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Abstract—Cloud computing emerges as an attractive solution 
that can be delegated to store and process confidential data. 
However, several security risks are encountered with such a 
system as the securely encrypted data should be decrypted 
before processing them. Therefore, the decrypted data is 
susceptible to reading and alterations. As a result, processing 
encrypted data has been a research subject since the 
publication of the RSA encryption scheme in 1978. In this 
paper we present a relational database system based on 
homomorphic encryption schemes to preserve the integrity and 
confidentiality of the data. Our system executes SQL queries 
over encrypted data. We tested our system with a recently 
developed homomorphic scheme that enables the execution of 
arithmetic operations on ciphertexts. We show that the 
proposed system performs accurate SQL operations, yet its 
performance discourages a practical implementation of this 
system. 

Keywords-Private Information Retrieval; Secure Database; 
Homomorphic Encryption Schemes; Privacy. 

I.  INTRODUCTION 
Cloud computing is an attractive solution that can 

provide low cost storage and processing capabilities for 
government agencies, hospitals, and small and medium 
enterprises. It has the advantage of reducing the IT costs and 
providing more services for the requesting parties through 
making specialized software and computing resources 
available. However, there are major concerns that should be 
considered by any organization migrating to cloud 
computing. The confidentiality of information as well as the 
liability for incidents affecting the infrastructure arise as two 
important examples in this context. Indeed, cloud computing 
poses several data protection risks for the cloud’s clients and 
providers. For example, the cloud’s client may not be aware 
of the practices according to which the cloud’s provider 
processes the stored data. Therefore, the cloud’s client 
cannot guarantee that the data are processed (for example, 
altered or deleted) in a legal and accepted manner.  

All of the above mentioned issues can be resolved if the 
data in the cloud are stored and processed in encrypted form. 
The latter is possible if the encryption scheme can support 
addition and multiplication of the encrypted data. Many 
encryption schemes support one of these operations, like the 
encryption schemes in [1-4]. A cryptosystem which supports 
both addition and multiplication (referred to as the 
homomorphic encryption scheme) can be effective data 
protection, and enables the construction of programs that 
receive encrypted input and produce encrypted output. Since 

such programs do not decrypt the input, they can be run by 
an un-trusted party without revealing their data and internal 
states. Such programs will have great practical implications 
in the outsourcing of private computations, especially in the 
context of cloud computing. 

Homomorphic cryptosystems have received valuable 
attention in the literature, see [5][6][7]. In theory, the data 
can be encrypted by the client, and then sent to the cloud’s 
provider for storage or processing. Only the client holds the 
decryption keys necessary to read the data. Despite the fact 
that this type of processing may increase the amount of 
computing time, the benefits associated with it are worth the 
processing overhead. Indeed, this model of computing can 
preserve the confidentiality and integrity of the data while 
delegating the storage and processing to an un-trusted third 
party. 

In this paper, we present a novel technique to execute 
SQL statements over encrypted data. We develop a secure 
database system that processes these queries. The parameters 
of SQL queries are encrypted by the client and sent to the 
server for processing. The latter performs the requested 
operation over an encrypted database and returns an 
encrypted result to the client. The advantage of this system is 
that the database server knows neither the content nor the 
position of the records affected by the query. 

The remainder of this paper is organized as follows. In 
Section II, we review the literature for the work related to 
private information retrieval (PIR) approaches. Section III 
provides a formal description of our secured SQL statements 
approach. Section IV presents a homomorphic cryptosystem 
that we use to build a prototype system. Section V presents 
an implementation of a secure relational database system. In 
Section VI we provide performance analysis of the proposed 
secure database system.  Finally, Section VII concludes our 
work and provides future research directions.  

II. PRIVATE INFORMATION RETRIEVAL 
Chow et al. [8] discussed the importance of cloud 

computing, and how this technology can be enticing due to 
its flexibility and cost-efficiency. The authors pointed out 
that the adoption of such technology is still below ambition. 
Some users are still concerned about the security of these 
clouds. Even those who started using the technology, they 
only utilize it with their less sensitive data. The limited usage 
of cloud computing is mainly due to the lack of control over 
the communicated data. The authors highlight that people 
require explicit guarantees that their data will be protected 
under well-defined policies and mechanisms. However, no 
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technical security solutions were proposed to back-up their 
information centric model where data can self defend itself 
in a hostile or an un-trusted environment. 

