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Abstract--In this paper, we examine a ready-to-use, robust,
and computationally fast fixed-size memory pool manager
with no-loops and no-memory overhead that is highly suited
towards time-critical systems such as games. The algorithm
achieves this by exploiting the unused memory slots for
bookkeeping in combination with a trouble-free indexing
scheme. We explain how it works in amalgamation with
straightforward step-by-step examples. Furthermore, we
compare just how much faster the memory pool manager is
when compared with a system allocator (e.g., malloc) over a
range of allocationsand sizes.
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l. INTRODUCTION

A high-quality memory management system is crucial
for any application that performs a large number of
allocations and de-allocations. In retrospectliss have
shown that in some cases an application can spand o
average 30% of its processing time within the megmor
manager functiongl—4] and in some cases this can be as
high as 43%5].

However, speed is only one of the features we ok
for a good memory manager; in addition, we are also
concerned with:

* Memory management must not use any resources
(both memory or computational cost)

* Minimize fragmentation

 Complexity (ideally a straightforward and logical
algorithm that can be implemented without too
many problems)

» Ability to verify and identify memory problems
(corruption, leaks).

Nevertheless, the majority of applications use a
general memory management system, which tries to
provide a best-for-all solution by catering for Bve
possible scenario. For some systems, where speed i
critical, such as games, these solutions are dierki
Instead, a simplified approach of partitioning themory
into fixed sized regions known as pools can provide
enormous enhancements, such as increased speed, zer
fragmentation and memory organization.

Hence, we focus on a fixed-pool solution and
introduce an algorithm that has little overhead almdost
no computational cost to create and destroy. Hitiadh,
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it can be used in conjunction with an existing egstto
provide a hybrid solution with minimum difficulty.On
the other hand, multiple instances of numerougifisized
pools can be used to produce a general overalibflex
general solution to work in place of the currensteyn
memory manager.

Alternatively, in some time critical systems such a
games; system allocations are reduced to a barienomim
to make the process run as fast as possible. Hawkr
a dynamically changing system, it is necessaryltzcate
memory for changing resources, e.g., data assets
(graphical images, sound files, scripts) which laseled
dynamically at runtime. The sizes of these resssian
be determined prior to running. This then makesfiked
memory pool manager ideal. Alternatively, as nmared
a range of pools can be used for a best-fit appraac
accommodate varying size data.

Naive memory pool implementations initialize aleth
memory pool segments when creaféf]7]. This can be
expensive since it is usually necessary to loop alledhe
uninitialized segments. Our algorithm differs bglyo
initializing the first element and so has little
computational overhead when it is created (i.eloops).
Hence, if a memory pool is only partially used and
destroyed, this wastes fewer processor cycles.
Furthermore, for dynamic memory systems where
partitioned memory is constantly created and dgstto
this initialization cost can be important (e.g.pfsobeing
repeatedly partitioned into smaller pools at rumefj.

In summary, a memory pool can make an application
execute faster, give greater control, add gre&ibility,
enable greater customizability, greatly enhance
robustness, and prevent fragmentation. To conglinie
paper presents the implementation for a straigvtod,
fast, flexible, and portable fixed-size memory pool
algorithm that can accomplish O(1) time complexity
memory allocation and de-allocation that is idealHigh
speed applications.

The fixed-size pool algorithm we present boasts the
following properties:

¢ No loops (fast access times)

¢ No recursive functions

e Little initialization overhead

e Little memory footprint (few dozen bytes)
«  Straightforward and trouble-free algorithm
¢ No-fragmentation
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« Control and organization of memory

The rest of the paper is organized as follows.stFir
Section Il discusses related work. In Sectidh, we
outline thecontribution of the paperfollowed by Section
IV, which gives a detailed explanation of how the
memory pool algorithm works. SectioWi discusses
practical implementation issues. Sectidnoutlines some
limitations of the method. SectioRlll gives some
benchmark experimental results. Finally, Sectioh
draws conclusions and further work.

1. RELATED WORK

The subject of memory management techniques has
been highly studied over the past few dec4g8e&2][13].

