
In-Memory Distance Threshold Queries on Moving Object Trajectories

Michael Gowanlock
Department of Information and Computer Sciences and

NASA Astrobiology Institute
University of Hawai‘i, Honolulu, HI, U.S.A.

Email: gowanloc@hawaii.edu

Henri Casanova
Department of Information and Computer Sciences

University of Hawai‘i, Honolulu, HI, U.S.A.
Email: henric@hawaii.edu

Abstract—The need to query spatiotemporal databases that
store trajectories of moving objects arises in a broad range
of application domains. In this work, we focus on in-memory
distance threshold queries which return all moving objects that
are found within a given distance d of a fixed or moving
object over a time interval. We propose algorithms to solve
such queries efficiently, using an R-tree index to store trajectory
data and two methods for filtering out trajectory segments so as
to reduce segment processing time. We evaluate our algorithms
on both real-world and synthetic in-memory trajectory datasets.
Choosing an efficient trajectory splitting strategy to reduce index
resolution increases the efficiency of distance threshold queries.
Interestingly, the traditional notion of considering good trajectory
splits by minimizing the volume of MBBs so as to reduce index
overlap is not well-suited to improve the performance of in-
memory distance threshold queries.

Keywords-spatiotemporal databases; query optimization.

I. INTRODUCTION

Moving object databases (MODs) have gained attention as
applications in several domains analyze trajectories of mov-
ing objects (animals, vehicles, humans, stellar bodies, etc.).
Contributing to the motivation for MOD research is the pro-
liferation of mobile devices that provide location information
(e.g., GPS tracking). We focus on MODs that store historical
trajectories [1], [2], [3], [4], such as the movement patterns
of animals over a given period of observation, and that must
support queries over subsets, or perhaps the full set, of the
trajectory histories. In particular, we focus on two types of
distance threshold queries:

1) Find all trajectories within a distance d of a given
static point over a time interval [t0, t1].

2) Find all trajectories within a distance d of a given
trajectory over a time interval [t0, t1].

An example query of the first type would be to find all animals
within a distance d of a water source within a day. An example
query of the second type would be to find all police vehicles on
patrol within a distance d of a moving stolen vehicle during an
afternoon. We investigate efficient distance threshold querying
on MODs, making the following contributions:

• We propose algorithms to solve the two types of in-
memory distance threshold queries above.

• We make the case for using an R-tree index for storing
trajectory line segments.

• Given a set of candidate line segments returned from
the R-tree, we propose methods to filter out line
segments that are not part of the query result set.

• We propose decreasing index resolution to exploit the
trade-off between the amount of index overlap and
the number of entries in the index by exploring three
trajectory splitting strategies.

• We demonstrate that, for in-memory queries, lower-
bounding the index resolution is more important than
minimizing the volume of hyperrectangular minimum
bounding boxes (MBB), and thus index overlap.

• We evaluate our proposed algorithms using both real-
world and synthetic datasets for both 3-D and 4-D
trajectory data (i.e., the temporal dimension plus either
2 or 3 spatial dimensions).

This paper is organized as follows. In Section II, we outline
related work. Section III defines the distance threshold query.
Section IV discusses the indexing method. In Section V we
present our algorithms and present an initial performance
evaluation in Section VI. Section VII motivates, proposes,
and evaluates methods to filter the candidate line segments.
Section VIII presents and evaluates methods to split trajectories
to reduce index resolution for efficient query processing.
Finally, Section IX concludes the paper with a brief summary
of findings and perspectives on future work.

II. RELATED WORK

A trajectory is a set of points traversed by an object over
time in Euclidean space. In MODs, trajectories are stored
as sets of spatiotemporal line segments. The majority of the
literature on indexing spatiotemporal data utilizes R-tree data
structures [5]. An R-tree indexes spatial and spatiotemporal
data using MBBs. Each trajectory segment is contained in one
MBB. Leaf nodes in the R-tree store pointers to MBBs and the
segments they contain (coordinates, trajectory id). A non-leaf
node stores the dimensions of the MBB that contains all the
MBBs stored (at the leaf nodes) in the non-leaf node’s sub-
tree. Searches traverse the tree to find all (leaf) MBBs that
overlap with a query MBB. Variations of the R-tree and other
methods have been proposed (TB-trees [6], STR-trees [6],
3DR-trees [7], SETI [8], and TrajStore [9]).

Few works on trajectory similarity searches have studied
distance threshold queries [3]. Other types of trajectories,

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

which we do not consider in this work, have been studied
(e.g., flocks [10], convoys [4], swarms [11]). The well-studied
k Nearest Neighbors (kNN) queries [12], [13], [14], [15] are
related to distance threshold queries. A distance threshold
query can be seen as a kNN query with an unknown value of
k. As a result, previous work on kNN queries (with known k)
cannot be applied directly to distance threshold queries (with
unknown k).

III. PROBLEM STATEMENT

A. Motivating Example

One motivation application for this work is in the area
of astrophysics [16]. The past decade of exoplanet searches
implies that the Milky Way, and hence the universe, hosts
many rocky, low mass planets that may sustain complex life.
However, regions of a galaxy, such as the Milky Way, may
be inhospitable due to transient radiation events, such as
supernovae explosions or close encounters with flyby stars
that can gravitationally perturb planetary systems. Studying
habitability thus entails solving the following two types of
distance threshold queries on the trajectories of (possibly
billions of) stars orbiting the Milky Way: (i) Find all stars
within a distance d of a supernova explosion, i.e., a non-
moving point over a time interval; and (ii) Find the stars, and
corresponding time periods, that host a habitable planet and
are within a distance d of all other stellar trajectories.

B. Problem Definition

Let D be a database of N trajectories, where each tra-
jectory Ti consists of ni 4D (3 spatial + 1 temporal) line
segments. Each line segment L in D is defined by the
following attributes: xstart, ystart, zstart, tstart, xend, yend,
zend, tend, trajectory id, and segment id. These coordinates
for each segment define the segment’s MBB (note that the
temporal dimension is treated in the same manner as the spatial
dimensions). Linear interpolation is used to answer queries that
lie between tstart and tend of a given line segment.

