
A Tool for Signal Probability Analysis of
FPGA-Based Systems

Cinzia Bernardeschi1, Luca Cassano1, Andrea Domenici1 and Paolo Masci2
1 Department of Information Engineering, University of Pisa, Italy

2 Department of Electronic Engineering and Computer Science, Queen Mary University of London, United Kingdom
Email: {cinzia.bernardeschi, luca.cassano, andrea.domenici}@ing.unipi.it, paolo.masci@eecs.qmul.ac.uk

Abstract—We describe a model of Field Programmable Gate
Array based systems realised with the Stochastic Activity Net-
works formalism. The model can be used (i) to debug the
circuit design synthesised from the high level description of
the system, and (ii) to calculate the signal probabilities and
transition densities of the circuit design, which are parameters
that can be used for reliability analysis, power consumption
estimation and pseudo random testing. We validate the developed
model by reproducing the results presented in other studies for
some representative combinatorial circuits, and we explore the
applicability of the proposed model in the analysis of real-world
devices by analysing the actual implementation of a circuit for
the generation of Cyclic Redundancy Check codes.

Keywords-FPGA, Signal Probability, Simulation, Transition
Density.

I. INTRODUCTION AND RELATED WORKS

Field Programmable Gate Array (FPGA) devices are widely
used components in many different application fields, includ-
ing safety-critical systems. Especially in embedded and mobile
applications, the assessment of such quality factors as power
consumption and reliability is of fundamental importance. It
has been shown that these factors may be estimated in terms
of signal probability [1], [2], [3], [4], that can be defined as
the fraction of clock cycles in which a given signal is high [5].
Another useful parameter is transition density, i.e., the fraction
of clock cycles in which a signal makes a transition [6].
Other applications of signal probabilities are soft error rate
estimation [7] and random testing [8]. Soft error rate is the
error rate due to Single Event Upsets, i.e., errors caused by
radiations, that are a major threat to system reliability. In
random testing, test patterns are generated at random to cover
as many as possible fault modes of the system. The statistical
distribution of the test patterns may be weighted according to
the input signal probabilities to optimise the coverage.

The computation of signal probabilities may rely on either
an analytical or a simulative approach. With analytical models,
exact values of signal probabilities can be computed, but
the computation is NP-hard in the general case [9], so it is
usually necessary to resort to heuristic approximations. With
a simulative approach, a model of the system is fed with inputs
whose values reflect the expected statistical properties, and the
simulated output signals are recorded and analysed to evaluate
the resulting properties.

In this paper, we present a model of FPGA circuit execution
that can be used to calculate the signal probabilities and

transition densities of a given FPGA design, starting from the
signal probabilities of the inputs. The model is based on the
formalism of Stochastic Activity Networks (SAN) [10] and it
has been developed with the Möbius tool [11].

In FPGA systems, a high-level design is implemented with
the configurable logic blocks made available by a given FPGA
chip. In order to attain a realistic model and satisfactory
accuracy of the analysis, the proposed model represents the
FPGA system at this implementation level.

The model is implemented by a simulator that takes as
input a description of the system to be simulated and a few
configuration parameters, including the signal probabilities of
the inputs, the number of simulated clock cycles etc. The
simulator generates input vectors according to the specified
signal probabilities of the inputs and the results are collected
and analysed using the features of the underlying Möbius
environment.

In the rest of this paper, the FPGA technology (Section II)
and the SAN formalism (Section III) are introduced, then
the formal model of FPGA circuit execution is presented
(Section IV) and a case study is shown as a proof of concept
(Section V). Conclusions and future work are in Section VI.

II. THE FPGA TECHNOLOGY

An FPGA is an array of programmable logic blocks, inter-
connected through a programmable routing architecture and
communicating with the output through programmable I/O
pads [12]. The programming of an FPGA device consists
in downloading a programming code, called bitstream, in its
configuration memory, that determines the hardware structure
of the system to be implemented in the FPGA, and thus the
functionality performed by the system.

The logic blocks may be simple combinatorial/sequential
functions, such as lookup tables, multiplexers and flip-flops, or
more complex structures such as memories, adders, and micro-
controllers. The routing architecture in an FPGA consists
of wires and programmable switches that form the desired
connections among logic blocks and I/O pads. Finally, the
I/O architecture is composed of I/O pads disposed along the
perimeter of the device, each one implementing one or more
communication standards.

