where
each bin is defined by a range of start times and consists of
the indices of the first and last segments in the bin.

1) Constant Sized Query Batches: We develop a GPU
kernel that processes a set Q of N query line segments, initially
stored on the host. The host first sorts the line segments in Q by
their start times, and determines the relevant contiguous bins
that contain entry line segments that may overlap temporally
with at least one query line segment. Let E denote the entry
line segment index range corresponding to this set of bins.
Larger values of B (i.e., smaller bins) mean a more expensive
computation for E but a more precise value for E (i.e., a
smaller range). Our GPU kernel takes as input E and Q, where
each GPU thread is responsible for one line segment in E, and
computes whether any of the segments in Q are within distance
d of that line segment. This brute-force search returns relevant
time intervals annotated with the IDs of the trajectories that are
within the query distance. This kernel can be invoked multiple
times to overlap communication and computation.

81Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications



 0

 5

 10

 15

 20

 25

 30

 35

 40

 1  2  3  4  5  6
 1

 2

 3

 4

 5

 6

 7

 8

T
im

e
 (

s
)

S
p

e
e

d
u

p

Threads

Distance: 1
Speedup Distance: 1

Distance: 3
Speedup Distance: 3

Distance: 5
Speedup Distance: 5

(a) Galaxy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1  2  3  4  5  6
 1

 2

 3

 4

 5

 6

 7

 8

T
im

e
 (

s
)

S
p

e
e

d
u

p

Threads

1M
Speedup 1M

3M
Speedup 3M

5M
Speedup 5M

(b) Random datasets

Figure 2. Response time vs. number of threads (a) S1 for the Galaxy
dataset for various query distances and r = 12; and (b) S2 for the

Random-1M, 3M, and 5M datasets, with a query distance of 15 and r = 10.

We implemented the above kernel in OpenCL and executed
it on the platform described in Section III equipped with an
Nvidia Tesla C2075 GPU device. Figure 3 (a) plots response
time vs. B for dataset/query S1 and for a query distance
d = 5, and for various values of N . For the results in this
figure we only consider one workqueue with a single kernel
(1 CPU thread), so that there is no overlap of computation
and communication. We find that a value of N = 125 leads
to the best performance, independently of the number of bins.
We also see that too small a number of bins leads to high
response time because the index range E is unnecessarily large.
The response time plateaus around B = 5000. Figure 3 (b)
shows similar results but with 3 workqueues each running an
instance of the kernel, thus allowing overlap of computation
and communication (using more workqueues leads to no
further improvements in our experiments). We see the same
trends in terms of the number of bins B. Using N = 100
or N = 125 leads to the lowest response time overall. The
performance gain due to overlap is significant. For instance,
with B = 5000 and N = 125, the response time in Figure 3(a)
is 2.75s while that in Figure 3(b) is 2.07s, or 24.7% faster.

In comparison to the initial sequential implementation, still
for dataset/query S1, using r = 1 (Figure 1 (a)) for d = 5, the
GPU implementation using a single kernel (Figure 3 (a)) gives
a speedup of over 67. Considering the best value of r = 12 for
S1, and the multithreaded CPU implementation with 6 threads,
we obtain a speedup using the GPU of over 2.5 with a single
kernel, and a speedup of over 3.3 when using 3 workqueues.

 2

 2.5

 3

 3.5

 4

 500  2000  3500  5000  6500  8000  9500

T
im

e
 (

s
)

Number of Bins (B)

50 Queries
75 Queries

100 Queries
125 Queries
150 Queries
175 Queries
200 Queries

(a)

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 500  2000  3500  5000  6500  8000  9500
T

im
e

 (
s
)

Number of Bins (B)

50 Queries
75 Queries

100 Queries
125 Queries
150 Queries
175 Queries
200 Queries

(b)

Figure 3. Response time vs. B for S1 with various N values and d = 5; (a)
1 work queue and kernel instance; (b) 3 work queues and kernel instances.

2) Variable Sized Query Batches: One drawback of con-
stant sized query batches is that, due to temporal properties of
the dataset, the batch may temporally overlap with a large entry
index range E but each individual query may overlap only a
small subset of E, thus leading to wasteful computations. We
propose here an approach that uses variable sized batches to
reduce the number of these wasteful calculations. We group
queries according to their temporal properties by sorting them
temporally, as in the previous approach, but then binning them
in the same manner as the entries described in Section IV-B.
More precisely, each query line segment is assigned to one of
C query bins. Each of the C bins is mapped onto the indices
of the B entry bins for which the C bins overlap temporally.
We construct query batches as contiguous sets of S query bins
(batches contain different numbers of queries), which are sent
to the GPU for each kernel invocation.