A whole variety of techniques and algorithms are
available, while some of them can be overly compled
confusing to understand. On the other hand, ttlenigque
we present here is not novel, but is a modificatibran
existing technique [14][6][13]; whereby loops and
initialization overheads are removed; this makee th
resulting algorithm extremely fast and straightfard
The method also boasts of being one of the mostanem
efficient implementation available since it haswéttle
memory footprint and while giving an O(1) accessei
We also give an uncomplicated implementation in @+
the appendix.

Memory pools have been a well known choice to
speed-up memory allocations/de-allocations for -igh
speed systen{45][16][17]. Zhao et al[18] grouped data
together from successive calls into segregated memo
using memory pools to reduce pre-fetch latency. An
article by Applegat¢l9] gave a well-defined overview of
the various methods and advantages of high-periocena
memory in portable applications and the advantazfes
memory pools. Further discussion in Malakh{20]
outlines the advantages of memory pools and their
applicability in high-performance multi-threadedstsms.

While we present a similar single-pool allocator to
Hanson[7], our algorithm is more clear-cut and makes it
easier to customize for an ad-hoc implementation.

Additionally,  performance considerations are
discussed by Meyerf21], e.g., macros and monolithic
functions, that can be applied to gain further dpags
and gain greater reliability while incorporating agb
coding practices. A comparison of the computaficoat
of a memory management system implemented in an
object orientated language (e.g., C++) is lesgiefiit than
one implemented in a functional language (e.g., C)
[31[22]; however, we implemented our fixed-size
memory pool in C++ because we believe it makesoitem
re-usable, extensible and modular.

I1l.  CONTRIBUTION

The contribution of this paper is to demonstrate a
practical, simple, fixed-size memory pool manadeat t
has no-loops, virtually no-memory overhead and is
computationally fast. We also compare the algorith
with the standard system memory allocator (evllog
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to give the reader a real-world computational comnspa
of the speed differences. The comparison emplmgize
how much faster a simple and smart algorithm caoves
a more complex and general solution.

IV. HowlIT WORKS

We explain how the fixed-size memory pool works by
defining what information we have and what inforioat
we need to calculate (to help make the details more
understandable, seerigure 1 and Figure 2 for
illustrations).

When the pool is created, we obtain a continuous
section of memory that we know the start and erthtess
of. This continuous range of memory is subdividet
equally sized memory blocks. Each memory blocks
address can be identified at this point from thartst
address, block-size, and the number of blocks.

This leaves the dynamic bookkeeping part of the
algorithm. The algorithm must keep track of which
blocks are used and un-used as they are allocatbdex
allocated.

We begin by identifying each memory block using a
four-byte index number. This index number can bedu
to identify any memory location by multiplying itylthe
block size and adding it to the start memory adsdres
Hence, we have 0 te1 blocks; whera is the number of
blocks).

The bookkeeping algorithm works by keeping a Ifst o
the unusedblocks. We only need to know which blocks
are being unused to find the used blocks. Thisdfs
unused blocks is modified as blocks are allocatetide-
allocated.

<«—Enc
W n-1 (e.g., 0XO05A1ES8C)
4 2 Memory block
@ ) > 4 bytes
used
n-3
= W n equally sized blocks of memory
2|
2 .
Ll— Mem(;ry block index number
used 1— (0 to 22 blocks for 4 byte inde
0 0
Be ) <«— Start
(e.g., 0x005A1D38)
@ (b)

Figure 1. (a) lllustrate how the unused memotinked together (the
unused memory blocks store index information tafify the free
space). (b) Example of how memory is subdivided anumber of n
blocks.

However, we avoid the cost of initializing and link
together all the unused blocks. We alternativeiialize
a variable to inform us of how many of thélocks have
been appended to the unused list. Whereby, at each
allocation unused blocks are appended to the tidtthe
number of initialized blocks variable is updatedee(s
Figure 1).
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The list uses no additional memory. Since the
memory blocks that are being kept track of arebweing
used, we can store information inside them. Eaulsed
block stores the index of the next unused blocke pool
keeps track of the head of the unused linked clodin
blocks.