An FPGA system is described at the Register-Transfer Level
(RTL) in terms of high-level registers and logic functions,
independent of their implementation on a particular device.

13

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-159-5

An RTL specification is usually given in a hardware definition
language (HDL), such as VHDL or Verilog. At the netlist level,
a system is described in terms of its actual implementation,
targeted at a particular device and composed of the logic
blocks made available by the device, such as lookup tables
and flip-flops.

The implementation of an FPGA-based application involves
three main phases: (i) the RTL level design is specified with
schematics or with a textual description in a HDL; (ii) after an
FPGA chip has been selected, a chip-specific tool synthesises
the RTL description into a netlist, i.e., a textual description of
the network implementing the design; and (iii) the bitstream
is generated from the netlist.

III. THE SAN FORMALISM

Stochastic Activity Networks [10] are an extension of the
Petri Nets (PN). SANs are directed graphs with four disjoint
sets of nodes: places, input gates, output gates, and activi-
ties. The latter replace and extend the transitions of the PN
formalism. The topology of a SAN is defined by its input
and output gates and by two functions that map input gates
to activities and pairs (activity, case) (see below) to output
gates, respectively. Each input (output) gate has a set of input
(output) places.

Each SAN activity may be either instantaneous or timed.
Timed activities represent actions with a duration affecting
the performance of the modelled system, e.g., message trans-
mission time. The duration of each timed activity is expressed
via a time distribution function. Any instantaneous or timed
activity may have mutually exclusive outcomes, called cases,
chosen probabilistically according to the case distribution
of the activity. Cases can be used to model probabilistic
behaviours. An activity completes when its (possibly instanta-
neous) execution terminates.

As in PNs, the state of a SAN is defined by its marking, i.e.,
a function that, at each step of the net’s evolution, maps the
places to non-negative integers (called the number of tokens
of the place). SANs enable the user to specify any desired
enabling condition and firing rule for each activity. This is
accomplished by associating an enabling predicate and an
input function to each input gate, and an output function
to each output gate. The enabling predicate is a Boolean
function of the marking of the gate’s input places. The input
and output functions compute the next marking of the input
and output places, respectively, given their current marking.
If these predicates and functions are not specified for some
activity, the standard PN rules are assumed.

The evolution of a SAN, starting from a given marking µ,
may be described as follows: (i) The instantaneous activities
enabled in µ complete in some unspecified order; (ii) if no
instantaneous activities are enabled in µ, the enabled (timed)
activities become active; (iii) the completion times of each
active (timed) activity are computed stochastically, according
to the respective time distributions; the activity with the
earliest completion time is selected for completion; (iv) when
an activity (timed or not) completes, one of its cases is selected

according to the case distribution, and the next marking µ′ is
computed by evaluating the input and output functions; (v) if
an activity that was active in µ is no longer enabled in µ′, it
is removed from the set of active activities.

Graphically, places are drawn as circles, input (output)
gates as left-pointing (right-pointing) triangles, instantaneous
activities as narrow vertical bars, and timed activities as thick
vertical bars. Cases are drawn as small circles on the right
side of activities. Gates with default (standard PN) enabling
predicates and firing rules are not shown.

A. The Möbius Tool

Möbius [11] is a popular software tool that provides a com-
prehensive framework for model-based evaluation of system
dependability and performance. The Möbius tool introduces
shared variables and extended places as extensions to the SAN
formalism. Shared variables are global objects that can be used
to exchange information among modules. Extended places are
places whose marking is a complex data structure instead of a
non-negative integer. Enabling predicates and input and output
functions of the gates are specified as C++ code.

SAN models can be composed by means of Join and Rep
operators. Join is used to compose two or more SANs. Rep is a
special case of Join, and is used to construct a model consisting
of a number of replicas of a SAN. Models composed with Join
and Rep interact via place sharing.

Properties of interest are specified with reward functions. A
reward function specifies how to measure a property on the
basis of the SAN marking. There are two kinds of reward
functions: rate reward and impulse reward. Rate rewards
can be evaluated at any time instant. Impulse rewards are
associated with specific activities and they can be evaluated
only when the associated activity completes. Measurements
can be conducted at specific time instants, over periods of
time, or when the system reaches a steady state.

IV. DESCRIPTION OF THE MODEL

The model is split into a number of modules that interact
through place sharing. Each module identifies a different logi-
cal component of the FPGA: System Manager co-ordinates the
logical components; Input Vector models the signals applied
to the input pins; Combinatorial Logic models the memoryless
circuits; Sequential Logic models the storage elements.

