
1

Remote Comparison of Database Tables
Fabien Coelho CRI, Maths & Systems, MINES ParisTech,

35 rue Saint Honoré, 77305 Fontainebleau cedex, France.
fabien.coelho@mines-paristech.fr

Abstract—Database systems hold mission critical data in all
organizations. These data are often replicated for being processed
by different applications as well as for disaster recovery. In
order to help handle these replications, remote sets of data
must be compared to detect unwanted changes due to hardware,
system, software, application, communication or human errors.
We present an algorithm based on operations and functions
already available in relational database systems to reconcile
remote tables by identifying inserted, updated or deleted tuples
with a small amount of communication. A tree of checksums,
which covers the table contents, is computed on each side and
merged level by level to identify the differing keys. A prototype
implementation is available as a free software. Experiments show
our approach to be effective even for tables available on a local
network. This algorithm provides a communication efficient and
general solution for comparing remote database tables.

Keywords—remote set reconciliation; data replication.

I. INTRODUCTION

Relational database systems must hold reliably mission
critical information in all organizations. These data are often
stored in multiple instances through synchronous or asyn-
chronous replication tools or with bulk data transfers dedicated
to various transactional and decisional applications. These data
replications can help enhance load sharing, handle system
failures, application, software or hardware migrations, as well
as applicative transfers from one site to another.

As trust does not preclude control, it is desirable to com-
pare the data between remote systems and identify inserted,
deleted or updated tuples, to detect errors or to resynchronize
data. This is known as the set reconciliation problem. Few
differences are expected between both data sets. Key issues
include big data volumes, site remoteness and low bandwidth.
Transferring the whole data for comparison is not a realistic
option under these assumptions.

This paper presents a generic algorithm to compare re-
lational database tables, which may reside on remote and
heterogeneous DBMS such as open source PostgreSQL and
MySQL or proprietary Oracle and DB2. We assume that
the compared tables are composed of records identified by
a key, say the primary key of the relation. We do not make
other assumptions on the data sets, such as the availability
of attributes that may be used for grouping data, or restrict
the number, type, size or value of attributes involved in the
comparison either as the key or as the other columns. The
algorithm finds the key of inserted, updated or deleted tuples
with respect to a parametric subset of rows (part of the records
are investigated) and columns (the comparison is restricted
to some attributes). It relies on simple SQL constructs and
functions available on all systems. Summaries are extracted

on each server and transferred to the client system where
the reconciliation is performed. A block parameter allows to
optimize the latency/bandwidth trade-off.

The paper is organized as follows. Section II details the
related work. Then, Section III presents the comparison algo-
rithm and the SQL queries performed to build the necessary
checksum tree and compute the differences. The algorithm
is then analyzed in Section IV and discussed in Section V.
Section VI describes our implementation. Experiments are
reported in Section VII. Finally, Section VIII concludes our
presentation.

II. RELATED WORK

Suel and Nemon [1] analyze many comparison algorithms
for delta compression and remote synchronization. A first class
of problem addresses locally available data sets, and targets
identifying deltas. Chvatal et al. [2] described string to string
combinatorial research problems in 1972. Solutions are found
for many of these problems, but these approaches do not
apply to our problem as they deal with locally available data
sequences. A second class deal with data stored on remote
locations, and aims at identifying missing or differing parts
without actually transferring the data. The remote set compar-
ison problem has been addressed with various techniques. A
key issue is whether the data are naturally ordered, such as a
string or a file composed of pages, or considered as a set of
distinct unrelated elements, i.e., unordered data, such as the
files in a file system or the tuples of a relation.

Metzner [3] introduced a binary hash tree reconciliation
to compare file contents. Our approach can be seen as an
extension to handle tuple keys that identify records as op-
posed to the intrinsic page numbering that come with a file,
and we use a parametric group size to select better trade-
off opportunities depending on multiple optimization factors
such as bandwidth, number of requests or disk I/Os. The
practical rsync algorithm [4][5] is well known to system
administrators. It is asymmetrical in nature. Blocks of data
already available on one side are identified and complementary
missing data are sent to the other side. Block shifts are
identified at the byte level thanks to a sliding checksum
computation. With respect to our problem, such approach
could result in easy identification of inserts, but very poor
network performances for updates and deletes.