The private information retrieval (PIR) approach, 
introduced by Chor et al. in [9], achieves the retrieval of an 
ith bit in a block without revealing information about the bit 
retrieved or about the request for the bit itself. This approach 
has been widely used as a basis for several tools, and has 
supported various distributed applications. However, the 
approach requires more improvements and the work with it 
is still in progress, both at the security of the communication 
channel level and the hidden client identity level. 

Raykova et al. [10] extended the PIR approach by 
proposing a secure anonymous search system. The system 
employs keyword search such that only authorized clients 
have access to their blocks. This system is capable of 
mapping the database content to the appropriate client, thus 
guaranteeing the privacy of the data and the query. The 
ultimate target of Raykova’s system is to ignore the identity 
of the client while protecting the database from malicious 
queriers. 

Shang et al. [11] tackled the problem of protecting the 
database itself. The problem is studied through monitoring 
the amount of data disclosed by a PIR protocol during a 
single run. The information attained from the monitoring 
process is used to understand how a malicious querier can 
conduct attacks to retrieve excessive amount of data from the 
server.  

PIR has also been used to develop authentication 
systems. Nakamura et al. [12] constructed a system with 
three components, a querier that initiates requests, an 
authentication-server that processes these requests, and a 
database that returns the appropriate data in response to the 
request. This system ensures the security of data and the 
anonymous communication between the querier and the 
database. Yinan and Cao [13] used the PIR approach to 
propose a system that controls the access to the database. 
According to this system, the privacy of data is enforced by 
enabling each authorizer to give or deny access to his/her 
own data with a hierarchical authorization access right 
scheme.  

Among the most important criteria in PIR protocol are 
the communication cost and the amount of data sent back to 
the querier. The trivial solution of the PIR protocol is to send 
back the entire database to the client. However, this solution 
is expensive, even for a simple request that results in 
retrieving two matching records. Other approaches proposed 
to retrieve only the requested data, by using replicated 
databases that are stored at multiple servers. In this case, the 
request is forwarded to all servers. With this approach, 
although we deal with multiple replicated databases, the 
privacy is better protected. However, this approach is still 
complicated and may result in extended processing and 
communication times. Gentry et al. [14] proposed a scheme 
to retrieve a bit or a block from a database with a constant 
communication rate. Melchor et al. [15] proposed a scheme 
that reaches the available data with a reasonable 
communication cost while achieving lower computational 
cost compared to other PIR protocols. 

III. SECURED SQL OPERATIONS 
In this section, we develop a secure database system that 

processes SQL queries over encrypted data. As shown in 
Figure 1, parameters of the queries are encrypted by the 
client and sent to the server for processing. The latter 
performs the requested operation and returns encrypted 
results to the client.  

 

 
Figure 1.  Secure Data Retrieval 

We describe below the circuit of a simple SQL SELECT 
query:  

 
SELECT * from T where c=v 

 
where the value v is in encrypted form. The trivial 

solution to securely perform this statement is to send back to 
the client the entire database, but this solution suffers from 
complexity and scalability issues. Instead, we propose a 
methodology to implement the SELECT circuit at the server 
side, while preserving the confidentiality and the privacy of 
the request. 

The processing of the SELECT query is divided into 
three sub-circuits. Firstly, we calculate the following index 
for each record R in the table T: 

 

 

 
where size is the number of bits in column c;  and  

are the ith bits of column c and search criteria v, respectively. 
 is a one bit value that is equal to 1 if v matches the value 

of column c, 0 otherwise.  
Next, we identify the nth record that matches the selection 

criteria. For that purpose, we consider  to be the 
encryption of n under public key pk. 

For each record R we calculate the following sum: 
 

We calculate a second index : 
 

 

 
 is equal to 1 if the record R is the nth record that 

matches the selection criteria, 0 otherwise.  
Then, we multiply every bit of each record R in table T 

by the corresponding value . 
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This latter operation forms a table  that is related to the 
original table T as follows: 

 

 
 
Finally, by adding all records of table , we retrieve the 

nth record Rs that matches the selection criteria: 
 

 

 
If no record matches the selection criteria, a record 

containing zeros will be returned to the requester. 
It is worth noting that all calculations are performed over 

encrypted data. The server does a blind processing to retrieve 
the nth record that matches the selection criteria. It neither 
has access to the content of the retrieved record nor to its 
position within the table. 