The communication among modules reflects the logical
connections of the real FPGA components. The logical con-
nections are specified in a connectivity matrix, which is a
parameter of the model. This way, the logical connections are
not hardwired in the SAN models, and can be set up from a
text file generated with software tools, such as the Xilinx ISE
tool [13], on the basis of the specification of the FPGA.

The overall FPGA system model is shown in Figure 1. The
models of the logical components are represented with labelled
dark boxes, and their composition is obtained through the Join
and Rep operators. Each model, except System Manager, is
obtained by composing a number of replicas of customisable
template models. Each replica is uniquely identified by an

14

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-159-5

Fig. 1. SAN model of the FPGA.

integer number. The co-ordination between System Manager
and replicas is accomplished through Execution Managers.

A. System Manager

The System Manager module orchestrates the activity of
the other modules of the system according to the following
steps: (i) an input vector, i.e., an n-tuple of the input signal
values, is applied to the input lines; (ii) the combinatorial
part of the system is executed; (iii) the clock tick arrives and
the sequential part of the system is executed. These steps are
repeated until all input vectors have been applied. Steps (ii)
and (iii) are repeated until a steady state is reached.

The SAN model of the System Manager is shown in Fig-
ure 2. The state of the modelled FPGA is given by the marking
of three shared places (input_lines, output_lines,
and internal_lines), which are vectors that encode the
value of the signals on the input, output, and internal lines of
the FPGA. Information on the occurrence of transitions on the
lines are also maintained in the model with the shared places
input_trans, output_trans, and internal_trans.
The state includes also two flags: steady_state_flag,
whose marking reports if the model has reached a steady
state; error_flag, whose marking reports if the model
reaches abnormal execution conditions, e.g., instability of the
combinatorial circuit. These flags can be used by analysts and
developers to check the consistency of the model specification
and to detect potential design problems in the FPGA.

The initial marking of System Manager is the fol-
lowing: places input_lines, output_lines, and
internal_lines are set according to an initial state of the
system; place signal_length contains a number of tokens
equal to the number of input vectors that will be applied; place
p0 contains one token; all other places hold zero tokens.

Initially, the instantaneous activity apply_inputs is en-
abled because p0 contains one token. When apply_inputs
completes, the application of an input vector is triggered by
activating module Input Vector (Section IV-B). The activa-
tion of the Input Vector module is obtained by moving the
token stored in p0 into the shared place sp0_0. When the
application of the input vector completes, module Input Vector
moves a token into sp1_1, and the instantaneous activity
executeCC of the System Manager becomes enabled.

When activity executeCC completes, the execution of
the combinatorial elements of the model starts by activating
module Combinatorial Logic (Section IV-C). The activation

of this module is obtained by moving the token stored in
sp1_1 into the shared place sp2_0. When the execution
of the combinatorial elements completes, the Combinatorial
Logic module moves a token into sp3_1, thus enabling the
timed activity executeSC of the System Manager.

When the timed activity executeSC completes, a clock
tick has arrived, and the execution of the sequential elements
starts by activating module Sequential Logic (the token stored
in sp3_1 is moved into sp4_0). When the execution of the
sequential elements completes, the Sequential Logic module
(Section IV-C) moves a token into sp5_1. If the system
has reached a steady state, a token is also moved into
steady_state_flag.

At this point, the instantaneous activity finalise is
enabled. When finalise completes, the marking of the
model is updated according to the following three cases: (i)
signal_length holds more than one token; in this case,
the marking of p0 is incremented by one; this marking triggers
the application of a new input vector; (ii) signal_length
holds zero tokens and the system state is not steady (i.e.,
steady_state_flag contains zero tokens); in this case,
a token is moved into sp1_1; this marking triggers a
new execution of the combinatorial and sequential parts
of the model; (iii) signal_length has zero tokens and
steady_state_flag has one token; in this case, the
system has reached the final steady state and the execution
terminates; a token is moved into p3 and no activity will be
further enabled in the model.

B. Input Vector

The Input Vector module applies an input vector to the input
lines. The elements of the input vector are generated according
to the signal probability of the corresponding signal. The total
number of input lines is a model parameter (Nin).

The module consists of a manager sub-module, which co-
ordinates the concurrent execution of activities in the model,
and a number of customised template model replicas, each of
which applies an input value to an input line.