We consider historical continuous searches for trajectories
within a distance d of a query Q, where Q is a moving object’s
trajectory, Qt, or a stationary point, Qp. More specifically:

• DistTrajSearch Qp(D,Qp,Qstart,Qend, d) searches D
to find all trajectories that are withing a distance d of a
given query static point Qp over the query time period
[Qstart,Qend]. The query is continuous, such that the
trajectories found may be within the distance threshold
d for a subinterval of the query time [Qstart,Qend].
For example, for a query Q1 with a query time interval
of [0,1], the search may return T1 between [0.1,0.3]
and T2 between [0.2,0.6].

• DistTrajSearch Qt(D,Qt,Qstart,Qend, d) is similar
but searches for trajectories that are within a distance
d of a query trajectory Qt.

DistTrajSearch Qp is a simpler case of DistTrajSearch Qt.
We focus on developing an efficient approach for DistTra-
jSearch Qt, which can be reused as is for DistTrajSearch Qp.

In all that follows, we consider in-memory databases,
meaning that the database fits and is loaded in RAM once and

for all. Distance threshold queries are relevant for scientific
applications that are typically executed on high-performance
computing platforms such as clusters. It is thus possible to
partition the database and distribute it over a (possibly large)
number of compute nodes so that the application does not
require disk accesses. It is straightforward to parallelize dis-
tance threshold searches (replicate the query across all nodes,
search the MOD independently at each node, and aggregate
the obtained results). We leave the topic of parallel searches
for future work. Instead we focus on efficient in-memory
processing at a single compute node, which is challenging
and yet necessary for achieving efficient parallel executions.
Furthermore, as explained in Section IV, no criterion can be
used to avoid index tree node accesses in distance threshold
searches. Therefore, there are no possible I/O optimizations
when (part of) the database resides on disk, which is another
reason why we focus on the in-memory scenario.

IV. TRAJECTORY INDEXING

Given a distance threshold search for some query trajectory
over some temporal extent, one considers all relevant query
MBBs (those for the query trajectory segments). These query
MBBs are augmented in all spatial dimensions by the threshold
distance d. One then searches for the set of trajectory segment
MBBs that overlap with the query MBBs, since these segments
may be in the result set. Efficient indexing of the trajectory
segment MBBs can thus lower query response time.

The most common approach is to store trajectory segments
as MBBs in an index tree [12], [13], [14], [15]. Several index
trees have been proposed (TB-tree [6], STR-tree [6], 3DR-
tree [7]). Their main objective is to reduce the number of tree
nodes visited during index traversals, using various pruning
techniques (e.g., the MINDIST and MINMAXDIST metrics
in [17]). While this is sensible for kNN queries, instead for
distance threshold queries there is no criterion for reducing the
number of tree nodes that must be traversed. This is because
any MBB in the index that overlaps the query MBB may
contain a line segment within the distance threshold, and thus
must be returned as part of the candidate set.

Figure 1. An example trajectory stored in different leaf nodes in a TB-tree.

Figure 2. Four line segments belonging to three different trajectories within
one leaf node of an R-tree.

Let us consider for instance the popular TB-tree, in which
a leaf node stores only contiguous line segments that belong to

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

the same trajectory and leaf nodes that store segments from the
same trajectory are chained in a linked list. As a result, the TB-
tree has high “temporal discrimination” (this terminology was
introduced in [6]). Figure 1 shows a trajectory stored inside
four leaf nodes within a TB-tree (each leaf node is shown
as a bounding box). The curved and continuous appearance
of the trajectory is because multiple line segments are stored
together in each leaf node. By contrast, the R-tree simply
stores in each leaf node trajectory segments that are spatially
and temporally near each other, regardless of the individual
trajectories. Figure 2 depicts an example with 4 segments
belonging to 3 different trajectories that could be stored in
a leaf node of an R-tree. For a distance threshold query, the
number of TB-tree leaf nodes processed to perform the search
could be arbitrarily high (since segment MBBs from many
different trajectories can overlap the query MBB). Therefore,
the TB-tree reduces the important R-tree property of overlap
reduction; with an R-tree it may be sufficient to process only
a few leaf nodes since each leaf node stores spatially close
segments from multiple trajectories. For distance threshold
queries, high spatial discrimination is likely to be more ef-
ficient than high temporal discrimination. Also, results in [6]
show that the TB-tree performs better than the R-tree (for kNN
queries) especially when the number of indexed entries is low;
however, we are interested in large MODs (see Section III-A).
We conclude that an R-tree index should be used for efficient
distance threshold query processing.

V. SEARCH ALGORITHM

We propose an algorithm, TRAJDISTSEARCH (Figure 3),
to search for trajectories that are within a threshold distance
of a query trajectory (defined as a set of connected trajectory
segments over some temporal extent). All entry MBBs that
overlap the query MBB are returned by the R-tree index
and are then processed to determine the result set. More
specifically, the algorithm takes as input an R-Tree index, T ,
a query trajectory, Q, and a threshold distance, d. It returns a
set of time intervals annotated by trajectory ids, corresponding
to the interval of time during which a particular trajectory is
within distance d of the query trajectory. After initializing the
result set to the empty set (line 2), the algorithm loops over
all (augmented) MBBs that correspond to the segments of the
query trajectory (line 3). For each such query MBB, the R-Tree
index is searched to obtain a set of candidate entry MBBs that
overlap the query MBB (line 4). The algorithm then loops over
all the candidates (line 5) and does the following. First, given
the candidate entry MBB and the query MBB, it computes
an entry trajectory segment and a query trajectory segment
that span the same time interval (line 6). The algorithm then
computes the interval of time during which these two trajectory
segments are within a distance d of each other (line 7). This
calculation involves computing the coefficients of and solving
a degree two polynomial [15]. If this interval is non-empty,
then it is annotated with the trajectory id and added to the
result set (line 9). The overall result set is returned once all
query MBBs have been processed (line 13). Note that for a
static point search Q.MBBSet (line 3) would consist of a single
(degenerate) MBB with a zero extent in all spatial dimensions
and some temporal extent, thus obviating the need for the outer
loop. We call this algorithm POINTDISTSEARCH.