Coding-theory based solutions [6][7][8] reduce the number
of communication rounds and the amount of transfers for
comparing remote data sets. The key idea is that as the
data are already available with very few differences, only
the error correcting part of a virtual transmission is sent

23

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

2

and allows to reconstruct the differences. Such techniques
need significant mathematical computations on both sides that
are not readily available with the standard SQL functions of
relational database systems.

Descending recursive searches based on hashes over subsets
on both sides were proposed [9], which is similar to [10] dis-
cussed later. Bloom filters are also used to statistically reduce
the amount of data to communicate [11] in a synchronization,
however this structure results in more false positive especially
when the number of differences in the reconciliation is small.
The same paper also briefly alludes to a Merkle tree [12],
similar to Metzner and to our approach, for computing set
differences.

In all of the above remote set comparison techniques, the
differing elements are extracted either as inserts or deletes,
but updates are not detected as such: as there is no concept
of key to identify elements, updates cost two searches in
the complexity computations to be identified as an insert
and a delete. A few papers address our problem from the
same viewpoint of (1) having a key to identify elements, (2)
distinguishing updates from inserts and deletes and (3) being
able to perform the algorithm through simple SQL queries.

Maxia [13] presents several asymmetric algorithms to com-
pare remote tables using checksums. One level of summary
table is used, leading to an overall communication complexity
in O(k(b+n/b)) where k, n, b are the number of differences,
the table size and a block size. The algorithm for inserts and
updates does not detect deletes and does not operate properly
in some limit cases, whereas the algorithm for deletes does not
work if other operations where performed. Ideally, a solution
should detect all kind of differences with a low communication
complexity. This will be our focus.

Schwartz [14][15] presents a top-down checksum approach
to detect and update out-of-sync replication nodes. The al-
gorithm uses the DBA knowledge in order to group tuple
checksums according to attribute values, and thus may take
advantage of existing indexes, but providing such a beneficial
information is described as tricky by the author.

Vandiver [10] also presents a top-down N-round-X-rows-
hash reconciliation algorithm for remote databases. The check-
sum approach is similar to ours, with the difference that the
hash tree is not materialized, and by relying on an existing
integer primary key. The first round computes hashes for
records grouped in buckets based on the primary key value.
Each differing bucket hash is then investigated by subdividing
it, up to the N-th round where individual rows are considered.
The algorithm can take advantage of existing indexes in the
primary key, but it also requires some tuning. It performs best
when defects are highly correlated.

Finally, software products are also available to identify
differing rows, such as DBDiff [16] or DB Comparer [17]. Al-
though these tools compare table contents, the actual algorithm
used and its bandwidth requirements are unclear. Snapshots
suggest a graphical user interface, which displays differing
data to help the user perform a manual reconciliation. Such
packages also focus on table structure comparisons, so as to
derive SQL ALTER commands necessary to shift from one
relational schema to another.

b

b

b

b

b

b

b

id val

id val

K − tuple key

V − tuple value

b − block size

id − key checksum

val − tuple checksum

id val

...V K id val

..................

......

TT T1T0 2
K

........

Td........

Fig. 1. Initial table T , checksum table T0 and tree of summary tables Ti,i≥1

CREATE TEMP TABLE T0

AS SELECT
K AS key,
h(K) AS id,
h(K,V) AS val

FROM T WHERE W;

Fig. 2. Checksum table T0 with hash h

CREATE TEMP TABLE Ti

AS SELECT
id&mi AS id,
XOR(val) AS val

FROM Ti−1

GROUP BY id&mi;

Fig. 3. Summary tables Ti,i≥1

III. REMOTE COMPARISON ALGORITHM

Let us now present the hierarchical algorithm for comparing
two remote database tables named T with K the primary key,
V the attributes to be compared, and W a condition to select
a subset of the rows to be analyzed.

The algorithm is fully symmetrical. It computes on both
sides a hierarchical tree of summaries shown in Figure 1. They
are then scanned from the root downwards to identify the dif-
fering tuple keys by investigating the differences concurrently.
The reconciliation is achieved by merging the summaries at
each level. It does not decide what to do with the differences,
but simply locates the offending keys and reports them. A
natural continuation may be to transfer the offending data so
as to re-synchronize the tables.