With slight modifications to the select circuit, most of 
SQL operations can be supported by our proposed secure 
database system. For example, to implement the UPDATE 
operation, one can simply implement the following circuit: 

 
 

 
where the record U is the new value to update the record 

R matching the criteria of the query. 
Similarly, to delete a record from table , one can replace 

its content by zero. The DELETE operation can be 
implemented by the following circuit: 

 
 

 

IV. HOMOMORPHIC ENCRYPTION SCHEME 
In [6], Gentry proposed a fully homomorphic encryption 

scheme that enables to perform an arbitrary number of 
arithmetic operations (i.e. addition and multiplication) on 
encrypted data. The components of the encryption scheme 
are described below. 
 
Security Parameters: N = λ, P =  λ2, and Q =  λ5. 

A. Key Generation 
The private key sk is a random P-bit odd number. The 

public key consists of a list of integers that are the 
“encryptions of zero” using the encryption scheme with the 
secret key sk as a public key. 

Generate a set  of rational numbers in 
[0,2[ such that there is a sparse subset  of size 

 with .  
Set sk* to be the sparse subset S, encoded as a vector 

 with hamming weight α. 
 
Set  to be the public key. 

B. Encryption (pk*,m) 
Set to be a random N-bit number such that m and m’ 

have the same parity:  
 

 
 
Then compute c as: 
 

 
where q is a random Q-bit number. Then the ciphertext c 

is post-processed to produce a vector , 
defined by: 

 
 
The output ciphertext c* consists of c and 

. 

C. Decryption (sk*, c*) 

 

D. Arithmetic Operations 
Addition and multiplication can be performed on clear 

text by simply adding and multiplying the ciphertexts, 
respectively. 

 
 

 
 

 
The output ciphertext c* consists of c together with the 

result of post-processing the resulting ciphertext with . 

E. Bootstrapping the Encryption Scheme 
The scheme described above is referred to as a somewhat 

homomorphic scheme because it works only if the value c%p 
(noise of the encryption) is smaller than p/2. After a finite 
number of arithmetic operations, the noise exceeds the p/2 
threshold and the decryption scheme does not work anymore. 

Gentry developed a novel method to remove the noise in 
the ciphertext [7]. He proposed to recrypt the ciphertext c to 
remove the noise. Since the scheme is homomorphic, one 
can encrypt the ciphertext c into a new ciphertext  (the 
plaintext is encrypted twice), and by using the homomorphic 
properties of the scheme, one can decrypt the inner layer of 
encryption to obtain a ciphertext c2 with a lower value of 
noise. 

 
Figure 2.  Removing noise from original ciphertext (bootstrapping) 

C2 

C1 
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As illustrated in Figure 2, a bit m is encrypted with public 
key pk to produce the ciphertext c1. After a finite number of 
arithmetic operations, the noise associated with the 
ciphertext c1 reaches a level that does not permit any 
additional arithmetic operation. To remove the noise, the 
bootstrapping technique consists of recrypting the bit m. 
Every bit of ciphertext c1 is encrypted with the public key pk. 
The output is ciphertext  that doubly encrypts bit m. The 
decryption circuit is applied to remove the inner layer of 
encryption. This latter operation requires the knowledge of 
the private sk. Therefore, the private key is encrypted with 
public key pk; and then shared with the server. Since the 
encryption scheme is homomorphic, the decryption can be 
performed on the doubly encrypted ciphertext to remove the 
inner layer. The recryption produces a new ciphertext c2 with 
a value of noise that has an upper bound according to the 
proof in [6]. 

By employing the bootstrapping technique, performing 
an arbitrary number of arithmetic operations on ciphertexts 
becomes possible. 

V. IMPLEMENTATION 
In our implementation, we aim at proving that it is 

possible to perform SQL queries over an encrypted database. 
For example, the user can specify a search criterion through 
a database. Then, the client software encrypts the parameters 
of the query, corresponding to the search criterion, and sends 
it to the appropriate server. The server retrieves the requested 
record (blind processing) from the database and returns it to 
the client. The client software decrypts the record and 
displays it to the user.  

We built a simple medical application containing 10 
patients’ records. In Figure 3, we show the result of the 
SELECT query. This is how the result appears in a 
screenshot of the client side of our built application.  