For this bookkeeping algorithm to work a minimum
size constraint must be imposed on the memory block
The individual memory blocks must be greater thaur-f
bytes. This is because each unused memory bloitk wi
hold the index of the next unused memory blockoronfa
linked list all the unused blocks.

Therefore, each unused block holds the index to the
next unused block and so on. Our pool storesritiexi to
the head of the first unused block. For each atlon an
unused block is removed from the list and returiwethe
user. We keep track of the head of the unusedofist
blocks and is updated after each allocation. Algvely,
when a block de-allocated we can calculate itsxnftem
its memory address then append it to the list afsed
blocks.

We only add new unused blocks to the list during
allocation. We keep track of how many blocks hagen
added to the list and stop appending new blockswiee
have reached the upper limit. This avoids any $oapd
initialization costs since we only initialize blackas we
need them. In summary, as we allocate blockshéuart
unused blocks are initialized and appended to itteab

head = |
numFreeBlock = 4
numlinitialized = 0

head =
numFreeBlock = ?
numinitialized = ?

head =
numFreeBlock = 3

needed.

Figure lis used to help further illustrate the working
mechanism of the algorithm; in additionsting 1 gives
the pseudo-code.

A. Step-by-Step Example

To follow the fixed-pool method through, we use a
simple step-by-step example showrFigure 2to see the
algorithm in action.

We create a fixed pool with four-blocks. We show
how unused blocks and member variables changeglurin
the process of creation, allocation and de-allocati
sequentially from the start (identifying uninitizéid and
unknown memory with question marks — the three
variables inFigure 2represent the necessary variables
used by the pool for bookkeeping).

B. Verification

Writing a custom memory pool allocator can be both
difficult and error prone. While the fixed size mery
pool algorithm is relatively straightforward anauble-
free to implement, it is advised that additionalifieation
and sanity checks be incorporated to ensure a tr@mnas
reliable implementation.

These sanity and safety checks can come at thetost
extra memory usage and increased computational cost
For example, running experimental simulations cftem
allocations within the debugger would increasecatmn

head = 2
numFreeBlock = 2
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Figure 2. Step-by-step example of the memory piotésnal workings for a simple 4 slot segmentatidine sequence of events from (a) to (h).
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times by up to 100 times (séégure 3 and Figure 4
which show the different allocation times of rurmin
within and outside the debugger).

The memory pool gives the maximum amount of
control and can implement various custom checkseyT
can be enabled and disable at will, and can be less
computationally expensive than the system memory
checks enabling builds to run at fast speeds vgdlaing
debug information.

For example, the de-allocated memory addresses can
easily be verified, since each memory address rheast
within an upper and lower boundary of the contirsiou
memory region. Furthermore, the de-allocated mgmor
address must be the same as one of the addresseth
divided memory blocks. In addition, memory guacds
be added to include boundary checks by adding apde
post byte signature to each block. These memoaydsu
can be checked globally (i.e., for all blocks) dadally
(i.e., currently deleted block) to identify problenand
provide sanity checks.

Furthermore, leaks can be found by extending and
embedding the memory guards to store additional
information about the allocation; for example, tiree
number of the allocation.

V. IMPLEMENTATION

We implemented the code in C++.
created using create/destroy functions insteadhef
constructor/destructor so that the pool could be
dynamically resized without destroying and recreathe
pool each time it needed reconfiguring.

The implementation has four essential
functions: Create, Destroy, Allocate, and De-alteca

The fundamental source code that implements the
fixed-size memory pool is given in the appendixa Keep
the source code as straightforward and as easgatb as
possible all the validation and sanity check cods been
excluded.

The pool was

public

Initialize poo
[ Block of memory is allocated or obtained ]

1. Store the start address, number of blocks ted
number of uninitialized unused block

Allocator

2. Check if there any free blocks

3. If necessary - initialize and append unusedhorg
block to the list

4. Go to the head of the unused block list

5. Extract the block number from the head ofuhesed
block in the list and set it as the new head

6. Return the address for the old block head
De-allocator

7. Check the memory address is valid

8. Calculate the memory addresses index id

9. Set its contents to the index id of the curtead of
unused blocks and set itself as the head

Listing 1. Pseudo-code for pool.

