
The Data Checking Engine: Monitoring Data Quality

Felix Heine, Carsten Kleiner, Arne Koschel
University of Applied Sciences & Arts Hannover

Faculty IV, Deptartment of Computer Science, Hannover, Germany
Email: firstname.lastname@hs-hannover.de

Jörg Westermayer
SHS Viveon

Germany
Email: joerg.westermayer@shs-viveon.de

Abstract—In the context of data warehousing and business
intelligence, data quality is of utmost importance. However, many
mid-size data warehouse (DWH) projects do not implement a
proper data quality process due to huge up-front investments.
However, assessing and monitoring data quality is necessary to
establish confidence in the DWH data. In this paper, we describe
a data quality monitoring system developed collaboratively at
HS Hannover and SHS Viveon: The “Data Checking Engine”
(DCE). The goal of the system is to provide DWH projects with
an easy and quickly deployable solution to assess data quality
while still providing highest flexibility in the definition of the
assessment rules. It allows to express complex quality rules and
implements a template mechanism to facilitate the deployment
of large numbers of similar rules.

Keywords—Data Quality, Quality Rules, Data Analysis, Data
Quality Monitoring, Data Warehouses

I. INTRODUCTION

Data quality (DQ) is of utmost importance for a successful
data warehouse project. In this context, continuous monitoring
is an integral part of any DQ initiative. In this paper, we de-
scribe a data quality monitoring system called Data Checking
Engine (DCE) developed collaboratively at the University of
Applied Sciences & Arts Hannover and SHS Viveon. The main
goal is to provide a flexible, yet simple tool to monitor data
quality in DWH projects, which can also be used during the
DWH development to test its Extract Transform Load (ETL)
process.

To constantly monitor the quality of data of a database, it is
necessary to define quality rules using a flexible rule definition
language. Quality rules are either derived from business rules
or found via profiling or data mining. They are executed
either in regular intervals or based on specific events like the
completion of an ETL job. The results of the rule runs are
recorded in a result repository, which also keeps historical data
so that users can evaluate the quality of data over time. As rules
will evolve over time, it is necessary to keep a history of rule
definitions so that historic results can be related to the correct
version of the rule’s definition.

We believe the ability to express complex rules is crucial. A
set of hard-coded rule types found in some data quality tools is
typically only suitable to detect rather simple quality problems
on the attribute or single tuple level. However, there are more
complex data quality problems, which cannot be detected using
such rules. As an example, consider an error located in the
logic of an ETL process. Due to this error, the process fails
to reference the correct product group for some of the records
of a sales fact cube. The bug is subtle and does not show up
very often. At the attribute level all sales records are correct.

However, the trend of the time series showing the sales sum
with respect to individual product groups will indicate a quality
problem.

It requires skilled users to write such rules but larger sets
of rules will look similar in structure. They differ only in the
tables and attributes they are applied to. For this, a template
mechanism is useful to help users define such rules. The idea
is that only the template writer has to cope with the full
complexity; template users can then apply these templates to
their tables and attributes.

To avoid discontinuity of the reporting environment for
DWH users, re-using existing Business Intelligence (BI) tools
is superior over building a specialized quality reporting GUI.
Still it is sufficient to export rule results to a quality data
mart, which can then be accessed by any standard BI tool.
However, the plain rule results have to be aggregated to more
comprehensive quality metrics in a flexible and user defined
way.

Furthermore, the rules themselves have to be tested in
the development environment before deployment. Thus, an
automated transfer and synchronization with the production
system is necessary.

In a nutshell, we target the following requirements:

• Express complex rules
• Reduce complexity of rules (utilizing a template

mechanism)
• Execute the rules regularly or upon specific events
• Keep a history of rule definitions and execution results
• Store this history in a quality data mart persistently
• Aggregate the rule results to quality metrics
• Provide export/import mechanism for rule meta data

The remainder of this paper is organized as follows: In
the following section, we give an overview of related work.
Section III focuses on the definition of quality rules and ex-
plains our template mechanism. Section IV describes the DCE
architecture. In the subsequent section, we briefly elaborate
on quality metrics. In the final section, we summarize our
achievements and give an outlook to our future plans.

II. RELATED WORK

Over the last decade, much research in the data quality
domain has been conducted, see for example [1]. Research
areas related to data quality are outlier detection, data dedu-
plication, data quality monitoring, data cleansing, and data
mining to detect quality rules. We are specifically interested in
monitoring and reporting data quality. In general, we follow

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-295-0

DATA ANALYTICS 2013 : The Second International Conference on Data Analytics

the approach of Kimball [2] who outlines an approach to DQ
assessment in DWH systems.

