
Mapping XML to Key-Value Database

Pavel Strnad
Czech Technical University, FEE

Prague, Czech Republic
Email: pavel.strnad@fel.cvut.cz

Ondrej Macek
Czech Technical University, FEE

Prague, Czech Republic
Email: ondrej.macek@fel.cvut.cz

Pavel Jira
Czech Technical University, FIT

Prague, Czech Republic
Email: jirap1@fit.cvut.cz

Abstract—XML is a popular data format used in many
software applications. Native XML databases can be used for
persistence of XML documents or the document can be stored
in a relational database.

In this paper we propose an alternative storage for XML
documents based on key-value databases. We propose three
general algorithms for XML to key-value database mapping.
The algorithms are optimized using specific features of key-
value database Redis. Finally a performance comparison of
implemented algorithms and common native XML databases
is provided.

Keywords-XML; key-value database; Redis; RedXML; XML
mapping

I. INTRODUCTION

XML format is a popular data format used in many
software applications, where the XML documents can be
stored as files or in native XML databases, but often they
are stored in Relational Database Management Systems
(RDBMS).

In this paper we propose an alternative to mentioned
storages of XML documents based on key-value databases,
which are popular in last days. The next reason why to
consider key-value databases as possible storage of XML
documents is the speed of queries in key-value databases,
which can improve the speed of XML querying. Therefore
we have proposed algorithms for XML to key-value database
mapping and implemented them using key-value database
Redis [1]. Next a performance testing was performed on two
basic scenarios of loading and saving an XML document.
Results of these benchmarks and their comparison to already
existing XML storages show if the key-value databases are
a next alternative for storing XML data.

The paper is organized as follows: first related work in the
area is discussed in Section II, then the algorithms for XML
to key-value database mapping are introduced in Section
III and their implementation and optimization is described
in Section IV. Next, there is the performance comparison
in Section V and finally the future work is discussed in
SectionVI.

II. RELATED WORK

XML to Key-Value Database mapping: Vaidya and
Gopal [2] presented an algorithm for mapping an XML

document to a two dimensional array of hashes. In contrast
with this work we introduce more sophisticated mapping
algorithms and we provide a performance comparison with
native XML databases. At the moment we are not aware of
any other extensive research in this field, therefore we focus
on mapping XML to RDBMS.

XML enabled databases: The concept of XML-enabled
databases allows to manipulate data stored in relational
database as an XML document. The approach is based on a
special column type or on a mapping of an XML document
to a relational schema [3] [4].

XML to RDBMS mapping: The problem of mapping
XML document to RDBMS is well known issue. Many
algorithms of mapping an XML structure to a relational
database schema were proposed. Some of them are based
on a structure of XML document [5] [6], others use an
additional information about document querying to create
more effective mapping [7] [8]. The issue of retrieving XML
documents from RDBMS is addressed in [9] where several
mapping algorithms are introduced and theirs efficiency and
scalability is evaluated.

The mapping algorithms proposed in this paper allows
key-value databases to be used as XML-enabled ones. All
proposed algorithms are based only on structure of an XML
document. The optimization of proposed algorithms is based
on features specific for Redis database.

III. ALGORITHMS

In this section we describe three basic principles of map-
ping XML documents (elements, attributes, etc.) into a key-
value database. As an example key-value database platform
we have chosen Redis. Each of proposed solutions differs
in the way of mapping and some of them are dependent on
specific features of Redis database. All mappings mentioned
in this section are demonstrated on document books2.xml
shown in Figure 1.

A. Redis Database Structure

Before we propose transformations for XML to key-
value database mapping we introduce the structure of Redis
database as the target of all mapping algorithms. The Redis
database consists of environments containing collections,

121Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

which can be nested, so it is possible to create trees of
collections.

The environment is the main logical unit in the database
which contains collections, documents and sequences for
generating identifiers. Each environment defines a context
for various database settings. The environment information
are stored in keys:

• info – contains only the field <iterator> representing
the value of sequence for generating identifier for a new
environment.