1) Execution Manager: This sub-module co-ordinates the
parallel execution of the Input Signal replicas. The SAN model
is shown in Figure 3(a).

In the model, all places initially contain zero tokens, except
the shared places that model the FPGA state (input_lines,
output_lines, and internal_lines); places sp0 and
sp1 coincide (through renaming in the Join operator) with

15

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-159-5

Fig. 2. SAN Model of the System Manager.

(a) Execution Manager.

(b) Input Signal.

Fig. 3. Sub-modules of the Input Vector SAN model.

places sp0_0 and sp1_1 of System Manager, and are thus
shared between the two sub-modules. Places spA and spB are
shared with the Input Signal sub-modules; spA is a vector of
Nin Booleans; one token in position i encodes a true value
for the corresponding element, and triggers the i-th replica of
Input Signal.

Activity pe_start is enabled when System Manager
moves a token into sp0. When the activity completes, the
parallel execution of the Input Signal replicas starts: gate OG0
is executed, and Nin tokens are moved in the shared vector
spA (one token for each element of the vector). When the
parallel execution of the Input Signal replicas concludes, the
shared place spB contains Nin tokens, and the input gate
IG0 enables pe_end, which completes immediately. When
pe_end completes, all tokens stored in spB are removed,
and one token is moved into sp1 to signal System Manager
that the input lines have been updated with the input vector.

2) Input Signal: This sub-module models the application
of a signal value at an input line. The SAN model is shown in
Figure 3(b). We exploit the semantics of the case probabilities
to specify the signal value in terms of the probability of having
a logical zero or a logical one.

The Input Signal sub-module is replicated Nin times, in
order to have one sub-module instance for each input line.
Replicas have unique identifiers, which are used to associate
each replica to an input line.

All places of the model are initially empty, except
componentID, whose marking specifies the identifier of
the sub-module instance. Activity signal_value of the
sub-module with identifier i is enabled when the Execution
Manager moves a token in the i-th position of spA. When

(a) Iterative Execution Manager.

(b) Generic Component.

Fig. 4. Sub-modules of the Combinatorial and Sequential Logic SAN model.

signal_value of replica i completes, one of the two output
gates is executed to apply a signal value to input line i, and a
token is added to element i of spB.

C. Combinatorial and Sequential Logic

The Combinatorial Logic and the Sequential Logic modules
define the execution of the memoryless elements and the
storage elements, respectively, of the FPGA.

Similarly to Input Vector, both models consist of a manager
sub-module and a number of customised template model repli-
cas, each of which models the functionalities of an elementary
component in the FPGA (either a memoryless element or a
storage element).

1) Iterative Execution Manager: This sub-module co-
ordinates the parallel execution of the sub-module replicas.
This module is an iterative version of the Execution Manager
sub-module used in Input Vector. This iterative version is used
to repeatedly activate the parallel execution of the components
until either the modelled elements reach a steady state, or a
maximum number of iterations has been performed.

The SAN model of the Iterative Execution Manager is
shown in Figure 4(a). In the model, all places initially
contain zero tokens, except the shared places that model
the FPGA state (input_lines, output_lines, and
internal_lines), and max_iterations, whose mark-
ing specifies the maximum number of iterations needed to
complete the execution of the modelled elements. In the case
of combinatorial elements, the maximum number of iterations
depends on the interconnection among elements; in the case
of sequential elements, the number of iterations is always one.

We describe the Iterative Execution Manager in conjunc-
tion with the Combinatorial Elements module, as the same

16

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-159-5

description applies also to the Sequential Elements module.
In the model of the Iterative Execution Manager, shared

places sp0 and sp1 coincide (through renaming in the Join
operator) with the shared places sp2_0 and sp3_1 of System
Manager, and are thus shared between the two submodules.
Places spA and spB are shared with the Combinatorial sub-
modules. Moving one token in position i of spA encodes
a true value for the element in position i, and triggers the
execution of the i-th replica of Input Signal. The total number
of combinatorial elements is a model parameter (Nc).

Activity pe_start is enabled when System Manager
moves a token into sp0 and max_iterations contains
at least one token. When the activity completes, the parallel
execution of the combinatorial elements starts: gate OG0 is
executed, the marking of max_iterations is decremented
by one, and Nc tokens are moved in the shared vector
spA (one token for each element of the vector). When the
parallel execution of the combinatorial elements concludes,
the shared place spB contains Nc tokens, and the input gate
IG0 enables pe_end, which completes immediately. When
pe_end completes, all tokens stored in spB are removed, and
one token is moved into sp1 to signal System Manager that
the execution of the combinatorial elements has completed.