Combining the fixed pool allocator with an existing
memory management system in C++ by overloading the
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new and deleteoperators would give better performance
with the minimum amount of disruption, since 38% of
execution time can be consumed by the dynamic mgmor
management[3].  This ad-hoc approach works by

checking the memory allocation size within the new
operator; if space is available inside the poot] the size

is within a specified tolerance the memory is takem

the pool, but if not, the general system allocéatalled

to supply the memory.

Additionally, the greatest care must be exercised t
ensure that classes and structures in C++ thatllacated
and de-allocated by the fixed-size pool allocateven
their constructors and destructors manually called.

VI.  LIMITATIONS

The fixed-pool memory manager relies on it being
assigned a continuous block of memory. This carabe
serious limiting factor if the assigned block of may is
scattered around.

Furthermore, we have focused on the algorithm and
not discussed hardware limitations. For examplpage
fault can result in an access time being 10,000egim
slower than normal. Additionally, we have not asided
the issue of using the memory pool in a multi-tilexh
environment. This also raises the question of b/
memory manager can be managed across multiple cores
and the subject of scalability.

As well, the presented memory pool implementatson i
limited to systems with direct access to the menzorg
so cannot be implemented in managed memory
environments (e.g., Java and C#).

The amount of memory requested from the fixed-size
pool allocator can raise two major problems. Bjrsf
the requested memory is dramatically smaller tHa t
slot-size then lots of memory will be wasted. Setlyp,
and worse, if the requested memory is greater than
slot-size then it is impossible to allocate memfooyn the
pool. Nevertheless, to combat these problems and t
reduce memory wastage and largely miss-sized
allocations an ad-hoc solution can be used. Wherzb
general system allocator in conjunction with muéip
fixed-size pools would help to reduce memory wastag
while still benefiting from the pool speedups.

On the other hand, it should be pointed out, that a
general memory management system could become
slower and fragmented over time. Whereby, a sldtab
block of memory would require considerable seaighin
overhead, in addition to, small chunks of unsugadhd
unusable memory being scattered around.

VIl. RESIZING

The fixed-size memory pool holds a list of unused
memory blocks. This list resides in the unused prgm
and is incrementally extended when a memory black i
allocated. Hence, if more memory blocks are nediaxl
are available, and further additional memory fokothe
end of the continuous memory pools allocation, fibel
can be extended effortlessly with little cost bylafing its
member variables. Once the member variables haee b
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updated to incorporate the new end memory addtess i
will automatically extend and fill the new regiorf o
memory during block allocations.

The algorithm currently always initializes the next
unused memory block during the allocation call.
However, an additional check can be added to avoid
initialization of further unused blocks if they areot
needed. For this reason, we could identify theimam
allocated number of unused blocks. Then, optigrthk
large pool of memory could be resized-down without
needing to destroy and re-create the pool.

VIIl. EXPERIMENTAL RESULTS

The algorithm itself is simple with no loops, no
recursion, and little computational cost, and pm$u
extremely fast allocations and de-allocations. deb a
ballpark idea of how much faster the memory pool
manager can be over a general memory system; we
allocated and de-allocated a range of memory chasks
shown inFigure 3andFigure 4 The figures show the
fixed-pool allocator to be ten times faster thaa gieneral
system allocator, and a thousand times faster when
running within a debug environment.

IX.  CONCLUSION ANDFURTHERWORK

We have shown a fundamental, unsophisticated, raw-
and-ready memory pool algorithm that produces
remarkably fast speeds with nearly no-overhead and
boasts the added advantage of being straightforuard
understand and easy to implement. The fixed-size
memory pool provides the best solution for processeh
as games, which assume that relatively few memory
allocations happen, and when they do happen tlegfa
deterministic size and need to be extremely fast (f
example, graphical assets, particles, network packed
S0 on).

The Keep It Short and Simple (K.I.S.S) approach was
a target goal for the fixed-size memory pool sitlce
presented algorithm is a fundamental building blémk
constructing, if desired, a more elaborate andilflex
memory manager.