First, a checksum table T0 storing both tuple keys and
signatures is built as shown in Figure 2, using hash function h.
Second, aggregations in Figure 3 compute the summary tree
for all the tuples through a set of reduction masks mi,i≥1.
The last table, Td, only holds one summary checksum for the
whole table. Third, remote selects in Figure 4 on the summary
tables allows to reconcile the tuples and thus to identify inserts,
updates and deletes by a merge algorithm that deals with key
and value checksums in Figure 6. It first compares the one
row of table Td. If they are different, it walks through the tree
to check for the source of the differences up to the checksum

// get checksums at level i
list getIds(c, i, what)
withkey = (i==0)? ”,key”: ””
return sql2list(c, ”
SELECT id, val $withkey
FROM Ti

WHERE id&mi+1 IN ($what)

ORDER BY id $withkey”)

Fig. 4. Summary extraction query

// show a block
// of matching keys
showKeys(c, msg, l)
for v,i in l
for key in sql2list(c, ”
SELECT key FROM T0

WHERE id&mi = $v”)
print ”$msg $k”

Fig. 5. Key extraction query

24

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

3

// reconcile on connections c1 c2
merge(c1, c2)

list curr = (0), next, ldel, lins;
level=d;
while (level>= 0 and curr)

// get checksums at level
list lid1 = GetIds(c1, level, curr),
list lid2 = GetIds(c2, level, curr);
// merge both sorted lists
while (i1 or i2 or lid1 or lid2)

i1,v1,k1 = shift(lid1) if no i1;
i2,v2,k2 = shift(lid2) if no i2;
if (i1 and i2 and i1==i2)

// matching key checksum
if (v1!=v2)

// differing value checksum
if (level==0) print ”UPDATE $k1”
else append i1 to next

elsif (no i2 or i1<i2)
// single checksum in lid1
if (level==0) print ”INSERT $k1”
else append (i1,level) to lins
undef i1

elsif (no i1 or i1>i2)
// single checksum in lid2
if (level==0) print ”DELETE $k2”
else append (i2,level) to ldel
undef i2

level--
curr = next

// whole block differences
showKeys(c1, ”INSERT”,lins)
showKeys(c2, ”DELETE”,ldel)

Fig. 6. Reconciliation merge algorithm

table where the actual tuple keys are available. If a whole
checksum block is empty on one side, the corresponding keys
are extracted with a special query outlined in Figure 5.

The set of mask used in the aggregation is built as fol-
lows: Let n be the table size (number of rows in T), h
a checksum function, possibly cryptographic. f the folding
factor logarithm (that is the block size for folding is b = 2f).
Let ` = dln(n)/ ln(2)e be the closest power of 2 above
the table size, d = dln(n)/ ln(b)e be the tree depth, then
mi = 2`/bi−1 = 2`−if −1 (when 1 ≤ i ≤ d) is the grouping
mask for level i, with md = 0.

It is important that m1 should reduce the size of the first
table by the folding factor, otherwise some folding factor
values result in bad performances because the first folded
table T1 is not folded and takes as much time to compute as
checksum table T0. This is pointed out in Figure 7-3 of [10].
The last folding may be less efficient, but it is negligeable as
the data volume involved is very small at the root of the tree.

IV. ANALYSIS

Let us analyze the above algorithm with respect to the disk
I/Os, computations and communications involved. We will use
the following additional notations: l the tuple length (size of
attributes), k the number of differences to be found, c the
number of bits of checksum function h.

The amount of computation and I/O performed by the
database depends on the optimizations implemented by the

query processor and on the data size. The main cost is incurred
in building the initial summary table, all O(nl) data of the
initial data must be read, and O(nc) data must be written
for the checksum table. Moreover, heavy computations are
involved at this stage as two checksums are computed on the
data read, which may also involve various data conversions
depending on the actual data types. These checksums can be
maintained as additional columns with triggers so that they
would be available directly. Then, the first aggregation can
be performed with a merge sort in O(n ln(n)), or an hash
technique done on the fly in O(n), and the subsequent ones
are reduced by power of b leading to an overall b/(b − 1)
factor. The final requests for the merge phase just require to
scan some data, which may be helped by indexes to be created
possibly in n ln(n) operations. Thus, the overall computation
cost on each side is O(nl + n ln(n) · b/(b− 1)).