2) Combinatorial and Sequential Elements: These ele-
ments are modelled through a customisable SAN model,
denominated Generic_Component (Figure 4(b)).

The set of combinatorial (sequential) elements is obtained
by replicating Nc (Ns) times the Generic Component model,
where Nc (Ns) is the total number of combinational (sequen-
tial) elements. Each replica has a unique identifier, used to
specify the functionality of each model instance.

All places of the model are initially empty, except
componentID, which specifies the replica identifier, and
input_lines, output_lines, and internal_lines,
representing the current system state. The instantaneous ac-
tivity execute of replica i is enabled when the Iterative
Execution Manager moves a token in the i-th position of spA.
When the execution activity of replica i completes, the
function specified in gate OG0 is executed, and a token is
added to spB.

V. ANALYSIS

This section presents the results obtained through the simu-
lation of the proposed SAN models using the Möbius [11] tool.
The goal of the presented analysis is two-fold: (i) to validate
the developed model for the FPGA, by reproducing the results
presented in other studies for some representative combinato-
rial circuits; (ii) to explore the applicability of the proposed
model in the analysis of real-world devices, by analysing
the actual implementation of a circuit for the generation of
Cyclic Redundancy Check (CRC) codes. CRC is a widely used
error-detection scheme used in data communication systems to
contrast communication failures due to the unreliable nature
of the physical links between devices. When data needs to be
reliably transmitted over an unreliable link, the sending device
includes a CRC field in the transmitted message; this way, the

Fig. 5. Example of combinatorial circuit used for validation.

Fig. 6. A circuit to generate CRC code (adapted from [15]).

receiving device can check if the received message is damaged
and, in such case, arrange for a message retransmission.

A. Validation of the Model

To validate our model, we considered the combinatorial
circuits presented in various related works and we checked that
we were able to reproduce the same results. Let us consider,
as a representative case, the combinatorial circuit of Figure 5,
which has a reconvergent fanout. The analytical results for
signal probability are reported in [14] (we show such results
on the upper side of the lines).

The signal probabilities computed with our model corre-
spond with those reported in [14]; specifically, after 10000
simulation runs, we obtained an average relative error of
2 · 10−4, never exceeding 6 · 10−4. This cross-validation
exercise reinforced our confidence in the correct definition of
the model.

B. Analysis of a Circuit for CRC generation

As a case study, we consider the FPGA implementation of
a circuit for the generation of IEEE 802.3 CRC codes [15]. A
simplified schematic of a 4-bit data bus circuit that generates
8-bit CRC codes is shown in Figure 6. In the figure, d is the 4-
bit data bus, init, calc, and d_valid are control signals,
and update is a combinatorial network that computes the
next state for the output register r0.

The Verilog code for the circuit, which is publicly available
from the Xilinx web site, was compiled into a netlist with the
Xilinx ISE tool [13]. The resulting netlist has 8 input signals,
12 output signals, 20 matching I/O buffers, 17 LUTs, and
19 flip-flops. We modelled the netlist according to the method
described in Section IV and we used the model to compute the
signal probabilities and transition densities of the signals on

17

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-159-5

the internal lines of the circuit. The experiments have been set
up to reproduce the signal values during a CRC calculation:
the control pins load_init and reset are always low;
calc is always high; d_valid switches between high and
low levels at each clock cycle; input pins d[3:0] are high
with probability Pi, where i is the index of the input pin.

The measurements have been obtained as follows: (i) A
simulation run consists in applying a number nr of con-
secutive test vectors, where r identifies the run; the test
vectors elements are generated with a uniform probability
distribution, assuming independence between elements and
between vectors; (ii) for each signal i, we defined two reward
functions: pri, which returns, for each run r, the number of
clock cycles in which the i-th signal is high; tri, which returns,
in each run r, the number of clock cycles in which the signal
makes a transition. The signal probability Pri and transition
density Tri of signal i for run r are then computed by dividing
pri and tri, respectively, by nr.