Further work is needed to investigate if the algponi
could be optimised to use less decisional logie.,(iif
statements). In addition to exploring hardware
considerations (e.g., caching, paging, registemmary
alignment, threading) and how the algorithm can be
enhance to accommodate platform specific speed-ups.
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}; 1/ End pool class

Listing 2. C++ Source Code.
APPENDIX .
B. System Information

A. Fixed-Size Pool Manager - C++ Code Simulation tests were performed on a machine wiié t

class Pool _c

1 i & tme dine following specifications: ~ Windows7 64-bit, 16Gb Mery,
typedef unsigned int uint; Intel i7-2600 3.4Ghz CPU. Compiled and tested withual
typedef unsigned char uchar; Studio
ui nt m_nunX Bl ocks; [/ Num of bl ocks .
uint  msizeO EachBl ock; // Size of each block C. Speed Comparison Graphs
ui nt m nunFr eeBl ocks; /1" Num of renaining bl ocks . i . .

WD G GO GO el el 0d W @i 01 &0 zed [ el Each line represents a fixed allocation size arel tiime
uchar* mnenstart; /1 Beginni ng of nenory pool
uchar* mnext; /1 Numof next free bl ock taken to allocate repeatedly.
public:
Malloc - Time vs Number-Allocations (Fixed Memory Sizes) (Release)
Pool _c() 4500
{
m_nuntX Bl ocks =0; o0
m si zef EachBl ock = 0;
m_nuntr eeBl ocks = 0; 3500
mnumnitialized = 0;
m_mentt ar t = LL; 3000
m_next =0;
) 2500 —10bytes
~Pool _c() { DestroyPool (); } o0ty
-
voi d CreatePool (size_t sizeCOf EachBl ock, :::::::“
ui nt nuntx Bl ocks) 1500 e
m_nunf Bl ocks = nuntf Bl ocks; 1000
m si zeOf EachBl ock = si zeOf EachBl ock;
m_mentt ar t = new uchar|[ msizeO EachBl ock * 500
m _nunof Bl ocks ]; — —— —
m nunFreeBl ocks = nunOf Bl ocks; 0 mw Mmoo 1m0 mmw  wowo o e 20000
m next = mnenttart; Number Allocations
voi d DestroyPool ()
Figure 3. Release build with full optimization ning within the
delete[] mnmenBtart; . B .
mmenstart = NULL: debugge(Time in ms); system malloc only.
y ™
uchar* Addr From ndex(uint i) const Malloc - Time vs Number-Allocations (Fixed Memory Sizes) (Release)

return mnenBtart + (i * msizeO EachBl ock );

ui nt | ndexFr omAddr (const uchar* p) const s0

(return (((uint)(p - mnentBtart)) / msizeO EachBl ock);
}

—10bytes

voi d* Allocate() * > —100byes

——1000bytes
——10000bytes

if (mnumnitialized < mnunOf Bl ocks ) * g ——100000byies
uint* p = (uint*)AddrFrom ndex( mnumnitialized ); o 2
*p = mnuninitialized + 1;
mnunm nitialized++; s
}
voi d* ret = NULL: °s 20000 40000 50000 80000 100000 120000 140000 160000 180000 200000

Number Allocations

if ( mnunfreeBlocks > 0 )

@
ret = (void*)mnext; N 5 n N
- - m nunfr eeBl ocks; Pool - Time vs Number-Allocations (Fixed Memory Sizes) (Release)
i f (m_nunfreeBl ocks! =0) ”
{

m next = Addr Fronml ndex( *((uint*)mnext) );

}
el se A
{ o8 /oa
mnext = NULL;
} ~ S e
} . /> e
return ret; —1000bytes
} - — t0000bytes
) — 100000byes
voi d DeAl | ocat e(voi d* p)
{
if (mnext !'= NULL) 02
{

(*(uint*)p) = | ndexFromAddr ( m next ); g

mnext = (uchar*)p; < —
D e W.Mmb

*((uint*)p) = mnunOf Bl ocks; ( )
) mnext = (uchar*)p; Figure 4. Running outside the debugger — standaféime in ms);
++m nunFr eeBl ocks; (a)system malloc and, (b)custom pool.
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