The application supports the following SQL operations: 
• SELECT with wildcard characters (*, ?) and 

relational operators (< >). 
• UPDATE with wildcard characters (*, ?) and 

relational operators (< >). 
• DELETE with wildcard characters (*, ?) and 

relational operators (< >). 
• Statistical operations like COUNT and AVG. 

 

 
Figure 3.  Client side of the application 

It is worth mentioning that the implementation of the 
medical application was built using a simplified and non-
secure version of the somewhat homomorphic scheme. This 
is due to performance issues as it is impractical to perform 
our tests using the fully homomorphic cryptosystem. We 
chose the security parameters in such a way to support all the 
SQL operations with no need to employ the bootstrapping 
technique. We discuss the performance of our system in the 
next section. 

VI. PERFORMANCE ANALYSIS 
Table 1 lists the number of arithmetic operations required 

to execute some basic SQL statements over an encrypted 
database of 10 records. From this table we can see that 
processing data in encrypted form creates a substantial 
computation overhead. 

TABLE I.  NUMBER OF ARITHMETIC OPERATIONS 

 Add. & Mult. Add. Mult. 

SELECT 619839 309892 309947 

UPDATE 67595 25355 42240 

DELETE 28171 5643 22528 

 
To understand the processing time required to process a 

SQL statement, we measured the time required to perform 
the product of two n-bits numbers in encrypted form using 
the fully homomorphic cryptosystem presented in [6]. 
Towards that end, we used a computer machine with 1.7 
GHz processor and 3GB of RAM memory. Figure 3 shows 
the amount of time, in seconds, required to compute the 
multiplication circuit. 

 

  
 

Figure 4.  Processing time required to perform the product of two n-bits 
integers 

As we can see in Figure 4, it takes 23 minutes to compute 
the product of two 16-bit integers. This latency is due to the 
bootstrapping technique or more precisely to the recrypt 
function. Indeed, according to our measurements, it takes 1 
second to recrypt a ciphertext. Therefore, there is a need of at 
least 7 days (i.e, 619839 * 1 second) to retrieve a row from a 
10-record database. 

The implementation of the system proves that the 
execution of SQL statements over encrypted data is feasible. 
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However, the time required to execute these statements is 
very high and therefore is not suitable for real-time 
transactions that involve a large database (i.e. several 
terabytes database). This drawback is mainly due to the 
homomorphic encryption scheme. In fact, there might be 
more efficient techniques to optimize the implementation, 
that is, one could perform recryption only when it is 
necessary, since the noise value can be bounded; however, 
we do believe that a more practical homomorphic 
cryptosystem is yet to be developed.  

VII. CONCLUSION & FUTURE DIRECTIONS 
The concept of processing encrypted data is promising to 

revolutionize traditional computing. Indeed, this concept has 
many direct applications in cloud computing environments, 
banking, electronic voting and many other applications.  

In this paper we developed the first secure database 
system based on a fully homomorphic encryption scheme. 
We presented the circuits to implement SQL statements over 
encrypted data. We built a prototype of a database system 
where data is stored and processed in encrypted form. The 
database server can execute most of the SQL statements in a 
blind fashion, that is, it returns the results without any 
knowledge of the content or the position of the records 
extracted/affected. We conducted performance analysis to 
measure the time needed to execute a simple query on the 
database. We found that the current technology is not 
sufficiently mature yet as it is time-consuming. Indeed, the 
encryption schemes proposed by Gentry et al. in [5][6][7] are 
very impractical. According to our measurements, the time 
needed to perform simple calculations is substantial. We 
believe that there still is a great opportunity for researchers to 
develop more efficient homomorphic encryption schemes. 

As future work, we are planning to work on the 
optimization of the efficiency of the system. Processing can 
be parallelized in order to take advantage of multiple 
processors executing the encrypted requests. We will also 
investigate how to reduce the number of recryptions needed. 
Indeed, since the noise value can be bounded, decryption 
should be necessary only when the ciphertext cannot support 
an additional arithmetic operation. We will are planning to 
develop a new scheme to encrypt the SQL circuits. In the 
current system, the server does know the operation that was 
performed (SELECT, UPDATE, etc.). If we can encrypt the 
SQL circuits, the system will preserve the confidentiality of 

the data and operations performed on these data. We believe 
that this new system can be the foundation of a highly secure 
cloud computing environment. 
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