For our work, we are especially interested in formalisms
to describe quality rules. Most existing approaches target only
specific types of rules. Edit rules describe invalid tuples [3]. In
[4], editing rules are used to match records with master data.
In [5], conditional functional dependencies are used to express
more complex rules spanning multiple tuples of a relation. The
same book also describes conditional inclusion dependencies
that are generalizations of referential integrity checks. These
approaches can be reformulated to SQL, thus DCE is able
to execute such rules. Another type of rules are differential
dependencies, see [6].

In the domain of data deduplication (also called
record linkage), rules are important to describe match-
ing criteria. As an example, the IntelliClean [7] sys-
tem uses rules like <if> condition <then> action
with probability p to match duplicates. Currently, we
do not target this issue, although we plan to integrate these
features in our system in the future.

Another approach is to extend SQL to incorporate data
quality features. An example is the FraQL [8] language that
specifies pivoting features and allows to integrate user defined
grouping and aggregate functions that allow to analyze data
more comfortably. The drawback is that a special execution
engine is required. Thus, the features of existing relational
optimizers are not available or have to be reproduced.

Furthermore, many prototypic research systems and com-
mercial tools are present. For an overview, see [9]. Most
existing tools focus on dimension data only and thus stress
single record problems and deduplication.

However, to the best of our knowledge, no tool provides a
similar mechanism that allows to build complex rule templates,
which can, for example, be used to test indicator values against
time series models.

III. RULE DEFINITION LANGUAGE

A central issue is the language to define the quality rules.
On one hand, it has to be expressive to allow for complex rules
like time series tests. On the other hand, fast definitions of
simple rules like NULL value checks has to be possible. Also,
the rule execution is typically critical with respect to execution
time and resource consumption. As large datasets have to be
checked, an efficient rule execution engine is demanded.

Thus, we decided to rely on the native SQL executor of the
DBMS. This means, the core of each rule is an SQL statement,
which collects the required information from the underlying
tables. This statement is written by the DCE user, allowing
even vendor-specific optimizations like optimizer hints.

DCE defines a standard attribute set for the result tuples.
The rule statements have to adhere to this standard. Each
statement computes a result value, which is the basis for
the rule check. For a NULL rule, the result value might be
the percentage of NULL values of the checked values. There
might either be a single result value or multiple values, broken
down by dimensional hierarchies. The latter case might for
example yield a percentage of NULL values for each product

group in each region. For each rule, multiple bounds can be
defined, specifying valid ranges for the observed values. The
bounds can be activated or deactivated with respect to all
values contained in the result tuple. In this way, the bound
for NULL values can be normally defined to be 5 percent,
however for specific product groups it might be higher. A
specific application for this feature is to change bounds for
business metrics, e.g., according to the week day. Typically, the
revenue sum for traditional stores might be zero on Sundays.

A severity can be assigned to each rule bound, and multiple
bounds with different severity can be defined for a rule. The
severity information of failed rules is returned to the scheduler.
Based on this information, the scheduler might, e.g., decide to
interrupt an ETL process or to alert the DWH team.

Each rule’s SQL statement can have multiple parameters,
which are set at execution time. These parameters can for
example be used to determine the range of data to be checked.
In this way, a quality rule running after an ETL job might be
limited to check only the new records in a fact table.

In the following, we describe a sample rule. The basic idea
of the example is to test indicator values like revenue stored
in a fact table on a regular basis against a moving average of
its past values. For simplicity, we assume there is no seasonal
component, although this is not a limit of the system. The
following formula describes our model:

Yt =
1

k

k∑
d=1

Yt−d + εt (1)

Here, εt is a random component, which is Gaussian with µ = 0
and some σ. The trend is based on the moving average of the
k previous values of the indicator.

During DWH operation, we assume that past values for the
indicator are already checked and corrected. Each day after the
ETL process has finished, we want to test the new value. Thus,
we have to calculate

kt = Yt −

(
1

k

k∑
d=1

Yt−d

)
(2)

and then check whether kt is within a certain interval. As εt
is Gaussian, we know that 95% of the values will be within
the interval [−2σ, 2σ]. We could use these bounds to generate
a warning and the [−3σ, 3σ] interval to generate an error.

SELECT today.day day,
avg(today.revenue) -
avg(past.revenue) result

FROM sales_fact today, sales_fact past
WHERE today.day = $testday$
AND (today.day - past.day)

BETWEEN 1 AND k
GROUP BY today.day

Fig. 1. Sample rule code (simplified)

A simplified SQL for these checks is shown in Fig. 1.
The statement returns a result value kt, which is then checked
by the DCE against bounds like the [−2σ, 2σ] interval. This
statement has a parameter $testday$, which is replaced at
runtime with the current day.

