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Abstract—Recently the volume of the graph data set is often
too large to be processed with a single machine in a timely
manner. A multi-user environment deteriorates this situation
with many graph queries given by multiple users. In this paper,
we address the problem of processing multiple graph queries
over a large set of graphs. We devise several methods that
support efficient processing of multiple graph queries based
on MapReduce. Particularly, we focus on processing multiple
queries for graph data in parallel with a single input scan. We
show that our methods improve the performance of multiple
graph query processing with various experiments.

Keywords-parallel processing; MapReduce; graph query; big
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I. INTRODUCTION

Graphs are widely used to model complex structures such
as chemical compounds, protein interactions, and Web data
in many applications [1]. However, many graph data sets are
often hard to handle within a single machine because of their
size and complexity, e.g., the PubChem project now serves
more than 30 million chemical compounds, the storage size
of which hits tens of terabytes [2].

It is required for users to find graphs that contain the
patterns in which they are interested from a graph data
set. This is formally called a graph query or subgraph
isomorphism problem, which belongs to NP-complete [3].
In a multi-user environment, many users may describe their
interesting patterns with their own graph-structured queries.
With the massive volume of graph data set and many query
graphs, it is more difficult to process graph queries within a
single machine in a timely manner.

Meanwhile, MapReduce has gained a lot of attention from
both of industry and academia [4]. MapReduce presents a
distributed method to processing data-intensive jobs with
no hassle of managing the jobs across nodes. In addition,
MapReduce has advantages in its scalability, fault-tolerance,
and simplicity [5].

In this paper, we address the problem of processing
multiple graph queries over a large set of graphs using
Hadoop [6], an open source implementation of MapReduce.
We first start by discussing a naı̈ve approach which performs
all pair-wise subgraph isomorphism tests between a graph
query set and a graph data set. Definitely, the naı̈ve approach
is very time-consuming. To reduce the number of expensive
subgraph isomorphism tests, we introduce a filter-and-verify
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Figure 1. A running example

scheme and propose two implementations of the scheme,
i.e., map-side verification and reduce-side verification. In
addition, we devise several alternatives considering feature
types and feature set comparison, which affect the overall
query processing time. We show our experimental results
with both synthetic and real data sets. To the best of
our knowledge, this is the first work to consider parallel
processing of multiple graph queries over a large graph data
set with MapReduce.

The rest of the paper is organized as follows. We discuss
related work in Section II. Section III presents preliminaries.
We propose our methods in Section IV and optimizations for
them in Section V. We provide our experimental results in
Section VI. Finally, we conclude this paper in Section VII.

II. RELATED WORK

Graph databases are categorized into two types: a graph-
transaction setting and a single-graph setting [7]. In the
graph-transaction setting, a graph database consists of a
set of relatively small graphs, whereas in the single-graph
setting, the data of interest is a single large graph. In this
paper, we focus on the graph-transaction setting consisting
of tens of millions of graphs.

MapReduce programming model relies on both data par-
allelism and data shipping paradigms [5]. The MapReduce
framework works in two stages: map and reduce. Input data
are partitioned into equal-sized blocks and each of blocks
is assigned to a mapper at map stage. Outputs of map
stages are stored in local disks, then shuffled and pulled to
reducers at reduce stage. This implies I/O inefficiency during
processing. Readers are referred to a recent survey for the
MapReduce framework and its up-to-date improvements [5].
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Blanas et al. [8] compared many join techniques available
on MapReduce for analysis of click stream logs at Facebook.
Vernica et al. [9] proposed a method to parallelize set-
similarity joins with MapReduce by utilizing prefix-filtering
scheme. Our work is motivated by some techniques for
supporting join processing in the MapReduce programming
model.

Some scientists also studied graph processing with
MapReduce. Luo et al. [10] solved a single graph query
processing problem under a very restricted assumption, i.e.,
each edge in a query graph must be uniquely identified by
labels of its endpoints and itself. Lin et al. [11] proposed sev-
eral design patterns applicable to iterative graph algorithms
such as PageRank [12]. There are also other studies about
large scale graph processing [13], [14]. However, they are
different from our work in that they focused on processing
a single large graph such as Web data or social network,
rather than a large set of small graphs. They also do not
address the subgraph isomophism problem at all.

III. PRELIMINARIES

We formally define a graph query problem that we deal
with in this paper. Then, we describe the way of representing
graph data in MapReduce. In addition, we introduce the
concept of features in graph query processing.

A. Problem Definition

A graph is denoted by a tuple g = (V , E, L, l), where
V is the set of vertices and E is the set of undirected edges
such that E ⊆ V × V . L is the set of labels of vertices
or edges, and the labeling function l defines the mapping:
V ∪E → L. We also denote the vertex set and the edge set
of graph g by V (g) and E(g), respectively. Moreover, we
denote the label of u ∈ V (g) and (u, v) ∈ E(g) by l(u)
and l(u, v), respectively.

Definition 1: Given two graphs g = (V , E, L, l) and g′ =
(V ′, E′, L′, l′), g is subgraph isomorphic to g′, denoted
g ⊆s g′ if and only if there exists an injective function
f : V → V ′ such that

1) ∀u ∈ V , f(u) ∈ V ′ and l(u) = l′(f(u)),
2) ∀(u, v) ∈ E, (f(u), f(v)) ∈ E′ and l(u, v) =

l′(f(u), f(v)).

Problem Statement: Let D = {g1, g2, · · · , gn} be a graph
data set. Furthermore, let Q = {q1, q2, · · · , qm} be a graph
query set such that |Q| << |D|. For each graph query
q ∈ Q, we find all the graphs to which q is subgraph
isomorphic from D.

Figure 1 shows a running example which will be
used throughout this paper. In the example, the answers of
two graph queries are A(q1) = {g1} and A(q2) = {g1},

where A(qi) represents a set of answers for qi such that
A(qi) = {gj |qi ⊆s gj ∧ gj ∈ D}.

B. Graph Representation

Data in MapReduce are modeled by a list of <key,
value> pairs, which are generally typed strings. Thus, all
graph data must be serialized to be the <key, value>
pairs for processing. We use the the following terms to refer
to our serialized graph data.
• gid: a unique identifier for a single graph g.
• gcode: a serialized format of g, which enumerates

vertices and edges in g, i.e., {|V (g)|, |E(g)|, l(V (g)),
E(g))}, where e ∈ E(g) is represented as ‘from-gid,
to-gid, l(e)’.

We call a pair of gid and gcode a graph
record. For example, query graph q2 in Figure 1(a)
is modeled by the pair of gid and gcode (‘q2’,
‘3, 3, A,B,B, 0, 1, b, 0, 2, b, 1, 2, b’).

C. Features in graph query processing

A feature is a substructure of a graph, which represents
partial structural information of the graph. There are various
kinds of features such as path, subtree, and subgraph [15]–
[17].

IV. THE PROPOSED METHOD

In this section, we first discuss a naı̈ve approach for
processing multiple graph queries using MapReduce. Two
feature set comparison methods are introduced in the fol-
lowing subsection. Finally, we propose two different imple-
mentations based on MapReduce, both of which follow a
filter-and-verify scheme.

A. Naı̈ve approach

A simple solution for parallel processing of multiple graph
queries over a massive graph data set is to perform subgraph
isomorphism test in parallel for each pair of query graph
q and data graph g such that q ∈ Q and g ∈ D. Since
|Q| << |D|, we partition D into equal-sized blocks and
simultaneously perform the test for each block with query set
Q. This is akin to partitioned nested-loop join techniques in
parallel DBMS [18]. However, the naı̈ve approach requires
to perform subgraph isomorphism test |Q| × |D| times in
total. This consumes a lot of time for query processing.

Therefore, we rather use a filter-and-verify scheme to
reduce the number of subgraph isomorphism tests. In the
scheme, we first get candidate data graphs then test subgraph
isomorphism with only the candidate graphs, rather than
directly testing subgraph isomorphism for all data graphs.
For this, we filter irrelevant graphs out by comparing a set
of features from a query graph with a set of features from a
data graph. Although the filtering phase may produce false
positives, it reduces the overall execution time significantly
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since it excludes many graphs in advance so that the number
of graphs to be verified is quite reduced.

B. Feature set comparison

In our approach, filtering is a set-inclusion test between
two feature sets, one of which comes from a query graph
q and the other comes from a data graph g. To become a
candidate, a feature set of data graph g must include all
items in a feature set of query graph q. The problem here is
how quickly to perform the set-inclusion test between two
feature sets. A basic approach is akin to nested-loop join i.e.,
each feature of a query graph is iteratively compared with
the features of a data graph one by one until all features of
a query graph are tested with features of all data graphs.

To address this problem, we devise a filtering method
based on Bloom filter [19], a space-efficient probabilistic
structure that is useful for existence test. The detailed
procedure is as follows. We first assign each item in a
feature set for data graph g a unique number. Then, we
convert the feature set to a bitarray by applying multiple hash
functions to the unique number associated with each feature.
During query processing, if bit positions in the bitarray are
set to 1 for all items in the feature set of query graph q,
the corresponding data graph becomes a candidate of q. Of
course, Bloom filter may generate false positives. We test
how such false positives affect the overall performance of
our system in experiments. Note that we build Bloom filters
only for data graphs, but not for query graphs as the average
number of features extracted from query graphs is much less
than that from data graphs.

C. Two MapReduce implementations

With the filter-and-verify scheme, we examine if we
benefit from where to put the verification step into a
MapReduce job: map-side and reduce-side. In the map-side
verification method, both filtering and verification are
performed at map stage. The results of map stage are
directly emitted into HDFS [6], a distributed filesystem
used in Hadoop, and reduce stage works nothing at all.
Workload across mappers are expected to be balanced by
runtime scheduling scheme in the MapReduce framework
[4]. On the contrary, in the reduce-side verification
method, mappers perform only the filtering step and
reducers perform subgraph isomorphism tests. The map-
side verification method is similar to a map-merge join
technique in MapReduce except that it requires to perform
verification step for each pair of graphs, instead of join
operation with two relations [8].

1) Map-side verification: Our map-side verification
method is described in Algorithm 1. Reduce stage is omitted,
since it contains no action. In MapReduce, input data are first
partitioned into equal-sized blocks and each of the blocks
is assigned to a mapper at map stage. Each mapper reads a

1 class Mapper
2 method initialize()
3 Q← load a list of [gid, gcode] from HDFS
4 Q.gfeature[ ]← generate features from Q
5 method map(K : null, V : [gid,gcode])
6 feature← generate features from V
7 foreach query graph q in Q do
8 if q.gfeature ⊆ feature then
9 if SubIsoTest(q.gcode, V.gcode) then

10 emit(q.gid, V.gid)
Algorithm 1: The map-side verification method

1 class Mapper
2 method initialize()
3 Q← load a list of [gid, gcode] from HDFS
4 Q.gfeature[ ]← generate features from Q
5 initialize a buffer B
6 method map(K : null, V : [gid,gcode])
7 feature← generate features from V
8 foreach query graph q in Q do
9 if q.gfeature ⊆ feature then

10 B[V ]← B[V ] ∪ {q.gid}
11 method close()
12 foreach data graph V in B do
13 emit(V , B[V ])
14 class Reducer
15 method initialize()
16 Q← load a list of [gid, gcode] from HDFS
17 method reduce(K ′ : [gid,gcode],

V ′ : a list of gids)
18 foreach query id qid in V ′ do
19 code← retrieve gcode with qid from Q
20 if SubIsoTest(code, K ′.gcode) then
21 emit(qid, K ′.gid)

Algorithm 2: The reduce-side verification method

block of graph data set D. When launching a MapReduce
job, the MapReduce framework delivers a set of graph
queries to each mapper via distributedCache [6], a
facility to cache read-only files in Hadoop. Thus, we load a
list of query graphs from a local disk, although Algorithm
1 generally describes loading of query graphs from HDFS
(line 3). Each mapper generates features from graph queries
in Q (line 4). For each graph record in the block of D,
the map method also generates features (line 6). Then,
the map method compares the feature set of each query
graph q with the feature set of data graph V (line 8). If
contained, the map method verifies the candidate by testing
subgraph isomorphism (line 9). Note that SubIsoTest(q,
g) requires gcode of two graphs to check whether graph
q is subgraph isomorphic to graph g. A feature comparison
operator ⊆ is set-inclusion relation in the algorithm, however
its details depend on which feature type is used.
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2) Reduce-side verification: Algorithm 2 describes the
reduce-side verification method. This scheme is more faith-
ful to the MapReduce programming model. Unlikely to the
Mapper in Algorithm 1, the verification step moves to reduce
stage. Moreover, we perform pre-aggregation of intermediate
data in mapper, i.e., in-mapper combining [11], to reduce the
size of intermediate data delivered to reducers.

The initialize method is similar to that of Algorithm
1 except for buffer B, which holds a pair of a data graph V
and the corresponding gids of its candidate graph queries
(line 5). In the map method, candidates are identified by
comparing features and those are pushed into buffer B for
delivery (lines 9–10). When closing the mapper, all pairs of
data graph V and the corresponding gids of graph queries
are emitted (lines 12–13). The reduce method reads data
graph K ′ and a list of gids of candidate graph queries V ′

as input (line 17). Here, the input means that the data graph
V is a candidate of every graph query in V ′. For each graph
query, the reduce method tests subgraph isomorphism to
data graph K ′ (line 20). Final results are emitted with a pair
of gids of query graph and data graph (line 21). Figure 2
shows an illustration of the reduce-side verification method.
In the figure, gfeature represents a set of features. Details
about the features will be explained in the following section.

V. OPTIMIZATION

We discuss two optimization techniques for the proposed
methods in this section.

A. Reducing I/Os

As noted in many studies, MapReduce is not optimized
for I/O efficiency. Thus I/O cost is a dominant factor for per-
formance in MapReduce [5]. For that reason, we delicately
model our data format for I/O efficiency. In Algorithm 2,
we make map stage emit its result as a pair of a data graph
and a list of gids of candidate query graphs, instead of
a pair of a query graph and its candidate data graph. Two
reasons lie in the decision. First, it saves many I/Os which
are required to deliver the overall structure of query graphs
for each candidate data graph separately. The reduce
stage eliminates redundant loading of query graphs across
different data graphs, then reads once the gcode of each
query graph from HDFS. Furthermore, since |Q| << |D|,
the lookup cost of loading graph structure with a given gid
is reduced when choosing Q rather than D. Second, this
strategy generates more groups of intermediate results. It is
more suitable for load balancing. If groups of intermediate
results are small, sometimes data skewness may involve
performance degradation [20].

B. Feature type

The choice of feature types affects the number of
candidates. A conventional feature type of a graph g is edge

Table I
SUMMARY OF PROPOSED METHODS

Verification
position Feature type Feature set compari-

son

- map-side
- reduce-side

- edge label
- edge label with count
info.
- edge label with count
and cycle info.

- nested-loop
- Bloom filter

label (EL), i.e., (l(u), l(v), l(u, v)) for edge (u, v) ∈ E(g).
Edge label must be unique in a feature set, meaning that
identical edges are not shown in a feature set. Luo et
al. [10] adapts this feature type. Based on edge label,
we propose two optional feature types. First, we add the
number of occurrences of each edge label in a graph, which
is denoted by edge label with count (ELC). This is simple
but largely drops false positives. The other is to use cycle
information in a graph, since cycles are rare in a sparse
graph [17]. We call this edge label with count and cycle
(ELC+CL).

Example 1: Query graph q2 in Figure 1(a) has fea-
tures of edge label {(A,B, b), (B,B, b)}, edge label
with count {(A,B, b, 1), (A,B, b, 2), (B,B, b, 1)} where
the last number of each feature is the occurrences of
that edge label, and edge label with count and cycle
{(A,B, b, 1), (A,B, b, 2), (B,B, b, 1), cycle(0, 1, 2)} where
cycle(...) denotes a cycle consisting of those vertices.

Table I summarizes our methods discussed so far.

VI. EXPERIMENTS

A. Experimental Setup

Experiments were performed on a 9-node cluster, one
of which was designated as a name node. Each data node
is equipped with an Intel i5-2500 3.3GHz processor, 8GB
memory and a 7200RPM HDD, running on CentOS 6.2.
All nodes are connected via a Gigabit switching hub. We
select the datasets given by authors of iGraph [15], a graph
processing benchmark tool. Algorithms were implemented
in C++ and executed via Hadoop Pipes [6], a C++ library
that provides communications with Hadoop. We use VF2
[21] to test subgraph isomorphism between two graphs. For
real graph data sets, we generated various sized chemical
data also used in [15], each of which has 23.98 vertices and
25.76 edges in average. For synthetic data sets, we chose the
dataset named Synthetic.10K.E30.D3.L50 from [15], each of
which has 14.23 vertices and 30.53 edges with 50 distinct
vertex/edge labels in average. The number of graphs in
a graph data set, |D|, is 10 million. We also randomly
generated several sets of graph queries, which contain a
various number of queries, i.e., |Q| = 1, 10, 100, and 1000.
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Figure 2. An illustration of parallel processing of graph queries shown in Algorithm 2 with MapReduce
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B. Performance Analysis

We first compared three methods, i.e., naı̈ve, map-
side verification, and reduce-side verification, of process-
ing graph queries with both real and synthetic datasets.
Our results are shown in Figure 3 and 4. The map-side
verification method showed the best performance in both
cases. In addition, overall execution time decreases linearly
with the increasing number of nodes in a cluster. However,
The map-side verification could not outperform the reduce-
side verification method. The reason is that the size of our
intermediate results is marginal, since we gave our best
effort to reduce I/Os while delivering intermediate results to
reducers. We also compared three feature types as shown
in Figure 5 and 6. The feature type of edge label with
count showed the best performance. Although the most
complex feature type, i.e., edge label with count & cycle
(ELC+CL), has the least number of average candidates, it
was not the best since it spent much time in extracting
features and testing set-inclusion as shown in Figure 7 (in
the figure, CPU time in the right axis means summation
of all the elapsed time of mappers in Algorithm 2). Next,
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Figure 7. Candidate ratio with different feature types
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Figure 8. MapReduce job execution with real dataset

we tested partitioned nested-loop and Bloom filter-based
filtering schemes. We built a 160-bit length Bloom filter
for each g ∈ D with 4 hash functions. Since |E(g)|,
g ∈ D is 25.76 in average, the probability of false positives
that the Bloom filter has is 5.2%. Figure 8 explains time
taken by map and reduce stages in two filtering schemes
running on Hadoop. In nested-loop filtering scheme, map
stage took 529 seconds and 8,288 seconds in reduce stage.
Bloom filter-based filtering improves the filtering time with
462 seconds. However, overall time was rather extended to
8,723 seconds. The reason is that as the Bloom filter-based
filtering scheme generates more candidates, thus it requires
more subgraph isomorphism test that is a dominant factor
in execution time. Finally, we tested the scalability of our
methods on MapReduce, varying the number of data graphs
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and query graphs. As shown in Figure 9 and 10, filter-and-
verify scheme on MapReduce scales linearly with both the
number of data graphs and query graphs.

VII. CONCLUSION

In this paper, we applied the MapReduce framework to
process multiple graph queries over a large graph data set.
Lessons learned in this paper are as follows. Filter-and-
verify scheme is better than the naı̈ve approach as expected.
Complex features help our system improve its execution
time, but there is a tradeoff that feature extraction and
comparison overhead may harm the overall execution time.
Lastly, reduction of the number of candidates is more crucial
for the overall execution time than reduction of the filtering
time.
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