
Euclides – A JavaScript to PostScript Translator

Martin Strobl, Christoph Schinko
Institut für ComputerGraphik und WissensVisualisierung

Technische Universität Graz, Austria
{ m.strobl, c.schinko }@cgv.tugraz.at

Torsten Ullrich1, Dieter W. Fellner2
1,2 Fraunhofer Austria, Graz, Austria

2 Fraunhofer IGD & TU Darmstadt, Germany
torsten.ullrich@fraunhofer.at
d.fellner@igd.fraunhofer.de

Abstract—Offering an easy access to programming languages
that are difficult to approach directly dramatically reduces
the inhibition threshold. The Generative Modeling Language
is such a language and can be described as being similar
to Adobe’s PostScript. A major drawback of all PostScript
dialects is their unintuitive reverse Polish notation, which
makes both - reading and writing - a cumbersome task. A
language should offer a structured and intuitive syntax in order
to increase efficiency and avoid frustration during the creation
of code. To overcome this issue, we present a new approach
to translate JavaScript code to GML automatically. While this
translation is basically a simple infix-to-postfix notation rewrite
for mathematical expressions, the correct translation of control
flow structures is a non-trivial task, due to the fact that there
is no concept of “goto” in the PostScript language and its
dialects. The main contribution of this work is the complete
translation of JavaScript into a PostScript dialect including all
control flow statements. To the best of our knowledge, this is
the first complete translator.

Keywords-PostScript; JavaScript; translator; transpiler

I. MOTIVATION

The language PostScript [1] by JOHN WARNOCK and
CHARLES GESCHKE at Adobe Systems is a dynamically
typed concatenative programming language which is known
for its use as a page description language for desktop
publishing. Beginning in the 1980s PostScript (PS) and its
descendants, namely the Portable Document Format (PDF)
[2], are still the standard for electronic distribution of final
documents for publication. Besides desktop publishing, the
programming language PostScript has been used in display
[3] and window systems [4] [5] as well. Nowadays it
has its revival in procedural 3D modeling. The Generative
Modeling Language (GML) [6] is a programming language
based on PostScript. It follows the “Generative Modeling”
paradigm [7], where complex data sets are represented by
algorithms and parameters rather than by lists of objects.
With ever increasing computing power becoming available,
generative approaches [8] [9] become more important since
they trade processing time for data size. At run time the com-
pressed procedural description can be “unfolded” on demand
to very quickly produce amounts of meshes, textures, etc.
that are several orders of magnitude larger than the input
data.

A. PostScript in 3D

GML is very similar to Adobe’s PostScript, but without
any of the 2D layout operators. Instead, it provides a number
of operators for creating 3D models.

PostScript and GML are interpreted, stack-based lan-
guages with strong dynamic typing, scoped memory, and
garbage collection. The language syntax uses reverse Polish
notation, which makes the order of operations unambiguous,
but reading a program requires some practice, because one
has to keep the layout of the stack in mind [10]. Most
operators and functions take their arguments from the stack,
and place their results onto the stack. Literals (numbers,
strings, etc.) have the effect of placing a copy of themselves
on the stack. Sophisticated data structures can be built on
array and dictionary types, but cannot be declared to the type
system. They remain arrays and dictionaries without further
type information.

B. JavaScript

PostScript programs are typically not produced by hu-
mans, but by other programs, e.g., printer drivers and de-
vices. However, it is possible to write computer programs in
PostScript just like in any other programming language.

In order to simplify the GML development and 3D design
process, 3D modeling tools (Autodesk Maya, 3ds Max, etc.)
can be used. Unfortunately, these tools do not preserve the
generative nature. They can only export the generated result.

Encoding shape as program code clearly has the greatest
flexibility, but up to now it requires coding (programming),
which is usually done by humans. To accelerate the GML
creation process and to increase efficiency we propose
a JavaScript (JS) translator to GML. JS is a structured
programming language featuring a rather intuitive syntax,
which is easy to read and to understand. It also incorporates
features like dynamic typing and first-class functions. The
most important feature of JS is that it is already in use
by many non-computer scientists, namely designers and
creative coders [11]. JS and its dialects are widely used
in applications and on the Internet: in Adobe Flash (called
ActionScript), in interactive PDF files, in Microsoft’s Active
Scripting, in VRML97, etc. Consequently, a lot of documen-
tation and tutorials to introduce the language exist [12]. In

14

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0

order to be used for procedural modeling, JS is missing some
functionality, which we added via libraries.

C. Overview

Euclides (www.cgv.tugraz.at/euclides) is a transpiling
framework written in Java. Euclides will also translate an
input JS program to Java or documents its structure in
HTML. It features its own integrated development environ-
ment (IDE), from which one can transpile to the supported
target languages. Our translation to GML makes the rich
feature set of the Generative Modeling Language accessible
to a wider range of users, because it hides much of the
complexity involved in writing GML programs.

In the subsequent sections, we explain the JS to GML
translator. Having parsed JS using ANTLR [13], the trans-
lation process begins with a correct (according to EC-
MAScript, ECMA-262, ISO/IEC 16262) Abstract Syntax
Tree (AST). Then we show how data types, functions and
operators are translated and explain the control flow.