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-295-0

DATA ANALYTICS 2013 : The Second International Conference on Data Analytics

In typical environments, there is often a need to define
a number of equivalent rules over a large number of tables
and attributes. To accommodate for this requirement, we
implemented a template concept.

A template looks quite similar to a normal rule. It con-
tains a SQL statement producing the same set of standard
columns, and it might also contain bound definitions. However,
instead of the target table and attribute names, the template’s
SQL statement contains special markers. For attributes, these
markers declare the purpose of the attribute within the rule.
Once the user has defined a template, she can instantiate it for
multiple sets of tables and attributes. During this process, she
either defines new bounds or uses the predefined bounds from
the template for the generated rules. The engine forwards rule
parameters defined within the template to the generated rules.

SELECT today.§refdim1§ day,
avg(today.§refattr1§) -
avg(past.§refattr1§) result

FROM §reftable1§ today, §reftable1§ past
WHERE today.§refdim1§ = $testday$

AND (today.§refdim1§ - past.§refdim1§)
BETWEEN 1 AND k

GROUP BY today.§refdim1§

Fig. 2. Sample template code (simplified)

The sample statement is a good candidate for a template.
In the template, there is another type of parameters called tem-
plate parameters that are replaced at template instantiation (i.e.,
rule creation time). These are used to define placeholders for
the table and attribute names, like §reftable1§ (cf. Fig. 2).

Fig. 3. Instantiating a template

A GUI assists unexperienced users with defining the tem-
plate parameters, as shown in Fig. 3. For this dialog, the GUI
reads the database catalog and lets the user map the template
parameters to catalog objects. E.g., §reftable1§ is replaced
with sales_fact.

IV. ARCHITECTURE

Figure 4 shows an overview of the DCE overall architec-
ture. The DCE itself is organized as a classical three-tier appli-
cation. It interacts with the enterprise data warehouse system
in order to compute quality indicators. Also, results of the
data quality checks may be propagated into another external
database system, the data quality data mart. This database in

itself is also organized as a data mart and provides long term
storage of computed data quality indicators in order to be used
for long term analysis of enterprise wide data quality. In a
sense it is a meta-data warehouse for data quality. There is also
an external scheduling component (typically standard system
scheduling capabilities), which triggers computation of data
quality indicators at previously defined points in time.

Fig. 4. Data checking engine architecture overview

Within the DCE itself the main entry point for data quality
managers is the GUI of the DCE web application (shown at
the bottom of Fig. 4). The GUI is used to manage users of the
DCE application, to manage data quality rules, and to manage
data rule executions. As typically the execution of data quality
checks is not triggered manually, there is also a command-line
client library for the rule execution engine that is triggered by
an external scheduler. The schedule to be used is managed in
the web application as well.

The main data checking business logic can be found in
the middle tier. This logic is used by the web application
as described above. Note that there is a strict separation
between user management, rule management and rule exe-
cution management in the middle tier as well. Whereas the
user administration component provides standard functionality,
note that the rule management component contains advanced
features. For instance the template mechanism described in the
previous section is implemented here.

The execution engine is also managed by the web appli-
cation: on one hand rules can be manually executed from the
web application, on the other hand scheduled execution can be
defined here.

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-295-0

DATA ANALYTICS 2013 : The Second International Conference on Data Analytics

During rule execution, the engine replaces the parameters
in the rule’s SQL statement with their current values and then
runs the statement using the target database. Thus, moving
large amounts of data into the DCE engine is avoided. The
result of the SQL statement is then further processed. This
includes checking the currently applicable bounds and testing
their severity.

In the execution engine it is also defined, which rules
are executed on what data warehouse database under whose
privileges. Note that multiple different data warehouses (or
database systems) may be used as source, because the connec-
tion information is also managed by the web application.

Finally the database layer consists of three separate areas:

• Rule repository, which holds the data quality rules as
well as base templates

• Result repository holding results of rule execution
• User database which is used for access management

to only the DCE itself

Once results of the executed data quality rules have been
stored in the result repository they may be propagated to the
data quality data mart that aggregates the results into quality
indicators.