The number of requests of the client-server protocol de-
pends whether there are differences: An initial request gets
the table size necessary to compute the tree depth and the
relevant masks; Then, one batch of queries can build the
checksum, summary tables, and return the initial root summary
checksum. If they match, the tables are equals, otherwise the
reconciliation must dig into the tree up to the leaves. Thus
there are up to O(ln(n)/ ln(b)) requests.

The amount of data communicated at each stage depends
on the selected block size and the number of differences to
be found. For small k, O(dln(n)/ ln(b)e ln(n))kcb data are
communicated: each differing id of size ln(n) is investigated
on the depth of the tree, and each found block to be merged
contains cb bits. As k grows, a steady state is reached when
all blocks at level 0 are scanned as they all contain at least
one difference: the communication is then O(cnb/(b − 1)).
This steady state comes around k = n/2f . Such a saturation
effect is encountered in the third set of experiments presented
in Section VII.

There is a latency/bandwidth trade-off implied by the choice
of the block folding factor: the higher b the higher the amount
of data to be transferred, but the lower the number of requests
as the depth is reduced.

V. DISCUSSION

Our algorithm reduces the amount of data to be com-
municated through two key points: First, the attributes are
compacted together with a checksum, which will usually be
smaller than the data it summarizes. A checksum collision at
this level would result in differences not to be found. Second,
rows are aggregated together by building a summary tree, and
only some of the computed records will be needed for the
comparison. There again, a collision of the computed values
at any level of the summary tree could result in differences
not being found.

A key hypothesis is that few differences are expected:
otherwise the search process scans most of the table through
many requests, although an ordered scan of the initial table
would allow to identify the missing or differing items in a
single pass. If the hypothesis is not met, the implementation
may allow the user to stop the computation when the number
of differences encountered is above a given threshold.

25

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

4

One checksum computation is performed on the key and
another on the key and value attributes. The first hash aims
at randomizing the key distribution so that aggregations group
tuples evenly, and so that the computations do not depend on
the key type and composition. It is also needed to differentiate
updates from inserts and deletes. A simple integer evenly
distributed key may be used instead if available. The second
hash of the key and value part identifies the items. The key
in the second checksum is necessary and is not redundant
with the previous hash: if not included, a simple exchange of
values between two tuples would not be detected if they are
aggregated in the same group.

As usual with checksum functions, their size (c bits) and
quality should be good enough to avoid collisions. A collision
on the key hash in the checksum table makes two tuples
identified as one, thus a difference detected on one would
be reported about the other as a false positive, but this is
easily filtered out by checking the tuple key also available
in the checksum table. A collision of the value hash of two
tuples in the checksum table does not have an impact on the
search because tuples are also identified by their key hash. A
collision of both the value hash for the same key hash on the
checksum table would result in a difference not to be reported,
thus leading to a false negative. A collision of the value hash in
the summary tables for the same level and group would result
in differences within these tables to be ignored. Cryptographic
hash functions with c ≥ 128 make such collisions improbable.

The tree of aggregations computes a common checksum by
combining tuple chunks. This operation should treat individ-
ual checksum bits equally. Exclusive-or (XOR) is the usual
operator of choice if available. If not, the SUM aggregation
can be considered, provided it applies to the checksum result
type. Note that the central limit theorem is not an issue for
the SUM aggregation: the more deterministic bit values are
confined to upper bits of the sum, possibly removed by modulo
arithmetic, while the lower bits only are significant in the hash
combinations, and those stay as random as the inputs. The
group criterion should also be compatible with the checksum
result and allow to define tuple chunks. In order to compute
directly the group of a tuple at any level, its computation must
only depend on the level and not on the groups computed at
the preceding levels. This property is achieved by a binary
mask or a modulo operations on the power of an integer.

The algorithm is fully symmetrical. Inserts and deletes are
only parted on the convention that the first table serves as the
reference in the comparison, but the structure of the algorithm
is the same on both sides. The algorithm handles missing
intermediate keys with two special lists, lins and ldel. This
case arises if a whole chunk of tuples is removed or added.