1: procedure TRAJDISTSEARCH (R-Tree T, Query Q, double d)
2: resultSet ← ∅
3: for all querySegmentMBB in Q.MBBSet do
4: CandidateSet ← T.Search(querySegmentMBB, d)
5: for all candidateMBB in CandidateSet do
6: (EntrySegment, QuerySegment) ← interpolate(

candidateMBB,querySegmentMBB)
7: timeInterval ← calcTimeInterval(

EntrySegment,QuerySegment,d)
8: if timeInterval 6= ∅ then
9: resultSet ← resultsSet ∪ timeInterval

10: end if
11: end for
12: end for
13: return resultSet
14: end procedure

Figure 3. Pseudo-code for the TRAJDISTSEARCH algorithm (Section V).

VI. INITIAL EXPERIMENTAL EVALUATION

A. Datasets

Our first dataset, Trucks [18], is used in other MOD
works [13], [14], [15]. It contains 276 trajectories correspond-
ing to 50 trucks that travel in the Athens metropolitan area
for 33 days. This is a 3-dimensional dataset (2 spatial + 1
temporal). Our second dataset is a class of 4-dimensional
datasets (3 spatial + 1 temporal), Galaxy. These datasets
contain the trajectories of stars moving in the Milky Way’s
gravitational field (see Section III-A). The largest Galaxy
dataset consists of 1,000,000 trajectory segments correspond-
ing to 2,500 trajectories of 400 timesteps each. Distances are
expressed in kiloparsecs (kpc). Our third dataset is a class
of 4-dimensional synthetic datasets, Random, with trajectories
generated via random walks. An adjustable parameter, α, is
used to control whether the trajectory is a straight line (α = 0)
or a Brownian motion trajectory (α = 1). We vary α in
0.1 increments to produce 11 datasets for datasets containing
between ∼1,000,000 and ∼5,000,000 segments. Trajectories
with α = 0 spans the largest spatial extent and trajectories
with α = 1 are the most localized. All trajectories have the
same temporal extent but different start times. Other synthetic
datasets exist, such as GSTD [19]. We do not use GSTD
because it does not allow for 3-dimensional spatial trajectories.

(a) (b)

Figure 4. (a) Galaxy dataset: a sample of 30 trajectories, (b) 200
trajectories in the Random dataset with α = 0.8.

Figure 4 shows a 2-D illustration of the Galaxy and
Random datasets. An illustration of Trucks can be found in
previous works [13], [14]. Table I summarizes the main char-
acteristics of each dataset. The Galaxy and Random datasets
are publicly available [20].

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE I. CHARACTERISTICS OF DATASETS

Dataset Trajec. Entries
Trucks 276 112152

Galaxy-200k 500 200000
Galaxy-400k 1000 400000
Galaxy-600k 1500 600000
Galaxy-800k 2000 800000
Galaxy-1M 2500 1000000

Random-1M (α ∈ {0, 0.1, . . . , 1}) 2500 997500
Random-2M (α = 1) 5000 1995000
Random-3M (α = 1) 7500 2992500
Random-4M (α = 1) 10000 3990000
Random-5M (α = 1) 12500 4987500

B. Experimental Methodology

We have implemented algorithm TRAJDISTSEARCH in
C++, reusing an existing R-Tree implementation based on
that initially developed by A. Guttman [5], and the code is
available [21]. We execute this implementation on one core of
a dedicated Intel Xeon X5660 processor, at 2.8 GHz, with 12
MB L3 cache and sufficient memory to store the entire index.
We measure query response time averaged over 3 trials. The
variation among the trials is negligible so that error bars in
our results are not visible. We ignore the overhead of loading
the R-Tree from disk into memory, which can be done once
before all query processing.

C. Trajectory Search Performance

 0

 0.1

 0.2

 0.3

 0.4

 5 15 25

T
im

e
 (

s
)

Distance

10 extent

20 extent

50 extent

100 extent

(a) Random α = 1

 0

 50

 100

 150

 200

 250

 1 3 5

T
im

e
 (

s
)

Distance

10 extent

20 extent

50 extent

100 extent

(b) Galaxy-1M

Figure 5. Query response time vs. threshold distance for 10%, 20%, 50%
and 100% of the temporal extents of trajectories in S1 using the Random-1M

α = 1 dataset (a) and the Galaxy-1M dataset with search S2 (b).

We measure the query response time of TRAJDISTSEARCH
for the following sets of trajectory searches:

 0

 1

 2

 5 15 25

T
im

e
 (

s
)

Distance

1M
2M
3M
4M
5M

(a) Random α = 1

 0

 0.5

 1

 1.5

 0.01 0.1

T
im

e
 (

s
)

Temporal Extent

200k
400k
600k
800k

1M

(b) Galaxy

Figure 6. (a) Response time vs. threshold distances for various numbers of
segments in the index using search S3. (b) Response time vs. temporal
extent for various numbers of segments in the index using search S4.

• S1: Random-1M dataset, α = 1, 100 randomly se-
lected query trajectories, processed for 10%, 20%,
50% and 100% of their temporal extents, with various
query distances;

• S2: Same as S1 but for the Galaxy-1M dataset;
• S3: Random-1M, 2M, 3M, 4M and 5M datasets, α =

1, 100 randomly selected query trajectories, processed
for 100% of their temporal extent, with various query
distances;

• S4: Galaxy-200k, 400k, 600k, 800k, 1M datasets, 100
randomly selected trajectories, processed with for 1%,
5% and 10% of their temporal extents, with a fixed
query distance d = 1.