This data mart is not part of the DCE but located within the
standard DWH infrastructure of the company. Thus, standard
interfaces such as reporting and BI tools can be used to
further present and analyze the data quality status. This way
the additional effort for data quality monitoring can be kept
minimal as access to data quality indicators follows well es-
tablished processes and uses well-known tools, which are used
for regular monitoring of enterprise performance indicators as
well. In addition, the concept of viewing data quality indicators
similarly as regular performance indicators is very fitting,
as these have to be tracked accordingly in order to ensure
reliability of data in the data warehouse. Ultimately, this is
necessary to make the right entrepreneurial decisions based on
reliable information.

V. DATA QUALITY METRICS

The result repository contains large amounts of specific
results that individually describe only a very small fraction
of the overall data quality of the DWH. In order to get a
quick overview of the quality level, a small set of metrics
that aggregate the rule results is required.

In the literature, there are various approaches to define
data quality indicators, for example [10]. Thus we decided
to provide a flexible approach that enables the user to define
her own indicator hierarchies. The engine stores indicator
definition meta data and calculates the resulting indicator
values.

An important issue here is to take incremental checks into
account. As an example, consider a rule that checks the number
of dimension foreign keys in a fact table that reference a
dummy instead of a real dimension entry. As the fact table
is large, the daily rule just checks the new fact records loaded
in the previous ETL run. Thus the indicator has to aggregate
over the current and past runs to provide an overall view of
the completeness of the dimension values.

VI. CONCLUSION AND FUTURE WORK

We have already implemented a prototypical version of
the described architecture. Furthermore, we have validated the
approach by interviewing teams of different DWH projects and
building project specific prototypical setups. Our engine has
been able to support their quality monitoring requirements.
Especially the flexibility in rule definition was appreciated.
We have not only detected quality problems on tuple level but
also more complex issues, e.g., checking the trend of indicators
stored in a fact table. As expected, our template mechanism
has proven to be an important way to simplify rule definition.

The engine keeps a comprehensive history of rule results
and rule meta data, which allows to monitor data quality over
time and to check whether quality improvement projects were
successful. This quality data is exposed to external BI tools
for reporting and further analysis.

An important consequence of the flexibility of our approach
is that the DCE can also be used during DWH/ETL develop-
ment to test the result processes. The testing rules developed
during this project phase may also be used during normal
operation, reducing the overall cost.

Our approach is currently working on any relational
database system. In the future, we plan to also integrate Big
Data systems like Hadoop, as more and more relevant data is
stored in such systems. Thus data quality should be monitored
there as well. As there is currently no universal query language
standard like SQL in the relational sector, we will have to
devise a flexible way to cope with various rule definition
languages.

REFERENCES

[1] C. Batini and M. Scannapieco, Data Quality: Concepts, Methodologies
and Techniques, 1st ed. Springer Publishing Company, Incorporated,
2010.

[2] R. Kimball and J. Caserta, The data warehouse ETL toolkit. Wiley,
2004.

[3] I. P. Fellegi and D. Holt, “A systematic approach to automatic edit and
imputation,” Journal of the American Statistical Association, vol. 71,
no. 353, pp. 17–35, 1976.

[4] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu, “Towards certain
fixes with editing rules and master data,” The VLDB Journal,
vol. 21, no. 2, pp. 213–238, Apr. 2012. [Online]. Available:
http://dx.doi.org/10.1007/s00778-011-0253-7

[5] W. Fan and F. Geerts, Foundations of Data Quality Management,
ser. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2012.

[6] S. Song and L. Chen, “Differential dependencies: Reasoning
and discovery,” ACM Trans. Database Syst., vol. 36,
no. 3, pp. 16:1–16:41, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2000824.2000826

[7] M. L. Lee, T. W. Ling, and W. L. Low, “Intelliclean: A knowledge-based
intelligent data cleaner,” in ACM SIGKDD, Boston, 2000, 2000.

[8] K. Sattler, S. Conrad, and G. Saake, “Adding conflict resolution
features to a query language for database federations,” in Proc. 3nd
Int. Workshop on Engineering Federated Information Systems, EFIS’00,
Dublin, Ireland, June, 2000, pp. 41–52.

[9] J. Barateiro and H. Galhardas, “A survey of data quality tools,”
Datenbank-Spektrum, vol. 14, 2005.

[10] B. Heinrich, M. Kaiser, and M. Klier, “Metrics for measuring data
quality - foundations for an economic oriented management of data
quality,” in Proceedings of the 2nd International Conference on Soft-
ware and Data Technologies (ICSOFT). INSTICC/Polytechnic Institute
of Setúbal, J. Filipe, B. Shishkov, and M. Helfert, Eds., 2007.

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-295-0

DATA ANALYTICS 2013 : The Second International Conference on Data Analytics