• environment – contains mapping from environment
name to identifier.

• IDenvironment<info – is similar to the info key as it
contains the <iterator> for collections and documents
stored in the environment.

• IDenvironment<collections – for collections in the
concrete environment it contains the mapping from the
collection name to its identifier.

To organize the content of the database the collections can
be used. Each collection can contain a document or other
collection. The collections are represented by following
keys:

• IDenvironment:IDcollection<info – contains informa-
tion about the collection - its name (name) and a parent
identifier (parent_id). The parent identifier is used for
effective navigation inside the collection trees and the
environment.

• IDenvironment:IDcollection:documents – contains
mapping from documents’ names to theirs identifiers.

• IDenvironment:IDcollection:collections – contains
mapping from sub-collections’ names to theirs iden-
tifiers.

B. Naive Mapping
The first designed mapping of an XML document to

key-value database is Naive mapping. This mapping is a
straightforward solution and we introduce it as a reference
solution which we compare to other proposed solutions.

The basic idea of Naive mapping is to store most of
the information inside a key name which refers to a spe-
cific part of an XML document. Hence, the knowledge of
the key provides important information without a need of
querying a database. This finding is important for optimal
implementation of querying languages such as XQuery [10].
The example of this key is following:

various::ebooks::books2.xml::
catalog::book>1::genre>2

For better understanding of the key above an equivalent
XPath query is:

doc("books2.xml")/catalog/book[1]/genre[2]

Informally we can describe this key as: This key points
to an element "genre" that is the second descendant node of

<?xml version="1.0" standalone="yes"
encoding="UTF-8" ?>

<catalog>
<book id="bk101" ISBN="123456"

count="10">
Author:
<author>Gambardella, Matt</author>
<title>XML Guide</title>
<genre>Computer</genre>
<genre>Technical</genre>
<genre>Various</genre>
<price>44.95</price>
<publish_date>2000-10-01
</publish_date>
This book is nice.

</book>
<book id="bk102" ISBN="123457"

count="9">
Author:
<author>Ralls, Kim</author>
Title:
<title>Midnight Rain</title>
<genre>Fantasy</genre>
<genre>Various</genre>
<price>5.95</price>
<publish_date>2000-12-16
</publish_date>

</book>
</catalog>

Figure 1. Example XML docuement books2.xml

an element "book" that is the first descendant node of a root
element "catalog" and the root element "catalog" is located
in "books2.xml" in "ebooks" collection and in a database
named "various".

As we can see from the example above every key stores
a lot of information inside its name. This can be very useful
in XPath access optimization. The separator of two colons
"::" must not be appear in th names of elements, collections
or files.

The previous example shows how keys used in the map-
ping looks like. The following paragraph describes utilized
structures by Naive Mapping that can be referenced by a
key.

Element mapping: The key pointing to an element
contains a list of children keys. This is useful for recur-
sive descent along children elements. Information about
parent is stored directly in the child’s key. The prefix vari-
ous::ebooks::books2.xml:: is omitted for better readability.

Key:

various::ebooks::books2.xml::catalog::book>1

122Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

A corresponding XPath Query:

doc("books2.xml")/catalog/book[1]

Content:

{catalog::book>1::name>1,
catalog::book>1::genre>1}

Attribute mapping: The key refers to a hash containing
attributes of an element. For Attribute mapping we do not
provide a corresponding XPath Query because XPath queries
can not generate only attributes into the result.

Key:

various::ebooks::books2.xml::catalog::book>1<attributes

Content:

{’ISBN’=>’123456’, ’count’=>’10’}

Text mapping: The key refers to a string representing
mapped text. The same way of mapping is used for com-
ments or CDATA sections. We only change the keyword
"text" to "comment" or "cdata" respectively.

Key:

various::ebooks::books2.xml::catalog::book>1>text>2

Content:

"This book is nice."