As noted by Maxia [13], it is possible to maintain the
checksum directly in the initial table or in another by mean of
trigger procedures, so that they would not need to be computed
over and over. It could also be integrated in the database as a
new kind of hash index dedicated to remote table comparison.

It must be noted that the checksum and each summary tables
are built and then queried once: thus computing an index to
help access some data is not beneficial as its building cost
would not be amortized.

VI. IMPLEMENTATIONS

We know of three implementations of our algorithm. We
developed a proof of concept free software prototype [18]
targeting both PostgreSQL and MySQL, including actually
synchronizing tables between both systems. Vandiver [10]
developed a version in Java in order to compare his algorithm
with ours in his PhD thesis, but the corresponding code is not
available. Finally, Nacos [19] built a C-coded trigger-based
tool using one big summary table, while the reconciliation
algorithm is also in Java.

When considering an implementation of our algorithm,
several key functionalities are needed: the ability to replace
NULL values, a checksum function, a grouping criteria and a
relevant aggregate function.

First, as NULL values propagate through SQL functions,
they must be dealt with in order to keep meaningful check-
sums: SQL COALESCE function can be used to substitute
NULL values. Second, we use a shortened version of the
MD5 cryptographic hash function, which is available on both
systems as a checksum. However, in order to have results
comparable between PostgreSQL and MySQL, a lot of hopus-
pocus was necessary for casting, converting and truncating the
results reliably. We added cast functions to PostgreSQL and
developed special conversion functions for MySQL. As the
comparison may be CPU bound, especially on a local network,
we also provide a fast although not cryptographically secure
checksum function as extensions to both database systems.
Third, a criterion must be chosen to group the tuples in the tree
building phase, compatible with the data type holding the key
checksum. Our implementation store results as 8-byte integers,
and we restricts block sizes to power of 2, so that we can
use simple mask operations. Finally, a checksum combining
aggregate function must be provided. Our implementation uses
either SUM or XOR.

The table comparison can be restricted to perform partial
checks: The comparison to be performed is specified through
URL-formed command line arguments with reasonable de-
faults, and an option can select a subset of tuples with a WHERE
clause.

Another implementation issue is whether to use threads
to parallelize the queries on both sides, especially the initial
checksum table building which represent the largest compu-
tation cost. This can influence significantly the performance
up to a factor of two on a fast network. However, on a
slow network, most of the time is spent in communications
with a bandwidth shared by the two parallel connections, and
the impact on performance is small or null. Our perl script

SELECT COALESCE(T1.key, T2.key) AS key,
CASE WHEN T1.key IS NULL THEN ’DELETE’

WHEN T2.key IS NULL THEN ’INSERT’
ELSE ’UPDATE’

END AS operation
FROM T1 FULL JOIN T2 ON ((T1.key)=(T2.key))
WHERE T1.key IS NULL -- DELETE

OR T2.key IS NULL -- INSERT
OR (T1.val) <> (T2.val) -- UPDATE

Fig. 7. Local comparison of tables T1 and T2 (with NOT NULL attributes)

26

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14

u
s
 p

e
r

tu
p
le

log2 group size

10K tuples
20K tuples
50K tuples

100K tuples
200K tuples
500K tuples

1M tuples

Fig. 8. Comparison time per tuple, 1Gb/s, 3 diffs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 6 8 10 12 14

b
y
te

s
 p

e
r

tu
p
le

log2 group size

10K tuples
20K tuples
50K tuples

100K tuples
200K tuples
500K tuples

1M tuples

Fig. 9. Volume transferred per tuple, 1Gb/s, 3 diffs

implementation includes a threading option, but it does not
work with the PostgreSQL because of a bug in the standard
driver implementation.

VII. EXPERIMENTS

We report in the following about 5500 runs of our com-
parison algorithm performed with our implementation on
PostgreSQL databases using the fast checksum, on randomly
generated tables from 10K top 1M rows of 450-byte long
records, compared with varying block sizes, and in a band-
width bound environment. Three Linux desktop computers
in an isolated network were used, two of them holding
the databases, the third performing the reconciliation. The
network bandwidth was controlled on every connection with
the tc traffic control command. The base case for a remote
comparison algorithm would be to transfer all tuples on the
other side, and then perform the comparison locally with an
external join as suggested in Figure 7.