Figures 5 (a) and 5 (b) plot response time vs. query distance
for S1 and S2 above. The response time increases slightly
superlinearly with the query distance and with the temporal
extents. In other words, the R-tree search performance de-
grades gracefully as the search is more extensive. Figures 6 (a)
and (b) show response time vs. query distance for S3 and S4
above. The response time increases slightly superlinearly as
the query distance increases for S3, and roughly linearly with
the temporal extent increases for S4. Both these figures show
results for various dataset sizes. An important observation is
that the response time degrades gracefully as the datasets
increase in size. More interestingly, note that for a fixed
temporal extent and a fixed query distance, a larger dataset
means a higher trajectory density, and thus a higher degree of
overlap in the R-tree index. In spite of this increasing overlap,

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

B

d

Q A

C

Figure 7. Three example entry MBBs and their overlap with a query MBB.

the R-tree still delivers good performance. We obtained similar
results for POINTDISTSEARCH, which are omitted here.

VII. TRAJECTORY SEGMENT FILTERING

The results in the previous section illustrate that TRAJ-
DISTSEARCH maintains roughly consistent performance be-
havior over a range of query configurations (temporal extents,
threshold distances, index sizes). In this and the next section,
we explore approaches to reduce response time.

At each iteration our algorithm computes the moving dis-
tance between two line segments (line 7 in Figure 3). One can
bypass this computation by “filtering out” those line segments
for which it is straightforward (i.e., computationally cheap) to
determine that they cannot possibly lie within distance d of
the query. This filtering is applied to the segments once they
have been returned by the index, and is thus independent of
the indexing method.

Figure 7 shows an example with a query MBB, Q, and
three overlapping MBBs, A, B, and C, that have been returned
from the index search. The query distance d is indicated in the
(augmented) query box so that the query trajectory segment is
shorter than the box’s diagonal. A contains a segment that is
outside Q and should thus be filtered out. The line segment in
B crosses the query box boundary but is never within distance
d of the query segment and should be filtered out. C contains a
line segment that is within a distance d of the query segment,
and should thus not be filtered out. For this segment a moving
distance computation must be performed (Figure 3, line 7) to
determine whether there is an interval of time in which the two
trajectories are indeed within a distance d of each other. The
fact that candidate segments are returned that should in fact be
ignored is inherent to the use of MBBs: a segment occupies an
infinitesimal portion of its MBB’s space. This issue is germane
to MODs that store trajectories using MBBs.

In practice, depending on the dataset and the search, the
number of line segments that should be filtered out can be
large. Figure 8 shows the number of candidate segments
returned by the index search and the number of segments
that are within the query distance vs. α, for the Random-
1M dataset, with 100 randomly selected query trajectories
processed for 100% of their temporal extent. The fraction of
candidate segments that are within the query distance is below
16.5% at α = 1. In this particular example, an ideal filtering
method would filter out more than 80% of the line segments.

 0

 50000

 100000

 150000

 200000

 0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

α

Number of candidates
Number within distance

Figure 8. Total number of moving distance calculations vs. the number that
are actually within a distance of 15 in the Random-1M datasets.

A. Two Segment Filtering Methods

After the query and entry line segments are interpolated so
that they have the same temporal extent (Figure 3, line 6),
various criteria may remove the candidate segment from
consideration. We consider two filtering methods beyond the
simple no filtering approach:

Method 1 – No filtering.
Method 2 – After the interpolation, check whether the can-
didate segment still lies within the query MBB. This check
only requires floating point comparisons between spatial coor-
dinates of the segment endpoints and the query MBB corners,
and would occur between lines 6 and 7 in Figure 3. Method
2 would filter out A in Figure 7.
Method 3 – Considering only 2 spatial dimensions, say x and
y, for a given query segment MBB compute the slope and the
y-intercept of the line that contains the query segment. This
computation requires only a few floating point operations and
would occur in between lines 3 and 4 in Figure 3, i.e., in
the outer loop. Then, before line 7, check if the endpoints
of the candidate segment both lie more than a distance d
above or below the query trajectory line. In this case, the
candidate segment can be filtered out. This check requires only
a few floating point operations involving segment endpoint
coordinates and the computed slope and y-intercept of the
query line. Method 3 would filter out both A and B in Figure 7.

Other computational geometry methods could be used for
filtering, but these methods must be sufficiently fast (i.e., low
floating point operation counts) if any benefit over Method 1
is to be achieved.

B. Filtering Performance

We have implemented the filtering methods in the previous
section in TRAJDISTSEARCH and in this section we measure
response times ignoring the R-tree search, i.e., focusing only
on the filtering and the moving distance computation. We use
the following distance threshold searches:

• S5: From the Trucks dataset, 10 trajectories are pro-
cessed for 100% of their temporal extent.

• S6: From the Galaxy-1M dataset, 100 trajectories are
processed for 100% of their temporal extent.

• S7: From the Random-1M datasets, 100 trajectories
are processed for 100% of their temporal extent, with
a fixed query distance d = 15.

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 5000 10000 15000 20000 25000

 1 2 3 4 5

T
im

e
/T

im
e

M
e

th
o

d
 1

Distance (Trucks)

Distance (Galaxy)

Trucks-Method 2
Trucks-Method 3
Galaxy-Method 2
Galaxy-Method 3

Figure 9. Performance improvement ratio of filtering methods for real
datasets with S5 and S6, vs. query distance.

Figure 9 plots the relative improvement (i.e., ratio of
response times) of using Method 2 and Method 3 over using
Method 1 vs. the threshold distance for S5 and S6 above for
the Galaxy and Trucks datasets. Data points below the y = 1
line indicate that filtering is beneficial. We see that filtering
is almost never beneficial and can in fact marginally increase
response time. Similar results are obtained for the Random
dataset regardless of the α value.

It turns out that our methods filter only a small fraction
of the line segments. For instance, for search S7 Method
2, resp. Method 3, filters out between 2.5% and 12%, resp.
between 3.2% and 15.9%, of the line segments. Therefore, for
most candidate segments the time spent doing filtering is pure
overhead. Furthermore, filtering requires only a few floating
point operations but also several if-then-else statements. The
resulting branch instructions slow down executions (due to
pipeline stalls) when compared to straight line code. We
conclude that, at least for the datasets and searches we have
used, our filtering methods are not effective.

One may envision developing better filtering methods to
achieve (part of the) filtering potential seen in Figure 8. We
profiled the execution of TRAJDISTSEARCH for searches S5,
S6, and S7, with no filtering, and accounting both for the R-
tree search and the distance computation. We found that the
time spent searching the R-tree accounts for at least 97% of
the overall response time. As a result, filtering can only lead
to marginal performance improvements for the datasets and
queries in our experiments. For other datasets and queries,
however, the fraction of time spent computing distances could
be larger. Nevertheless, given the results in this section, in all
that follows we do not perform any filtering.

VIII. INDEX RESOLUTION

According to the cost model in [22], index performance
depends on the number of nodes in the index, but also on
the volume and surface area of the MBBs. One extreme is
to store an entire trajectory in a single MBB as defined by
the spatial and temporal properties of the trajectory; however,
this leads to a lot of “wasted MBB space.” Representing the
object using multiple MBBs decreases the amount of empty
space by storing the object in a series of consecutive multi-
segment MBBs. The other extreme is to store each trajectory

line segment in its own MBB, as done so far in this paper and
in previous work on kNN queries [12], [13], [14], [15]. In this
scenario, the volume occupied by the trajectory in the index
is minimized, with the trade-off that the number of entries in
the index will be maximized.

Assigning a fraction of a trajectory to a single MBB,
as a series of line segments, increases overlap in the index,
as the resulting MBB is larger in comparison to minimiz-
ing the volume of the MBBs by describing each individual
trajectory line segment by its own MBB. As a result, an
index search can return a portion of a trajectory that does
not overlap the query, leading to increased overhead when
processing the candidate set of line segments returned by
the index. However, the number of entries in the index is
reduced, thereby reducing tree traversal time. To explore the
tradeoff between number of nodes in the index, the amount of
wasted volume required by a trajectory, index overlap, and the
overhead of processing candidate trajectory segments, in this
section we evaluate three strategies for splitting trajectories
into a series of consecutive MBBs, implemented as an array
of references to trajectory segments (leading to one extra
indirection when compared to assigning a single segment per
MBB). We evaluate performance experimentally by splitting
the trajectories, and then creating their associated indexes,
where the configuration with the lowest query response time
is highlighted. We leave analytical performance models of
trajectory splitting methods for future work.

A. Static Temporal Splitting

Assuming it is desirable to ensure that trajectory segments
are stored contiguously, we propose a simple method. Given a
trajectory of n line segments, we split the trajectory by assign-
ing r contiguous line segments per MBB, where r is a constant.
Therefore, the number of MBBs, M that represent a single
trajectory is M = dnr e. By storing segments contiguously, this
strategy leads to high temporal locality of reference, which
may be important for cache reuse in our in-memory database,
in addition to the benefits of the high spatial discrimination of
the R-tree (see Section IV).

Figure 10 plots response time vs. r for the S6 (Galaxy
dataset) and S7 (Random dataset) searches defined in Sec-
tion VII-B. For S6, 5 different query distances are used, while
for S7 the query distance is fixed as 15 but results are shown
for various dataset sizes for α = 1. The right y-axis shows
the number of MBBs used per trajectory. The data points at
r = 1 correspond to the original implementation (rather than
the implementation with r = 1, which would include one
unnecessary indirection).

The best value for r depends on the dataset and the search.
For instance, in the Galaxy-1M dataset (S6) using 12 segments
per MBB leads to the best performance (or M = 34). We
note that picking a r value in a large neighborhood around
this best value would lead to only marginally higher query
response times. In general, using a small value of r can lead
to high response times, especially for r = 1 (or M = 400).
For instance, for S6 with a query distance of 5, the response
time with r = 1 is above 208 s while it is just above 37
s with r = 12. With r = 1 the index is large and thus time-
consuming to search. A very large r value does not lead to the

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 0

 50

 100

 150

 200

 5 10 15 20 25 30

 0

 50

 100

 150

 200

 250

 300

 350

 400

T
im

e
 (

s
)

M
B

B
s
 p

e
r

T
ra

je
c
to

ry
 (

M
)

Segments/MBB

Distance: 1
Distance: 2
Distance: 3
Distance: 4
Distance: 5

Number of MBBs per Trajectory

(a) Galaxy-1M

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 10 18 26 34 42 50 58

 0

 50

 100

 150

 200

 250

 300

 350

 400

T
im

e
 (

s
)

M
B

B
s
 p

e
r

T
ra

je
c
to

ry
 (

M
)

Segments/MBB

1M-α=1

3M-α=1

5M-α=1

Number of MBBs per Trajectory

(b) Random datasets

Figure 10. Static Temporal Splitting: Response time vs. r for (a) S6 for the
Galaxy-1M dataset for various query distances; and (b) S7 for the

Random-1M, 3M, and 5M α = 1 datasets and a query distance of 15. The
number of MBBs per trajectory, M , is shown on the right vertical axis.

lowest response time since in this case many of the segments
returned from the R-tree search are not query matches. Finally,
results in Figure 10 (a) show that the advantage of assigning
multiple trajectory segments per MBB increases as the query
distance increases. For instance, for a distance of 2 using r =
12 decreases the response time by a factor 2.76 when compared
to using r = 1, while this factor is 5.6 for a distance of 5. Note
that the difference in response times between Figure 10 (a)
and (b) are largely due to more queries within d in Galaxy in
comparison to Random for the query distances selected.

B. Static Spatial Splitting

Another strategy consists in ordering the line segments
belonging to a trajectory spatially, i.e., by sorting the line
segments of a trajectory by the x, y, and z values of the
segment’s origin. We then assign r segments per trajectory
into each MBB, as in the previous method. With such spatial
grouping, the line segments are no longer guaranteed to
be temporally contiguous in their MBBs, but reduced index
overlap may be achieved. Figure 11 plots response time vs.
r for the S7 (Random dataset) searches. We see that there is
no advantage to assigning multiple trajectory segments to an
MBB over assigning a single line segment to a MBB (r = 1
in the plot). When comparing with results in Figure 10 (b) we
find that spatial splitting leads to query response times higher
by several factors than that of temporal splitting.