XML declaration and file information mapping: The
content of this key provides basic information about the
document. This information contains the root element name,
XML declaration and so on. We define a new delimiter "<"
that is used to recognize special keys known as properties.
In the next example we present a special key "info".

Key:

various::ebooks::books2.xml<info

Content:

{"root" => "catalog", "version" => "1.0", "encoding" =>
"UTF-8", "standalone" => "yes"}

The important advantage of Naive mapping is an easy im-
plementation and high information density of keys’ names.
Main disadvantages of this approach are:

• The length of key names is enormous for deep nested
elements.

• Rename operation of a document, element or collection
is very inefficient, because every key containing old
name has to be renamed.

• Delete operation is also inefficient.

The following approaches were developed to remove (or
minimize) these disadvantages of Naive mapping.

C. Abbreviated Key Mapping

Abbreviated Key Mapping (AKM) is a mapping approach
that eliminates the enormous length of keys of deep nodes
and simplifies rename and delete operations. The basic idea
of AKM is based on mapping of all elements, collections and
files to unique identifier ID. In AKM the rename operation
executes in a constant time (O(1)). We only change the name
which is mapped to an ID. ID remains unchanged. IDs are
used instead of names in keys.

AKM needs a new hash map which maps names to
IDs. The last change is abbreviation of long identificators:
’attributes’ => ’a’, ’text’ => ’t’, ’cdata’ => ’d’, ’comment’
=> ’c’.

We have to define a new structure in the AKM’s imple-
mentation. This structure is a hash map which maps original
names to unique IDs. The example of the key is:

1:2:3:1:2>2:3>3

And an unbreviated version using Naive Mapping is:

various::ebooks::books2.xml::
catalog::book>2::genre>3

As you can see all names are replaced by identifiers.
This key is much shorter than unabbreviated one. The AKM
helper structure which maps names to IDs is stored for each
document in the database independently. The name of this
key is "emapping". The example of the mapping is:
Key:

1:2:3<emapping

Content:

{"catalog" => "1", "book" => "2", "genre" => "3"
"<iterator>" => "3"}.

Field ” < iterator > ” is used for counting element IDs.
If a new element is added ” < iterator > ” is incremented
and its value is used as ID of the new element. Hence,
each document has its own iterator. This design decision was
made with regards to the length of keys. Shorter keys are
better because they are better aligned in a memory. AKM
compared to naive mapping is much better performing in
rename operation (in a constant time O(1)). On the other
hand, performance of delete operation is still poor. Hence,
we tried to find a better solution.

D. Centralized Hash Mapping

Centralized Hash Mapping (CHM) approach is based on a
hash structure. The basic idea is to store the whole document
in one hash structure to allow easy removing of documents
from a database.

Redis database allows storing of string values into a
hash structure. This lead to a change of a representation
of documents in the database. The key which identifies this
hash structure is:

123Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

1:2:3<content

The hash fields represent keys the same way as in previous
mappings. The difference is that CHM does not use a doc-
ument prefix to uniquely identify an element. The example
of this key is:

1:2>1

This key contains following array of children:

"1:2>1:3>1 | 1:2>1:3>2"

As we mentioned above Redis allows only string values.
Hence, we have to store children elements in a string
delimited by "|".

Attributes are stored in a similar way:
Key:

1:2>1<a

Content:

1"value1"2"value2"3"value3

As we can see attribute names are also replaced by IDs.
In this case we used quote symbol (”) as a delimiter. This
delimiter is conflict–free because quote must not be included
in an attribute’s value according to XML specification [11].
Full EBNF grammar of the proposed mapping is presented
on page 69 in Appendix E in Jíra’s Master’s Thesis [12].

CHM provides many advantages in contrast to previous
approaches. Rename, delete and move operations are exe-
cuted in a constant time O(1).

IV. IMPLEMENTATION

The implementation of algorithms mentioned in previous
section is covered in project named RedXML. RedXML is
written in Ruby language and is available as an open-source
project at github [13]. As a storage layer RedXML uses
Redis database.

This section provides information about the performance
optimization of the database structure.

A. Key Cutting

Key Cutting is a mapping approach that utilizes a memory
optimization techniques [14] implemented in Redis. Key
Cutting is built on a fact that storing hashes in Redis can
be much more memory efficient than storing key/string
pairs. This approach optimizes memory consumption of the
database.

For example value1932 => ”value” consumes more
memory than this hash representation: value19 =>
{”32” => ”value”}.

Main advantages of Key Cutting approach are:
• a decreasing of memory consumption by using hashes

instead of strings,
• fast load operation of the whole document.

This approach has also following disadvantages:

• if there exist many keys in a database, the delete
operation is slow (O(n)),

• decreasing of memory consumption is hardly pre-
dictable, since it differs from document to document.

B. Algorithms Optimization

The mapping algorithms were introduced in Section III,
as we try to improve performance of the implementation we
decided to optimize these mappings. The main idea of the
optimization is to reduce the number of database queries,
therefore we introduce following new keys:

1) IDenvironment:IDcollection:IDdocument<namespaces
– is a special key for document namespaces.
Its motivation is easier manipulation of a whole
document (where the namespaces are not important)
and faster querying (the namespace can be found by
its key when needed).

2) IDenvironment:IDcollection:IDdocument<info –
represents the content of the document. The elements
and theirs content can be accessed by:

• IDroot:IDelement>order – contains information
about a single element - its attributes, text content
and ordered set of its children keys.

• IDroot:IDelement>order>c>order – contains
the comment as a text.

• IDroot:IDelement>order>d>order – contains
the content of CDATA section.

This mapping allows us to query a document effectively
as an XPath query can be rewritten directly into keys.
Nevertheless some XPath queries (such as "//books") still
need to go through the whole document structure.

V. EXPERIMENTS

This section introduces results of several performance
experiments. Theirs aim was to show the capabilities of pro-
posed mappings and their limits and to compare RedXML
with native XML databases. We have chosen to compare
RedXML with native XML databases, because they are very
close to RedXML mapping techniques and granularity of
stored information is similar. The RedXML was compared
to the eXist [15], Berkeley DB XML [16] and BaseX [17].
These databases were chosen as they represent the state of
the art in the field of XML databases. According to the
measurement results we can choose the best way for future
optimizations.

Performance tests were made on two scenarios – docu-
ment loading and document saving. We used XML generator
XMLGen [18] to generate documents used for the perfor-
mance testing. XMLGen tool provides a switch -f to set
a size factor of generated document. Documents sizes are
shown in Table I.

124Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Table I
THE SIZE OF GENERATED DOCUMENTS USED IN THE EXPERIMENTS.

THE FACTOR COLUMN REPRESENTS VALUE OF THE XMLGEN’S
SWITCH -f.

Document name Size Factor
0-0-5.xml 1.4MB 0.01
0-1.xml 14.5MB 0.1
0-1-5.xml 21.7MB 0.15
0-2.xml 29.3MB 0.2

The main aim of the tests was to measure performance
capabilities and memory usage of Redis database accord-
ing to proposed algorithms. Both, an optimized and non-
optimized, versions of algorithms were used so the opti-
mization contribution can be verified. The measurement was
done in two steps. First we did evaluation of the proposed
mapping techniques. Second we compared these mappings
to common used native XML database systems.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30

T
im

e
[s

]

Document size [MB]

Naive Mapping
Abbreviated Key Mapping

Centralized Hash Mapping
Key Cutting Opt.

Figure 2. Saving documents of different sizes.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

T
im

e
[s

]

Document size [MB]

BaseX
Berkeley DB

eXist
RedXML

RedXML optimized

Figure 3. Saving documents of different sizes.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

T
im

e
[s

]

Document size [MB]

Naive Mapping
Abbreviated Key Mapping

Centralized Hash Mapping
Key Cutting Opt.

Figure 4. Loading documents of different sizes.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30

T
im

e
[s

]

Document size [MB]

eXist
RedXML

RedXML optimized

Figure 5. Loading documents of different sizes.

Hardware Configuration: In our experiments we used
the following hardware and software configuration:

• Processor: Intel(R) Core(TM) 2 Duo T5500 1.66 GHz
• Memory: 1.5 GB
• Operating System: Debian 6.0.4, Kernel 2.6.32-5-

amd64
• Redis version: 2.4.8

A. Databases Performance Comparison Results

The results of the performance tests for the document sav-
ing scenario of proposed approaches are shown in Figure 2.
It is obvious that Abbreviated Key Mapping is most effective
approach when saving large documents. All other mappings
perform almost the same way.

Figure 3 shows the performance of RedXML compared
to common native XML databases when saving documents.
The RedXML performance in optimized version is 25%
more effective than unoptimized version. On the other hand

125Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30

R
ed

is
 m

em
or

y
[M

B
]

Document size [MB]

Naive Mapping
Abbreviated Key Mapping

Centralized Hash Mapping
Key Cutting Opt.

Figure 6. Memory consumption of Redis according to different mapping
approaches.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30

M
em

or
y

[M
B

]

Document size [MB]

BaseX
Berkeley DB

eXist
RedXML

RedXML optimized

Figure 7. Memory consumption of different DB systems according to
document size.

other databases are much more effective when saving a
document. This is caused by an early stage of the RedXML
project and by the fact that RedXML creates a lot of
indices during saving, because of planned support of XQuery
queries.

The results for the document loading scenario of proposed
mappings are in Figure 4. Centralized Hash Mapping and
Key Cutting Optimized algorithms are performing much
faster than Naive Mapping and Abbreviated Key Mapping.
It shows that the design of CHM and KC was successfuly
implemented and it performs as intended.

The comparison with other databases is shown in Figure 5.
BaseX and Berkeley DB XML databases were not measured
because their document loading time was too short, it can be
caused by lazy loading of documents or because mentioned
databases saves a whole document so they are able to return
it very fast when needed. The eXist database is again faster

than RedXML or optimized RedXML, this can be partially
caused by the performance difference between Java (eXist)
and Ruby (RedXML). To speed up the document loading in
the RedXML database the lazy loading or saving a copy of
a whole document can be implemented.

The results of memory usage tests for the document saving
are in Figure 6; the most effective algorithm is Key Cutting.
It is 2.5x faster than Naive Mapping. Centralized Hash
Mapping and Abbreviated Key Mapping have also good
performance.

Figure 7 shows that database eXist is very effective
in memory representation of XML documents in contrast
with other databases for large documents. The optimized
version of RedXML is most effective from memory usage
perspective, even for large documents up to 30 MB it can be
more effective than Bekeley DB XML, BaseX and eXist, but
we would like to prove this hypothesis for larger documents
in the near future. This optimization was focused on memory
consumption and this benchmark verifies its implementation.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed four mappings of XML
documents to a key-value database, next we have pro-
vided their implementation and optimization for key-value
database Redis. Resulting XML-enabled database is called
RedXML. RedXML can be easily deployed on multiple
computers to achieve high scalability thanks to Redis plat-
form. According to solutions provided in related-work we
provide the solution that is dependent only on a few Redis
commands which have specified time complexity. Hence,
if we optimize these commands we can achieve better
performance of RedXML.

The RedXML database was compared to several native
XML databases from performance and memory consumption
point of view. The results are promising especially according
to memory consumption. In other benchmarks RedXML is
not performing as well as other database systems.

The future work on RedXML will focus on the opti-
mization of XML document querying as the main goal of
the project is to provide effective XQuery implementation.
Next research will focus on optimization of mapping an
XML document into key-value database according to known
queries over the mapped XML document.

REFERENCES

[1] “Redis,” Available: http://redis.io 21.9.2012.

[2] A. Vaidya and A. Gopal, “XML Representation using Hash
Key for Performance Improvement,” International Journal of
Computer Science and Application, no. 2010, 2010.

[3] “Oracle XML-Enabled Technolgy,” available: http://docs.
oracle.com/cd/B10464_05/web.904/b12099/adx01int.htm
27.9.2012.

126Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

http://docs.oracle.com/cd/B10464_05/web.904/b12099/adx01int.htm
http://docs.oracle.com/cd/B10464_05/web.904/b12099/adx01int.htm

[4] “IBM - DB2 database software,” Available: http://www-
01.ibm.com/software/data/db2/ 27.09.2012.

[5] A. Deutsch, M. Fernandez, and D. Suciu, “Storing semistruc-
tured data with STORED,” in Proceedings of the 1999 ACM
SIGMOD international conference on Management of data,
ser. SIGMOD ’99. New York, NY, USA: ACM, 1999, pp.
431–442.

[6] D. Florescu and D. Kossmann, “A Performance Evaluation
of Alternative Mapping Schemes for Storing XML Data in a
Relational Database,” INRIA, Rapport de recherche RR-3680,
1999.

[7] M. Klettke and H. Meyer, “Xml and object-relational database
systems - enhancing structural mappings based on statistics,”
in ACM SIGMOD Workshop on the Web and Databases, 2000,
pp. 63–68.

[8] P. Bohannon, J. Freire, P. Roy, and J. Simeon, “From XML
Schema to Relations: A Cost-Based Approach to XML Stor-
age,” ICDE, vol. 00, p. 64, 2002.

[9] A. Chebotko, M. Atay, S. Lu, and F. Fotouhi, “Xml subtree
reconstruction from relational storage of xml documents,”
Data Knowl. Eng., vol. 62, no. 2, pp. 199–218, 2007.

[10] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu,
J. Robie, and J. Siméon, “XQuery 1.0: An XML Query
Language,” 2007.

[11] T. Bray, F. Yergeau, J. Cowan, J. Paoli, C. M. Sperberg-
McQueen, and E. Maler, “Extensible Markup Language
({XML}) 1.1,” 2004.

[12] P. Jíra, “Transformation of XML into key-value database
Redis,” Master’s thesis, Czech Technical University in
Prague, Czech Republic, 2012. [Online]. Available: https:
//dip.felk.cvut.cz/browse/pdfcache/jirapave_2012dipl.pdf

[13] P. Jíra and P. Strnad, “RedXML Concept,” Available:
https://github.com/jirapave/RedisXmlConcept 21.9.2012.

[14] “Redis Memory Optimization,” Available:
http://redis.io/topics/memory-optimization 21.9.2012.

[15] “eXist Project Homepage,” Available: http://www.exist-db.org
21.9.2012.

[16] M. A. Olson, K. Bostic, and M. Seltzer, “Berkeley db,” in
Proceedings of the annual conference on USENIX Annual
Technical Conference, ser. ATEC ’99. Berkeley, CA, USA:
USENIX Association, 1999, pp. 43–43.

[17] C. Grün, S. Gath, A. Holupirek, and M. H. Scholl, “Xquery
full text implementation in basex,” in Database and XML
Technologies, 6th International XML Database Symposium,
XSym 2009, Lyon, France, August 24, 2009. Proceedings, ser.
Lecture Notes in Computer Science, Z. Bellahsene, E. Hunt,
M. Rys, and R. Unland, Eds., vol. 5679. Springer, 2009, pp.
114–128.

[18] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse, “The XML Bench-
mark Project,” CWI, Amsterdam, The Netherlands, Tech.
Rep. INS-R0103, 2001.

127Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

https://dip.felk.cvut.cz/browse/pdfcache/jirapave_2012dipl.pdf
https://dip.felk.cvut.cz/browse/pdfcache/jirapave_2012dipl.pdf

	Introduction
	Related work
	Algorithms
	Redis Database Structure
	Naive Mapping
	Abbreviated Key Mapping
	Centralized Hash Mapping

	Implementation
	Key Cutting
	Algorithms Optimization

	Experiments
	Databases Performance Comparison Results

	Conclusion and Future Work
	References