The following measures must be taken with caution: they
are sensitive to many parameters such as hardware includ-
ing hard disk, cpu and memory performance, system disk
cache management, database configuration and optimization,
algorithm implementation details such as threading, network

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12 14

c
o
m

p
a
ri
s
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

log2 group size

no diff
3 diffs
6 diffs

12 diffs
24 diffs
48 diffs
96 diffs

192 diffs

Fig. 10. Comparison time vs block size, 100K tuples, 100Kb/s bandwidth

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 4 6 8 10 12 14

tr
a
n
s
fe

rs
 i
n
 M

B

log2 group size

no diff
3 diffs
6 diffs

12 diffs
24 diffs
48 diffs
96 diffs

192 diffs

Fig. 11. Volume transferred vs block size, 100K tuples

latency, bandwidth, mtu and congestion status, as well as
various protocol overheads. To encompass all these, we used
overall elapsed times: it covers both computation and network,
the preeminence of which varies depending on the actual test
conditions.

Figures 8 and 9 show normalized data collected from a
1Gb/s local area network. The horizontal axis is the log2
group size used for building the summary tree. The vertical
axis in the normalized time to perform the reconciliation in
µs per tuple for the first figure, and the number of bytes per
tuple (without overheads) transferred for the second. Different
table sizes are investigated to recover 3 differences. The two
small table sizes incur high latency and summary computation
overheads. For other larger sizes, the comparison requires a
somehow constant 14µs/tuple. As there are few differences,
the main costs are in computing the checksum and summary
tables and in network latency, especially for small group sizes.
The drilling down is mostly negligible but for large group sizes
where big chunks of checksums are fetched. The base case of
transferring data alone is about 4.5µs/tuple in this setting,
thanks to the high bandwidth.

In Figures 10 and 11, a 100Kb/s network link is used to
reconcile 100K tuple tables with different block parameters.

27

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

6

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6

c
o
m

p
a
ri
s
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

% relative number of differences

log2 grp = 4
log2 grp = 6
log2 grp = 8

log2 grp = 10

Fig. 12. Comparison time vs diffs, 100K tuples, 100Kb/s bandwidth

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6

tr
a
n
s
fe

rs
 i
n
 M

B

% relative number of differences

log2 grp = 4
log2 grp = 6
log2 grp = 8

log2 grp = 10

Fig. 13. Volume transferred vs diffs, 100K tuples

The transfer of all data would require about 4000 seconds,
so the 2 seconds comparison time achieved is a 2000-fold
speedup. The number of differing tuples is made to vary
from 0 to 192, and the comparison time is displayed in
seconds. Block sizes from 8 = 23 to 126 = 27 perform best.
Larger block values are loaded by the requirement in network
bandwidth and as the number of differences increases. There
is a saturation when all checksums are fetched from T0.

A 100Kb/s bandwidth network is also used in Figures 12
and 13. The number of differences is scaled up for various
block sizes and 100K tuples, and shown as a percentage
relative to the table size. The linear dependency of the algo-
rithm in a network bound context shows up for small number
of differences, and for higher figures the saturation effect is
encountered when all checksum blocks are fetched. The turn
around for saturation is expected when all checksums are
fetched, that is at about size n/2f , i.e., 6%, 1.5%, 0.4% and
0.1% for the four block sizes presented. The base case in this
setting is about 1 hour to transfer the table, while 7 minutes
suffice to identify the differences based on checksums.

Vandiver [10] also performed experiments with his imple-
mentation of our algorithm, and compared them to his own:
The main costs comes from computing the checksum table.

The drilling through the data structures requires few com-
munications. When considering highly correlated faults, our
generic approach can be beaten because the key randomization
in groups becomes a liability.

VIII. CONCLUSION

We have presented an algorithm dedicated to remote re-
lational database table comparisons with a parametric block
size. Keys of inserted, deleted or updated tuples are identi-
fied quickly. This algorithm can be implemented on top of
reasonable instances of SQL: most of the checksum work
is performed through database requests, and the client tool
performs a reconciliation merge of partial checksums fetched
level by level. All experiments of our remote comparison
algorithm show better performances than the brute force down-
load solution, but for the Gb/s local network. This shows that
our implementation provides a generic, elegant and portable
solution to remote comparison of database tables.