Figure 4 (a) plots response time vs. S for dataset/query
S1 with d = 5. To compare with Figure 3 (a), we have
plotted the average number of queries per kernel execution
in Figure 4 (b). We observe that this approach performs
slightly worse than the constant sized query batch approach
(Figure 3 (a)). We attribute this to two factors: (i) the additional
overhead required to construct the C query bins, and (ii) the
fact that this particular dataset has roughly the same number
of active trajectory segments at any given time. Elaborating
on (ii), if the dataset contained short punctuated time periods
where there are many relevant trajectories, and other periods
with few relevant trajectories, then the variable sized query

82Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications



 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

T
im

e
 (

s
)

Query Bin Chunk Size (S)

1500 Query Bins
2000 Query Bins
2500 Query Bins
3000 Query Bins
3500 Query Bins
4000 Query Bins
4500 Query Bins

(a)

 0

 200

 400

 600

 800

 1000

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

A
v
e

ra
g

e
 N

u
m

b
e

r 
o

f 
Q

u
e

ri
e

s

Query Bin Chunk Size (S)

1500 Query Bins
2000 Query Bins
2500 Query Bins
3000 Query Bins
3500 Query Bins
4000 Query Bins
4500 Query Bins

(b)

Figure 4. (a) Response time vs. S for S1 with various C values, d = 5,
B = 7500, with 1 work queue and kernel instance; (b) the average number

of queries per kernel execution vs. S for the results in the upper panel.

batch approach would likely outperform the constant sized
query batch approach, since on average each kernel instance
would be given a smaller E range. One such application would
be the trajectories of vehicles, where the number of active
trajectories at a given time, unlike in the case of stars in the
galaxy, is influenced by human activities, such as rush hour,
daytime, nighttime, etc.

V. DISCUSSION AND CONCLUSIONS

This work in progress studies in-memory distance threshold
queries for moving object trajectory databases. For a sequential
implementation, a natural and effective approach is to use
an index tree and to group multiple trajectory line segments
into MBBs. We have shown that the resulting algorithm can
be parallelized efficiently on a multi-core platform. A future
work direction is to consider distributed memory environments
with multiple multi-core nodes. The global index could be
partitioned across the nodes, with however a high risk of load
imbalance that would lead to deeper tree traversals for some of
the nodes. In this context, it would be interesting to study the
impact of index resolution on load balancing, possibly leading
to a solution that uses different index resolutions on different
nodes.

We have shown that GPGPU can lead to efficient distance
threshold query processing provided queries are processed in
batches of appropriate size and the use of the R-tree index is
abandoned. For the queries/datasets used in our experimental

evaluation we have found that the GPU can provide a speedup
of over 3.3 when compared to a multi-threaded R-tree based
implementation that uses 6 cores. An important result is that
our brute-force GPGPU approach outperforms the traditional
search-and-refine strategy that uses the popular R-tree index.
Future work in this direction may investigate the use of a
GPU implementation of the R-tree [15], and possibly using
hybrid approaches for splitting up the execution of the query
processing algorithm between the host and the GPU device.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Aeronautics and Space Administration through the
NASA Astrobiology Institute under Cooperative Agreement
No. NNA08DA77A issued through the Office of Space Sci-
ence.

REFERENCES

[1] M. G. Gowanlock, D. R. Patton, and S. M. McConnell, “A Model
of Habitability Within the Milky Way Galaxy,” Astrobiology, vol. 11,
2011, pp. 855–873.

[2] A. Guttman, “R-trees: a dynamic index structure for spatial searching,”
in Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 1984,
pp. 47–57.

[3] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel Approaches in
Query Proc. for Moving Object Trajectories,” in Proc. of the 26th Intl.
Conf. on Very Large Data Bases, 2000, pp. 395–406.

[4] Y. Theodoridis, M. Vazirgiannis, and T. Sellis, “Spatio-Temporal Index-
ing for Large Multimedia Applications,” in Proc. of the Intl. Conf. on
Multimedia Computing and Systems, 1996, pp. 441–448.

[5] V. P. Chakka, A. Everspaugh, and J. M. Patel, “Indexing large trajectory
data sets with seti,” in Proc. of the Conf. on Innovative Data Sys.
Research, 2003, pp. 164–175.

[6] S. Arumugam and C. Jermaine, “Closest-point-of-approach join for
moving object histories,” in Proc. of the 22nd Intl. Conf. on Data
Engineering, 2006, pp. 86–95.

[7] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Nearest
neighbor search on moving object trajectories,” in Proc. of the 9th Intl.
Conf. on Advances in Spatial and Temporal Databases, 2005, pp. 328–
345.

[8] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Algorithms
for Nearest Neighbor Search on Moving Object Trajectories,” Geoin-
formatica, vol. 11, no. 2, 2007, pp. 159–193.

[9] Y.-J. Gao, C. Li, G.-C. Chen, L. Chen, X.-T. Jiang, and C. Chen,
“Efficient k-nearest-neighbor search algorthims for historical moving
object trajectories,” J. Comput. Sci. Technol., vol. 22, no. 2, 2007, pp.
232–244.

[10] R. H. Güting, T. Behr, and J. Xu, “Efficient k-nearest neighbor search
on moving object trajectories,” The VLDB Journal, vol. 19, no. 5, 2010,
pp. 687–714.

[11] M. Gowanlock and H. Casanova, “In-Memory Distance Threshold
Queries on Moving Object Trajectories,” in Proc. of the Sixth Intl. Conf.
on Advances in Databases, Knowledge, and Data Applications, 2014.

[12] http://www.superliminal.com/sources/sources.htm, accessed 5-
February-2014.

[13] http://navet.ics.hawaii.edu/%7Emike/datasets/DBKDA2014/datasets.zip,
accessed 12-February-2014.

[14] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos,
“Efficient indexing of spatiotemporal objects,” in Proceedings of the 8th
International Conference on Extending Database Technology: Advances
in Database Technology, 2002, pp. 251–268.

[15] L. Luo, M. D. F. Wong, and L. Leong, “Parallel implementation of
R-trees on the GPU,” in ASP-DAC, 2012, pp. 353–358.

83Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications


