
A Secure Database System using Homomorphic Encryption Schemes

1Youssef Gahi, 2Mouhcine Guennoun, 2Khalil El-Khatib
1Ecole Mohammadia d'Ingénieurs B.P 765 Avenue Ibn Sina, Agdal,

Rabat, Morocco
2University of Ontario Institute of Technology, 2000 Simcoe Street North,

Oshawa, Ontario, Canada. L1H 7K4
youssef.gahi@gmail.com, mouhcine.guennoun@uoit.ca, khalil.el-khatib@uoit.ca

Abstract—Cloud computing emerges as an attractive solution
that can be delegated to store and process confidential data.
However, several security risks are encountered with such a
system as the securely encrypted data should be decrypted
before processing them. Therefore, the decrypted data is
susceptible to reading and alterations. As a result, processing
encrypted data has been a research subject since the
publication of the RSA encryption scheme in 1978. In this
paper we present a relational database system based on
homomorphic encryption schemes to preserve the integrity and
confidentiality of the data. Our system executes SQL queries
over encrypted data. We tested our system with a recently
developed homomorphic scheme that enables the execution of
arithmetic operations on ciphertexts. We show that the
proposed system performs accurate SQL operations, yet its
performance discourages a practical implementation of this
system.

Keywords-Private Information Retrieval; Secure Database;
Homomorphic Encryption Schemes; Privacy.

I. INTRODUCTION
Cloud computing is an attractive solution that can

provide low cost storage and processing capabilities for
government agencies, hospitals, and small and medium
enterprises. It has the advantage of reducing the IT costs and
providing more services for the requesting parties through
making specialized software and computing resources
available. However, there are major concerns that should be
considered by any organization migrating to cloud
computing. The confidentiality of information as well as the
liability for incidents affecting the infrastructure arise as two
important examples in this context. Indeed, cloud computing
poses several data protection risks for the cloud’s clients and
providers. For example, the cloud’s client may not be aware
of the practices according to which the cloud’s provider
processes the stored data. Therefore, the cloud’s client
cannot guarantee that the data are processed (for example,
altered or deleted) in a legal and accepted manner.

All of the above mentioned issues can be resolved if the
data in the cloud are stored and processed in encrypted form.
The latter is possible if the encryption scheme can support
addition and multiplication of the encrypted data. Many
encryption schemes support one of these operations, like the
encryption schemes in [1-4]. A cryptosystem which supports
both addition and multiplication (referred to as the
homomorphic encryption scheme) can be effective data
protection, and enables the construction of programs that
receive encrypted input and produce encrypted output. Since

such programs do not decrypt the input, they can be run by
an un-trusted party without revealing their data and internal
states. Such programs will have great practical implications
in the outsourcing of private computations, especially in the
context of cloud computing.

Homomorphic cryptosystems have received valuable
attention in the literature, see [5][6][7]. In theory, the data
can be encrypted by the client, and then sent to the cloud’s
provider for storage or processing. Only the client holds the
decryption keys necessary to read the data. Despite the fact
that this type of processing may increase the amount of
computing time, the benefits associated with it are worth the
processing overhead. Indeed, this model of computing can
preserve the confidentiality and integrity of the data while
delegating the storage and processing to an un-trusted third
party.

In this paper, we present a novel technique to execute
SQL statements over encrypted data. We develop a secure
database system that processes these queries. The parameters
of SQL queries are encrypted by the client and sent to the
server for processing. The latter performs the requested
operation over an encrypted database and returns an
encrypted result to the client. The advantage of this system is
that the database server knows neither the content nor the
position of the records affected by the query.

The remainder of this paper is organized as follows. In
Section II, we review the literature for the work related to
private information retrieval (PIR) approaches. Section III
provides a formal description of our secured SQL statements
approach. Section IV presents a homomorphic cryptosystem
that we use to build a prototype system. Section V presents
an implementation of a secure relational database system. In
Section VI we provide performance analysis of the proposed
secure database system. Finally, Section VII concludes our
work and provides future research directions.

II. PRIVATE INFORMATION RETRIEVAL
Chow et al. [8] discussed the importance of cloud

computing, and how this technology can be enticing due to
its flexibility and cost-efficiency. The authors pointed out
that the adoption of such technology is still below ambition.
Some users are still concerned about the security of these
clouds. Even those who started using the technology, they
only utilize it with their less sensitive data. The limited usage
of cloud computing is mainly due to the lack of control over
the communicated data. The authors highlight that people
require explicit guarantees that their data will be protected
under well-defined policies and mechanisms. However, no

54

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

technical security solutions were proposed to back-up their
information centric model where data can self defend itself
in a hostile or an un-trusted environment.

The private information retrieval (PIR) approach,
introduced by Chor et al. in [9], achieves the retrieval of an
ith bit in a block without revealing information about the bit
retrieved or about the request for the bit itself. This approach
has been widely used as a basis for several tools, and has
supported various distributed applications. However, the
approach requires more improvements and the work with it
is still in progress, both at the security of the communication
channel level and the hidden client identity level.

Raykova et al. [10] extended the PIR approach by
proposing a secure anonymous search system. The system
employs keyword search such that only authorized clients
have access to their blocks. This system is capable of
mapping the database content to the appropriate client, thus
guaranteeing the privacy of the data and the query. The
ultimate target of Raykova’s system is to ignore the identity
of the client while protecting the database from malicious
queriers.

Shang et al. [11] tackled the problem of protecting the
database itself. The problem is studied through monitoring
the amount of data disclosed by a PIR protocol during a
single run. The information attained from the monitoring
process is used to understand how a malicious querier can
conduct attacks to retrieve excessive amount of data from the
server.

PIR has also been used to develop authentication
systems. Nakamura et al. [12] constructed a system with
three components, a querier that initiates requests, an
authentication-server that processes these requests, and a
database that returns the appropriate data in response to the
request. This system ensures the security of data and the
anonymous communication between the querier and the
database. Yinan and Cao [13] used the PIR approach to
propose a system that controls the access to the database.
According to this system, the privacy of data is enforced by
enabling each authorizer to give or deny access to his/her
own data with a hierarchical authorization access right
scheme.

Among the most important criteria in PIR protocol are
the communication cost and the amount of data sent back to
the querier. The trivial solution of the PIR protocol is to send
back the entire database to the client. However, this solution
is expensive, even for a simple request that results in
retrieving two matching records. Other approaches proposed
to retrieve only the requested data, by using replicated
databases that are stored at multiple servers. In this case, the
request is forwarded to all servers. With this approach,
although we deal with multiple replicated databases, the
privacy is better protected. However, this approach is still
complicated and may result in extended processing and
communication times. Gentry et al. [14] proposed a scheme
to retrieve a bit or a block from a database with a constant
communication rate. Melchor et al. [15] proposed a scheme
that reaches the available data with a reasonable
communication cost while achieving lower computational
cost compared to other PIR protocols.

III. SECURED SQL OPERATIONS
In this section, we develop a secure database system that

processes SQL queries over encrypted data. As shown in
Figure 1, parameters of the queries are encrypted by the
client and sent to the server for processing. The latter
performs the requested operation and returns encrypted
results to the client.

Figure 1. Secure Data Retrieval

We describe below the circuit of a simple SQL SELECT
query:

SELECT * from T where c=v

where the value v is in encrypted form. The trivial

solution to securely perform this statement is to send back to
the client the entire database, but this solution suffers from
complexity and scalability issues. Instead, we propose a
methodology to implement the SELECT circuit at the server
side, while preserving the confidentiality and the privacy of
the request.

The processing of the SELECT query is divided into
three sub-circuits. Firstly, we calculate the following index
for each record R in the table T:

where size is the number of bits in column c; and

are the ith bits of column c and search criteria v, respectively.
 is a one bit value that is equal to 1 if v matches the value

of column c, 0 otherwise.
Next, we identify the nth record that matches the selection

criteria. For that purpose, we consider to be the
encryption of n under public key pk.

For each record R we calculate the following sum:

We calculate a second index :

 is equal to 1 if the record R is the nth record that

matches the selection criteria, 0 otherwise.
Then, we multiply every bit of each record R in table T

by the corresponding value .

55

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

This latter operation forms a table that is related to the
original table T as follows:

Finally, by adding all records of table , we retrieve the

nth record Rs that matches the selection criteria:

If no record matches the selection criteria, a record

containing zeros will be returned to the requester.
It is worth noting that all calculations are performed over

encrypted data. The server does a blind processing to retrieve
the nth record that matches the selection criteria. It neither
has access to the content of the retrieved record nor to its
position within the table.

With slight modifications to the select circuit, most of
SQL operations can be supported by our proposed secure
database system. For example, to implement the UPDATE
operation, one can simply implement the following circuit:

where the record U is the new value to update the record

R matching the criteria of the query.
Similarly, to delete a record from table , one can replace

its content by zero. The DELETE operation can be
implemented by the following circuit:

IV. HOMOMORPHIC ENCRYPTION SCHEME
In [6], Gentry proposed a fully homomorphic encryption

scheme that enables to perform an arbitrary number of
arithmetic operations (i.e. addition and multiplication) on
encrypted data. The components of the encryption scheme
are described below.

Security Parameters: N = λ, P = λ2, and Q = λ5.

A. Key Generation
The private key sk is a random P-bit odd number. The

public key consists of a list of integers that are the
“encryptions of zero” using the encryption scheme with the
secret key sk as a public key.

Generate a set of rational numbers in
[0,2[such that there is a sparse subset of size

 with .
Set sk* to be the sparse subset S, encoded as a vector

 with hamming weight α.

Set to be the public key.

B. Encryption (pk*,m)
Set to be a random N-bit number such that m and m’

have the same parity:

Then compute c as:

where q is a random Q-bit number. Then the ciphertext c

is post-processed to produce a vector ,
defined by:

The output ciphertext c* consists of c and

.

C. Decryption (sk*, c*)

D. Arithmetic Operations
Addition and multiplication can be performed on clear

text by simply adding and multiplying the ciphertexts,
respectively.

The output ciphertext c* consists of c together with the

result of post-processing the resulting ciphertext with .

E. Bootstrapping the Encryption Scheme
The scheme described above is referred to as a somewhat

homomorphic scheme because it works only if the value c%p
(noise of the encryption) is smaller than p/2. After a finite
number of arithmetic operations, the noise exceeds the p/2
threshold and the decryption scheme does not work anymore.

Gentry developed a novel method to remove the noise in
the ciphertext [7]. He proposed to recrypt the ciphertext c to
remove the noise. Since the scheme is homomorphic, one
can encrypt the ciphertext c into a new ciphertext (the
plaintext is encrypted twice), and by using the homomorphic
properties of the scheme, one can decrypt the inner layer of
encryption to obtain a ciphertext c2 with a lower value of
noise.

Figure 2. Removing noise from original ciphertext (bootstrapping)

C2

C1

56

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

As illustrated in Figure 2, a bit m is encrypted with public
key pk to produce the ciphertext c1. After a finite number of
arithmetic operations, the noise associated with the
ciphertext c1 reaches a level that does not permit any
additional arithmetic operation. To remove the noise, the
bootstrapping technique consists of recrypting the bit m.
Every bit of ciphertext c1 is encrypted with the public key pk.
The output is ciphertext that doubly encrypts bit m. The
decryption circuit is applied to remove the inner layer of
encryption. This latter operation requires the knowledge of
the private sk. Therefore, the private key is encrypted with
public key pk; and then shared with the server. Since the
encryption scheme is homomorphic, the decryption can be
performed on the doubly encrypted ciphertext to remove the
inner layer. The recryption produces a new ciphertext c2 with
a value of noise that has an upper bound according to the
proof in [6].

By employing the bootstrapping technique, performing
an arbitrary number of arithmetic operations on ciphertexts
becomes possible.

V. IMPLEMENTATION
In our implementation, we aim at proving that it is

possible to perform SQL queries over an encrypted database.
For example, the user can specify a search criterion through
a database. Then, the client software encrypts the parameters
of the query, corresponding to the search criterion, and sends
it to the appropriate server. The server retrieves the requested
record (blind processing) from the database and returns it to
the client. The client software decrypts the record and
displays it to the user.

We built a simple medical application containing 10
patients’ records. In Figure 3, we show the result of the
SELECT query. This is how the result appears in a
screenshot of the client side of our built application.

The application supports the following SQL operations:
• SELECT with wildcard characters (*, ?) and

relational operators (< >).
• UPDATE with wildcard characters (*, ?) and

relational operators (< >).
• DELETE with wildcard characters (*, ?) and

relational operators (< >).
• Statistical operations like COUNT and AVG.

Figure 3. Client side of the application

It is worth mentioning that the implementation of the
medical application was built using a simplified and non-
secure version of the somewhat homomorphic scheme. This
is due to performance issues as it is impractical to perform
our tests using the fully homomorphic cryptosystem. We
chose the security parameters in such a way to support all the
SQL operations with no need to employ the bootstrapping
technique. We discuss the performance of our system in the
next section.

VI. PERFORMANCE ANALYSIS
Table 1 lists the number of arithmetic operations required

to execute some basic SQL statements over an encrypted
database of 10 records. From this table we can see that
processing data in encrypted form creates a substantial
computation overhead.

TABLE I. NUMBER OF ARITHMETIC OPERATIONS

 Add. & Mult. Add. Mult.

SELECT 619839 309892 309947

UPDATE 67595 25355 42240

DELETE 28171 5643 22528

To understand the processing time required to process a

SQL statement, we measured the time required to perform
the product of two n-bits numbers in encrypted form using
the fully homomorphic cryptosystem presented in [6].
Towards that end, we used a computer machine with 1.7
GHz processor and 3GB of RAM memory. Figure 3 shows
the amount of time, in seconds, required to compute the
multiplication circuit.

Figure 4. Processing time required to perform the product of two n-bits
integers

As we can see in Figure 4, it takes 23 minutes to compute
the product of two 16-bit integers. This latency is due to the
bootstrapping technique or more precisely to the recrypt
function. Indeed, according to our measurements, it takes 1
second to recrypt a ciphertext. Therefore, there is a need of at
least 7 days (i.e, 619839 * 1 second) to retrieve a row from a
10-record database.

The implementation of the system proves that the
execution of SQL statements over encrypted data is feasible.

57

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

However, the time required to execute these statements is
very high and therefore is not suitable for real-time
transactions that involve a large database (i.e. several
terabytes database). This drawback is mainly due to the
homomorphic encryption scheme. In fact, there might be
more efficient techniques to optimize the implementation,
that is, one could perform recryption only when it is
necessary, since the noise value can be bounded; however,
we do believe that a more practical homomorphic
cryptosystem is yet to be developed.

VII. CONCLUSION & FUTURE DIRECTIONS
The concept of processing encrypted data is promising to

revolutionize traditional computing. Indeed, this concept has
many direct applications in cloud computing environments,
banking, electronic voting and many other applications.

In this paper we developed the first secure database
system based on a fully homomorphic encryption scheme.
We presented the circuits to implement SQL statements over
encrypted data. We built a prototype of a database system
where data is stored and processed in encrypted form. The
database server can execute most of the SQL statements in a
blind fashion, that is, it returns the results without any
knowledge of the content or the position of the records
extracted/affected. We conducted performance analysis to
measure the time needed to execute a simple query on the
database. We found that the current technology is not
sufficiently mature yet as it is time-consuming. Indeed, the
encryption schemes proposed by Gentry et al. in [5][6][7] are
very impractical. According to our measurements, the time
needed to perform simple calculations is substantial. We
believe that there still is a great opportunity for researchers to
develop more efficient homomorphic encryption schemes.

As future work, we are planning to work on the
optimization of the efficiency of the system. Processing can
be parallelized in order to take advantage of multiple
processors executing the encrypted requests. We will also
investigate how to reduce the number of recryptions needed.
Indeed, since the noise value can be bounded, decryption
should be necessary only when the ciphertext cannot support
an additional arithmetic operation. We will are planning to
develop a new scheme to encrypt the SQL circuits. In the
current system, the server does know the operation that was
performed (SELECT, UPDATE, etc.). If we can encrypt the
SQL circuits, the system will preserve the confidentiality of

the data and operations performed on these data. We believe
that this new system can be the foundation of a highly secure
cloud computing environment.

REFERENCES
[1] R. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining

Digital Signatures and Public-Key Cryptosystems, Communications
of the ACM 21 (2): pp. 120–126, 1978.

[2] T. ElGamal, A Public-Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms, IEEE Transactions on Information
Theory, pp. 469–472, 1985.

[3] S. Goldwasser and S. Micali, Probabilistic Encryption. Journal of
Computer and System Sciences, 28(2): pp. 270-299, April 1984.

[4] P. Paillier, Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes, Advances in Cryptology — EUROCRYPT ’99
In Advances in Cryptology — EUROCRYPT ’99 , Vol. 1592 (1999),
pp. 223-238, 1999.

[5] M. V. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, Fully
Homomorphic Encryption over the Integers. EUROCRYPT 2010: pp.
24-43, June 2010.

[6] C. Gentry, Computing arbitrary functions of encrypted data,
Commun. ACM, Vol. 53, No. 3., pp. 97-105, March 2010.

[7] C. Gentry, A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009.

[8] R. Chow, P. Golle, M. Jakobsson, R. Masuoka, and J. Molina,
Controlling Data in the Cloud : Outsourcing Computation without
Outsourcing Control. CCSW’09, pp. 85-90, Chicago, Illinois, USA,
November 13, 2009.

[9] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private
Information Retrieval, Journal of the ACM, 45(6): pp. 965-982, 1998.

[10] M. Raykova, B. Vo, and S. Bellovin, Secure Anonymous Database
Search, CCSW’09, pp. 115-126, Chicago, Illinois, USA, November
13, 2009.

[11] N. Shang, G. Ghinita, Y. Zhou, and E. Bertino, Controlling Data
Disclosure in Computational PIR Protocols. ASIACCS’10, pp. 310-
313, Beijing, China, April 13–16, 2010.

[12] T. Nakamura, S. Inenaga, D. Ikeda, K. Baba, H. Yasuura,
Anonymous Authentication Systems Based on Private Information
Retrieval. Networked Digital Technologies. NDT '09, pp.53-58, 28-
31 July 2009.

[13] S. Yinan and Z. Cao, Extended Attribute Based Encryption for
Private Information Retrieval. Mobile Adhoc and Sensor Systems,
2009. MASS '09, pp. 702-707, 12-15 Oct. 2009.

[14] C. Gentry and Z. Ramzan, Single-Database Private Information
Retrieval with Constant Communication Rate. ICALP 2005, LNCS
3580, pp. 803–815, 2005.

[15] C. A. Melchor and P. Gaborit, A Fast Private Information Retrieval
Protocol. ISIT 2008, pp. 1848-1852, Toronto, Canada, July 6 - 11,
2008.

58

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

	I. Introduction
	II. Private Information Retrieval
	III. Secured SQL Operations
	IV. Homomorphic Encryption Scheme
	A. Key Generation
	B. Encryption (pk*,m)
	C. Decryption (sk*, c*)
	D. Arithmetic Operations
	E. Bootstrapping the Encryption Scheme

	V. Implementation
	VI. Performance Analysis
	VII. Conclusion & Future Directions
	References