 0

 1

 2

 3

 4

 5

 6

 2 10 18 26 34 42 50 58

 0

 50

 100

 150

 200

 250

 300

 350

 400

T
im

e
 (

s
)

M
B

B
s
 p

e
r

T
ra

je
c
to

ry
 (

M
)

Segments/MBB

1M-α=1

3M-α=1

5M-α=1

Number of MBBs per Trajectory

Figure 11. Static Spatial Splitting: Response time vs. r using S7 for the
Random-1M, 3M, and 5M α = 1 datasets and a query distance of 15. The
number of MBBs per trajectory, M , for each data point is shown on the

rightmost vertical axis.

C. Splitting to Reduce Trajectory Volume

The encouraging results in Section VIII-A suggest that
using an appropriate trajectory splitting strategy can lead
to performance gains primarily by exploiting the trade-off
between the number of entries in the index and the amount
of wasted space that leads to higher index overlap. More
sophisticated methods can be used. In particular, we implement
the heuristic algorithm MergeSplit in [23], which is shown to
produce a splitting close to optimal in terms of wasted space.
MergeSplit takes as input a trajectory, T , as a series of l line
segments, and a constant number of MBBs, M . As output,
the algorithm creates a set of M MBBs that encapsulate the l
segments of T . The pseudocode of MergeSplit is as follows:

1) For 0 ≤ i < l calculate the volume of the merger
of the MBBs that define li and li+1 and store the
resulting series of MBBs and their volumes.

2) To obtain M MBBs, repeat (l−1)−(M−1) times and
merge consecutive MBBs that produce the smallest
volume increase at each step. After the first iteration,
there will be l − 2 initial MBBs describing line
segments, and one MBB that is the merger of two
line segment MBBs.

Figure 12 shows response time vs. M for S6 (Galaxy
dataset) and S7 (Random dataset). Compared to static temporal
splitting, which has a constant number of segments, r per
MBB, MergeSplit has a variable number of segments per
MBB. From the figure, we observe that for the Galaxy-1M
dataset (S6), M = 30 leads to the best performance. Com-
paring MergeSplit to the static temporal splitting (Figures 10
and 12 (a)), the best performance for the S6 (Galaxy dataset) is
achieved by the static temporal splitting. For S7, the Random-
1M, 3M, and 5M α = 1 datasets, MergeSplit is only marginally
better than the static temporal splitting (Figures 10 and 12 (b)).
This is surprising, given that the total hypervolume of the
entries in the index for a given M across both splitting
strategies is higher for the simple static temporal splitting,
as it makes no attempt to minimize volume. Therefore, the
trade-off between the number of entries and overlap in the
index cannot fully explain the performance of these trajectory
splitting strategies for distance threshold queries.

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

T
im

e
 (

s
)

MBBs per Trajectory (M)

Distance: 1
Distance: 2
Distance: 3
Distance: 4
Distance: 5

(a) Galaxy-1M

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 10 18 26 34 42 50 58

T
im

e
 (

s
)

MBBs per Trajectory (M)

1M-α=1

3M-α=1

5M-α=1

(b) Random datasets

Figure 12. Greedy Trajectory Splitting: Response time vs. M for (a) S6
for the Galaxy-1M dataset for various query distances; and (b) S7 for the

Random-1M, 3M, and 5M α = 1 datasets and a query distance of 15.

D. Discussion

A good trade-off between the number of entries in the
index and the amount of index overlap can be achieved by
selecting an appropriate trajectory splitting strategy. However,
comparing the results of the simple temporal splitting strat-
egy (Section VIII-A) and MergeSplit (Section VIII-C), we
find that volume minimization did not significantly improve
performance for S7, and led to worse performance for S6.
In Figure 13, we plot the total hypervolume vs. M for the
Galaxy-1M (S6) and the Random-1M, 3M, and 5M α = 1
(S7) datasets. M = 1 refers to placing an entire trajectory in a
single MBB, and the maximum value of M refers to placing
each individual line segment of a trajectory in its own MBB.
For the static temporal splitting strategy, M = 34 leads to the
best performance for the Galaxy-1M dataset (S6), whereas this
value is M = 30 for MergeSplit. The total hypervolume of the
MBBs in units of kpc3Gyr for the static temporal grouping
strategy at M = 34 is 3.6 × 107, whereas for MergeSplit at
M = 30, it is 1.62 × 107, or the MBBs require 55% less
volume. Due to the greater volume occupied by the MBBs,
index overlap is much higher for the static temporal splitting
strategy. Figure 14 (a) plots the number of overlapping line
segments vs. M for S6 with d = 5. From the figure, we
observe that independently of M , MergeSplit returns a greater
number of candidate line segments to process than the simple
temporal splitting strategy. MergeSplit attempts to minimize
volume; however, if an MBB contains a significant fraction
of the line segments of a given trajectory, then all of these

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 50 100 150 200 250 300 350 400

T
o
ta

l
H

y
p

e
rv

o
lu

m
e

MBBs per Trajectory (M)

Temporal Splitting
MergeSplit

(a) Galaxy-1M

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 50 100 150 200 250 300 350

T
o

ta
l
H

y
p
e

rv
o

lu
m

e
MBBs per Trajectory (M)

Temporal Splitting: 1M-α=1

Temporal Splitting: 3M-α=1

Temporal Splitting: 5M-α=1

MergeSplit: 1M-α=1

MergeSplit: 3M-α=1

MergeSplit: 5M-α=1

(b) Random-1M

Figure 13. Total hypervolume vs. M for the static temporal splitting
strategy and MergeSplit. (a)for the Galaxy-1M dataset (S6); and (b) for the

Random-1M, 3M, and 5M α = 1 datasets (S7).

segments are returned as candidates. The simple temporal
grouping strategy has an upper bound (r) on the number of
segments returned per overlapping MBB and thus can return
fewer candidate segments for a query, despite occupying more
volume in the index. For in-memory distance threshold queries,
there is a trade-off between a trajectory splitting strategy that
has an upper bound on the number of line segments per MBB,
and index overlap, characterized by the volume occupied by
the MBBs in the index. This is in sharp contrast to other
works that focus on efficient indexing of spatiotemporal objects
in traditional out-of-core implementations where the index
resides partially in-memory and on disk, and therefore volume
reduction to minimize index overlap is necessary to minimize
disk accesses (e.g., [23]).