Acknowledgment – Thanks to Laurent Yeh for pointing out
relevant related work, and to Michael Nacos and Benjamin M.
Vandiver for local or remote discussions.

REFERENCES

[1] T. Suel and N. Memon, Lossless Compression Handbook. Academic
Press, 2002, ch. Algorithms for Delta Compression and Remote File
Synchronization.

[2] V. Chvatal, D. A. Klarner, and D. E. Knuth, “Selected combinatorial
research problems.” Stanford University, Tech. Rep., 1972.

[3] J. J. Metzner, “A parity structure for large remotely located replicated
data files.” IEEE Trans. Computers, vol. 32, no. 8, pp. 727–730, 1983.

[4] A. Tridgell and P. MacKerras, “The rsync algorithm,” Australian Na-
tional University, TR-CS 96-05, Jun. 1996.

[5] A. Tridgell, “Efficient algorithms for sorting and synchronization,” Ph.D.
dissertation, Australian National University, 1999.

[6] K. A. S. Abdel-Ghaffar and A. E. Abbadi, “An optimal strategy for
comparing file copies,” IEEE Trans. Parallel Distrib. Syst., vol. 5, no. 1,
pp. 87–93, 1994.

[7] M. Karpovsky, L. Levitin, and A. Trachtenberg, “Data verification and
reconciliation with generalized error-control codes,” IEEE Transactions
on Information Theory, vol. 49, no. 7, pp. 1788–1793, Jul. 2003.

[8] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with
nearly optimal communication complexity,” IEEE Transactions on In-
formation Theory, vol. 49, no. 9, pp. 2213–2218, Sep. 2003.

[9] A. Trachtenberg and Y. Minsky, “Efficient Reconciliation of Unordered
Sets,” Cornell University, Tech. Rep. 1778, Nov. 1999.

[10] B. M. Vandiver, “Detecting and Tolerating Byzantine Faults in Database
Systems,” Ph.D. dissertation, MIT, Cambridge, MA, USA, Jun. 2008,
MIT-CSAIL-TR-2008-040.

[11] J. W. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed
content delivery across adaptive overlay networks,” IEEE/ACM Trans-
actions on Networking, vol. 12, no. 5, pp. 767–780, Oct. 2004.

[12] R. C. Merkle, “Secrecy, authentication and public key systems / a
certified digital signature,” Ph.D. dissertation, Stanford University, 1979.

[13] G. Maxia, “Taming the distributed database problem: A case study using
MySQL,” Sys Admin, vol. 13, no. 8, pp. 29–40, Aug. 2004.

[14] B. Schwartz, “MySQL toolkit: mk-table-sync,” http://www.maatkit.
org/, Mar. 2007, checked 2010-11-11.

[15] ——, “An algorithm to find and resolve data differences between mysql
tables,” Blog on http://www.xaprb.com, Mar. 2007, checked 2010-11-11.

[16] DKG Advanced Solutions, “DBDiff for windows,” http://www.dkgas.
com/, 2004, checked 2010-11-11.

[17] EMS, “Db comparer,” http://www.sqlmanager.net/, 2006, checked 2010-
11-11.

[18] F. Coelho, “PgComparator,” Software available on http://pgfoundry.org/
projects/pg-comparator, Aug. 2004, version 1.7.0 on 2010-11-12.

[19] M. Nacos, “Pg51g,” http://pgdba.net/pg51g/, Sep. 2009, checked 2010-
11-11.

28

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

http://www.maatkit.org/
http://www.maatkit.org/
http://www.xaprb.com
http://www.dkgas.com/
http://www.dkgas.com/
http://www.sqlmanager.net/
http://pgfoundry.org/projects/pg-comparator
http://pgfoundry.org/projects/pg-comparator
http://pgdba.net/pg51g/

	Introduction
	Related Work
	Remote Comparison Algorithm
	Analysis
	Discussion
	Implementations
	Experiments
	Conclusion
	References