We obtain a quantitative assessment of signal probability
and transition density for every line of the circuit. The number
of test vectors used for the experiment is nr = 48, which
corresponds to the length of an IEEE 802.3 address field.
The number of simulation runs needed to obtain a confidence
level of 95% for this circuit was between 5K and 10K. The
time needed to execute 1K simulation runs of the model on
a 2.67 GHz Intel Core i5 was about 2 minutes.

Some results are shown in Figure 7. The plots shown in the
figure report (on the y axis) the value of signal probability
and transition density of three internal lines connected to
multiplexer mux0 when varying (on the x axis) the signal
probability of the input lines d[3:0]. In order to simplify
the presentation of the results, in the experiments we imposed
that the signal probability varies identically on all input lines.

VI. CONCLUSIONS AND FUTURE WORK

A general model for the execution of FPGA circuits at
the netlist level has been defined with the SAN formalism
and a simulator has been developed with the Möbius tool.
The proposed model is suitable (i) to debug the actual FPGA
circuit design synthesised from the high level description
of the system and (ii) to compute signal probabilities and
transition densities of the design. It is worth noting that, even
if the analysis has focused on FPGA systems, the model is
applicable to general sequential circuits.

As further work, we intend to extend the model to study
system reliability with fault-injection techniques, and we in-
tend to exploit the capabilities of the SAN formalism to model
both independent or correlated faults.

REFERENCES

[1] F. N. Najm, “A survey of power estimation techniques in vlsi circuits,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 2, no. 4, pp. 446–455, december 1994.

[2] D. Franco et al., “Signal probability for reliability evaluation of logic
circuits,” Microelectronics Reliability, vol. 48, no. 8-9, pp. 1586–1591,
2008.

Fig. 7. Example of results for signal probability and transition density of
two input lines of mux0 for input data signal probability 0.5.

[3] J. T. Flaquer et al., “Fast reliability analysis of combinatorial logic
circuits using conditional probabilities,” Microelectronics Reliability,
vol. 50, no. 9-11, pp. 1215–1218, 2010.

[4] H. Chen and J. Han, “Stochastic computational models for accurate
reliability evaluation of logic circuits,” in Proceedings of the 20th
symposium on Great lakes symposium on VLSI, ser. GLSVLSI ’10.
ACM, 2010, pp. 61–66.

[5] K. Parker and E. McCluskey, “Analysis of logic circuits with faults using
input signal probabilities,” IEEE Transactions on Computers, vol. C-24,
no. 5, pp. 573–578, may 1975.

[6] V. Saxena et al., “Estimation of state line statistics in sequential circuits,”
ACM Transactions on Design Automation of Electronic Systems, vol. 7,
no. 3, pp. 455–473, july 2002.

[7] H. Asadi et al., “Soft error susceptibility analysis of SRAM-based
FPGAs in high-performance information systems,” IEEE Transactions
on Nuclear Science, vol. 54, no. 6, pp. 2714–2726, dec 2007.

[8] J. Savir, “Distributed generation of weighted random patterns,” Comput-
ers, IEEE Transactions on, vol. 48, no. 12, pp. 1364–1368, Dec. 1999.

[9] B. Krishnamurthy and I. Tollis, “Improved techniques for estimating
signal probabilities,” IEEE Transactions on Computers, vol. 38, no. 7,
pp. 1041–1045, Jul. 1989.

[10] W. H. Sanders and J. F. Meyer, “Stochastic activity networks: formal
definitions and concepts.” New York, NY, USA: Springer-Verlag New
York, Inc., 2002, pp. 315–343.

[11] G. Clark et al., “The Möbius modeling tool,” in 9th Int. Workshop on
Petri Nets and Performance Models. Aachen, Germany: IEEE Computer
Society Press, September 2001, pp. 241–250.

[12] I. Kuon et al., “Fpga architecture: Survey and challenges,” Foundations
and Trends in Electronic Design Automation, vol. 2, 2008.

[13] “ISE Design Suite Software Manuals and Help,” http://www.xilinx.com/
support/documentation/sw manuals, 2010.

[14] M. Al-Kharji and S. Al-Arian, “A new heuristic algorithm for estimating
signal and detection probabilities,” in Proceedings. Seventh Great Lakes
Symposium on VLSI, 1997, mar 1997, pp. 26–31.

[15] C. Borrelli, “IEEE 802.3 Cyclic Redundancy Check,” application note:
Virtex Series and Virtex-II Family, XAPP209 (v1.0), March 23, 2001,
Xilinx, Inc.

18

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-159-5