E. Performance Considerations for In-memory and Out-of-
Core Implementations

The focus of this work is on in-memory distance threshold
queries; however, most of the literature on MODs assume out-
of-core implementations, where the number of node accesses
are used as a metric to estimate I/O activity. Figure 15 shows
the number of node accesses vs. M for both of the static
temporal splitting strategy and MergeSplit. We find that for the
Galaxy-1M dataset (S6) with d = 5, there are a comparable
number of node accesses for both trajectory splitting methods.
However, for S7 (Random-1M), on average, trajectory split-
ting with MergeSplit requires fewer node accesses and may
perform significantly better than the simple temporal splitting

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 15 20 25 30 35 40 45 50 55 60 65

N
u

m
b
e

r

MBBs per Trajectory (M)

Temporal
MergeSplit

(a) Galaxy-1M

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 10 15 20 25 30 35 40 45 50

N
u

m
b

e
r

MBBs per Trajectory (M)

Temporal
MergeSplit

(b) Random-1M

Figure 14. Total number of overlapping segments vs. M for the static
temporal splitting strategy and MergeSplit. (a) S6 for the Galaxy-1M dataset

with d = 5; and (b) S7 for the Random α = 1 dataset with d = 15.

strategy in an out-of-core implementation. For example, in
Figure 15 (b) some values of M have a significantly higher
number of node accesses, such as values around 14, 30, 38, due
to the idiosyncrasies of the data, and resulting index overlap.
However, as we demonstrated in Section VIII-D, distance
threshold queries in the context of in-memory databases also
benefit from reducing the number of candidate line segments
returned, and this is not entirely volume contingent. Therefore,
methods that consider volume reduction, such as the Merge-
Split algorithm of [23], or other works that consider volume
reduction in the context of query sizes, such as [24], may not
be entirely applicable to distance threshold queries.

A single metric cannot capture the trade-offs between
the number of entries in the index, volume reduction, index
overlap, and the number of candidate line segments returned
(germane to distance threshold queries). However, for Galaxy-
1M (S6), a value of M = 34 and M = 30 lead to the best
query response time for the temporal splitting strategy and
MergeSplit, respectively (Figures 10 (a) and 12 (a)). Figure 16
shows the number of L1 cache misses vs. M for S6 with d = 5.
The number of cache misses was measured using PAPI [25].
The best values of M in terms of query response time for both
of the trajectory splitting strategies (M = 34 and M = 30)
roughly correspond to a value of M that minimizes cache
misses. Thus, cache misses appear to be a good indicator of
relative query performance under different indexing methods.
Future work for in-memory distance threshold queries should
focus on improved cache reuse through temporal locality of

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 15 20 25 30 35 40 45 50 55 60 65

N
o

d
e

 A
c
c
e

s
s
e

s

MBBs per Trajectory (M)

Temporal
MergeSplit

(a) Galaxy-1M

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 10 15 20 25 30 35 40 45 50

N
o

d
e
 A

c
c
e
s
s
e
s

MBBs per Trajectory (M)

Temporal
MergeSplit

(b) Random-1M

Figure 15. Node Accesses vs. M for the static temporal splitting strategy
and MergeSplit. (a) S6 for the Galaxy-1M dataset with d = 5; and (b) S7

for the Random α = 1 dataset with d = 15.

 2.8e+09

 3e+09

 3.2e+09

 3.4e+09

 3.6e+09

 3.8e+09

 4e+09

 15 20 25 30 35 40 45 50 55 60 65

L
1

 C
a

c
h

e
 M

is
s
e
s

MBBs per Trajectory (M)

Temporal
MergeSplit

Figure 16. L1 cache misses vs. M for the static temporal splitting strategy
and MergeSplit for the Galaxy-1M dataset (S6) with d = 5.

reference (which is in part obtained by storing segments
contiguously within a single MBB).

IX. CONCLUSION

In-memory distance threshold queries for trajectory and
point queries on moving object trajectories are significantly
different from the well-studied kNN searches [12], [13], [14],
[15]. We made a case for using an R-tree index to store
trajectory segments, and found it to perform robustly for two
real world datasets and a synthetic dataset. We focused on 4-
D datasets (3 spatial + 1 temporal) while other works only
consider 3-D datasets [12], [13], [14], [15].

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

We found the popular “search and refine” strategy to be in-
effective for distance threshold searches since many segments
returned by the index search must be excluded from the result
set. We have proposed computationally inexpensive solutions
to filter out candidate segments, but found that they have poor
selectivity. A more promising direction for reducing query
response time is to reduce the time spent traversing the tree
index. We demonstrated that efficiently splitting trajectories is
beneficial because the penalty for the increased index overlap
is offset by the reduction in number of index entries. We find
that for in-memory distance threshold queries, the number of
line segments returned per overlapping MBB has an impact
on performance, where attempts to reduce the volume of
the MBBs that store a trajectory may be at cross-purposes
with returning a limited number of candidate segments per
overlapping MBB. Therefore, trajectory splitting methods that
focus on volume reduction are not necessarily preferable to a
simple and bounded grouping of line segments in MBBs.

A future direction is to explore trajectory splitting methods
that achieve volume reduction while bounding the number of
MBBs used per trajectory. Another direction is to investigate
non-MBB-based data structures to index line segments, such as
that in [26]. Finally, we plan to develop algorithms for parallel
processing of in-memory distance threshold queries both for
shared- and distributed-memory executions.

One may wonder whether the idea of assigning multiple
segments to an MBB is generally applicable, and in particular
for kNN searches on trajectories [12], [13], [14], [15]. The
kNN literature focuses on pruning strategies and associated
metrics that require a high resolution index, thus implying
storing a single trajectory segment in an MBB. Furthermore,
kNN query processing algorithms maintain a list of nearest
neighbors over a time interval, which would lead to greater
overhead if multiple segments were stored per MBB. There-
fore, the approach of grouping line segments together in a
single MBB may be ineffective for kNN queries. An interesting
problem is to reconcile the differences between both types of
queries in terms of index resolution.

ACKNOWLEDGMENTS

This paper has benefited from the insightful comments of
Lipyeow Lim. This material is based upon work supported by
the National Aeronautics and Space Administration through
the NASA Astrobiology Institute under Cooperative Agree-
ment No. NNA08DA77A issued through the Office of Space
Science, and by NSF Award CNS-0855245.

REFERENCES

[1] L. Forlizzi, R. H. Güting, E. Nardelli, and M. Schneider, “A data model
and data structures for moving objects databases,” in Proc. of ACM
SIGMOD Intl. Conf. on Management of Data, 2000, pp. 319–330.

[2] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos,
M. Schneider, and M. Vazirgiannis, “A foundation for representing and
querying moving objects,” ACM Trans. Database Syst., vol. 25, no. 1,
2000, pp. 1–42.

[3] S. Arumugam and C. Jermaine, “Closest-point-of-approach join for
moving object histories,” in Proc. of the 22nd Intl. Conf. on Data
Engineering, 2006, pp. 86–95.

[4] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen, “Discovery
of convoys in trajectory databases,” Proc. VLDB Endow., vol. 1, no. 1,
Aug. 2008, pp. 1068–1080.

[5] A. Guttman, “R-trees: a dynamic index structure for spatial searching,”
in Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 1984,
pp. 47–57.

[6] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel Approaches in
Query Proc. for Moving Object Trajectories,” in Proc. of the 26th Intl.
Conf. on Very Large Data Bases, 2000, pp. 395–406.

[7] Y. Theodoridis, M. Vazirgiannis, and T. Sellis, “Spatio-Temporal Index-
ing for Large Multimedia Applications,” in Proc. of the Intl. Conf. on
Multimedia Computing and Systems, 1996, pp. 441–448.

[8] V. P. Chakka, A. Everspaugh, and J. M. Patel, “Indexing large trajectory
data sets with SETI,” in Proc. of Conference on Innovative Data Systems
Research, 2003, pp. 164–175.

[9] P. Cudre-Mauroux, E. Wu, and S. Madden, “TrajStore: An Adaptive
Storage System for Very Large Trajectory Data Sets,” in Proc. of the
26th Intl. Conf. on Data Engineering, 2010, pp. 109–120.

[10] M. R. Vieira, P. Bakalov, and V. J. Tsotras, “On-line discovery of
flock patterns in spatio-temporal data,” in Proc. of the 17th ACM
SIGSPATIAL Intl. Conf. on Advances in Geographic Information
Systems, 2009, pp. 286–295.

[11] Z. Li, M. Ji, J.-G. Lee, L.-A. Tang, Y. Yu, J. Han, and R. Kays,
“Movemine: Mining moving object databases,” in Proc. of the 2010
ACM SIGMOD Intl. Conf. on Management of Data, 2010, pp. 1203–
1206.

[12] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Nearest
neighbor search on moving object trajectories,” in Proc. of the 9th Intl.
Conf. on Advances in Spatial and Temporal Databases, 2005, pp. 328–
345.

[13] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Algorithms
for Nearest Neighbor Search on Moving Object Trajectories,” Geoin-
formatica, vol. 11, no. 2, 2007, pp. 159–193.

[14] Y.-J. Gao, C. Li, G.-C. Chen, L. Chen, X.-T. Jiang, and C. Chen,
“Efficient k-Nearest-Neighbor Search Algorithms for Historical Moving
Object Trajectories,” J. Comput. Sci. Technol., vol. 22, no. 2, 2007, pp.
232–244.

[15] R. H. Güting, T. Behr, and J. Xu, “Efficient k-nearest neighbor search
on moving object trajectories,” The VLDB Journal, vol. 19, no. 5, 2010,
pp. 687–714.

[16] M. G. Gowanlock, D. R. Patton, and S. M. McConnell, “A Model
of Habitability Within the Milky Way Galaxy,” Astrobiology, vol. 11,
2011, pp. 855–873.

[17] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,”
in Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 1995,
pp. 71–79.

[18] http://www.chorochronos.org/, accessed 5-February-2014.
[19] Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento, “On the

Generation of Spatiotemporal Datasets,” in Proc. of the 6th Intl. Symp.
on Advances in Spatial Databases, 1999, pp. 147–164.

[20] http://navet.ics.hawaii.edu/%7Emike/datasets/DBKDA2014/datasets.zip,
accessed 12-February-2014.

[21] http://www.superliminal.com/sources/sources.htm, accessed 5-
February-2014.

[22] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer, “Towards an
analysis of range query performance in spatial data structures,” in Proc.
of the 12th Symp. on Principles of Database Sys., 1993, pp. 214–221.

[23] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos,
“Efficient indexing of spatiotemporal objects,” in Proc. of the 8th
Intl. Conf. on Extending Database Technology: Advances in Database
Technology, 2002, pp. 251–268.

[24] S. Rasetic, J. Sander, J. Elding, and M. A. Nascimento, “A trajectory
splitting model for efficient spatio-temporal indexing,” in Proc. of the
31st Intl. Conf. on Very Large Data Bases, 2005, pp. 934–945.

[25] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A Portable Inter-
face to Hardware Performance Counters,” in Proc. of the Department
of Defense HPCMP Users Group Conf., 1999, pp. 7–10.

[26] E. Bertino, B. Catania, and B. Shidlovsky, “Towards Optimal Indexing
for Segment Databases,” in Proc. of the 6th Intl. Conf. on Advances in
Database Technology, 1998, pp. 39–53.

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