II. DATA TYPES

In JS each variable has a particular, dynamic type. It may
be undefined, boolean, number, string, array, object,
or function. GML also has a dynamical type system.
Unfortunately, both type systems are incompatible to each
other. Therefore, translating JS data types to GML poses two
particular problems: On the one hand, the dynamic types
must be inferred at run time. On the other hand, GML’s
native data types lack distinct features needed by JS. GML-
Strings, for example, cannot be accessed character-wise.
We solved these problems by implementing JS-variables
as dictionaries [6] in GML. Dictionaries are objects that
map unique keys to values. These dictionaries hold needed
metadata and type information as well as methods which
emulate JS behavior. As we will show later, we will utilize
GML’s dictionaries for scoping as well.

The system translation library for GML (which every JS-
translated GML program defines prior to actual program
code) contains the function sys_init_data, which defines
an anonymous data value in the sense of JS data.
/sys_init_data {

dict begin
/content dict def
content begin

/type edef
/value edef
/length { value length } def

end
content
end

} def

sys_init_data opens a new variable-scope by defining a
new, anonymous dictionary and opening it. In this new
scope, another newly created dictionary is defined by the
name content. This content-dictionary receives three en-
tries: type, value and the method length. Each entry value
is taken from the top of GML’s stack. The newly created

dictionary is then pushed onto the stack and the current
scope is destroyed by closing the current dictionary, leaving
the anonymous dictionary on the stack. In GML notation, a
JS-variable’s content is defined by pushing the actual value
and a pre-defined constant to identify the type of the variable
(such as Types.number, Types.array, etc.) onto the stack,
and calling sys_init_data. The translator prefixes all JS-
identifiers with usr_ (in order to ensure that all declarations
of identifiers do not collide with predefined GML objects)
and uses the following translations:
Undefined: Variables of type undefined result from op-
erations that yield an undefined result or by declaring a
variable without defining it. var x; leads to x being of type
undefined. It is translated to
/usr_x Nulls.Types.undefined
Types.undefined sys_init_data def

Boolean: In JS, boolean values are denoted by the keywords
true and false. The translation simply maps these values to
equivalent numerical values in GML, which interprets them.
The JS-statement var x = true; becomes
/usr_foo 1 Types.bool sys_init_data def

Number: All JS numbers (including integers) are repre-
sented as 32-bit floating point values. As GML stores
numbers as 32-bit floats internally as well, we simply map
them to GML’s number representation. For the sake of
completeness, var x = 3.14159; is translated to
/usr_x 3.14159 Types.number sys_init_data def

String: Although GML does support strings, they cannot
be accessed character-wise. We cope with this limitation by
defining strings as GML-arrays of numbers. Each number
is the Unicode of the respective character. As GML allows
to retrieve and to set array-elements based on indexes, this
approach meets all conditions of JS-strings. The statement
var x = "Hello World"; becomes
/usr_x [72 101 108 108 111 32 87 111 114 108 100]

Types.string sys_init_data def

Array: JS arrays allow to hold data with different types, the
array’s contents may be mixed. This behavior is in line with
GML. The JS-example var x = [true, false, "maybe"];

has a straightforward translation:
/usr_x [1 Types.bool sys_init_data

0 Types.bool sys_init_data
[109 97 121 98 101] Types.string sys_init_data]

Types.array sys_init_data def

Object: In JS an object consists of key-value-pairs, e.g., var
x = { x: 1.0, y: 2.0, z: 42}; This structure is mapped
to nested GML-dictionaries. The value of a variable’s con-
tent is a dictionary of its own. This dictionary contains the
entries corresponding to JS-object’s members, which are also
defined as variable contents.

The example above defines a JS-object of name x with
key-value-pairs x to be 1, y to be 2, and z to be 42:

15

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0

/usr_x dict begin
/obj dict def obj begin

/usr_x 1.0 Types.number sys_init_data def
/usr_y 2.0 Types.number sys_init_data def
/usr_z 42.0 Types.number sys_init_data def

end obj
Types.object sys_init_data end def

Opening an anonymous dictionary creates a new scope. In
this scope, a dictionary is created and bound to the name
/obj. It is then opened and its members are defined, just like
anonymous variables would be. The object dictionary is then
closed, put on the stack, and used to define an anonymous
variable. The enclosing anonymous scoping dictionary is
then closed and simply discarded.

JS objects may hold functions. Our translator Euclides
handles JS object-functions like ordinary functors (next
subsection) and assigns their internal name to a key-value-
pair.
Function: JS has first-class functions. Therefore, it is possi-
ble to assign functions to variables, which can be passed as
parameters to other functions, for example. In the following
example, a function function do_nothing() {} is declared
and defined. Afterwards, it is assigned to a variable var x =

do_nothing;. If we abstract away from the translation of the
function do_nothing, the statement var x = do_nothing;

becomes:
/usr_do_nothing {

%% ... definition of function omitted ...
} def

/usr_x /usr_do_nothing Types.function sys_init_data def

In JS, x can now be used as a functor, which acts the
same ways as do_nothing. Because such functors can be
reassigned, it is necessary to handle functor calls (x())
differently than ordinary function calls (do_nothing()). In
this situation Euclides creates a temporary array, which
contains the functor parameters and passes this array as well
as the variable referencing the function name to a system
function sys_execute_var. This system function resolves
the functor and determines the referenced function, unwraps
the array and performs the function call.

III. FUNCTIONS

A. Translation of JS Functions

In GML, functions are defined using closures, such as
/my_add { add } def. If this function my_add is executed,
the closure { add } is put onto the stack, its brackets are
removed, and the content is executed.

To execute a GML function, its parameters need to be put
on the stack prior to the function call: 1.0 2.0 my_add The
resulting number 3.0 will remain on the stack. Please note,
that GML functions may produce more than one result (left
on the stack) at each function call. This allows to define
functions with more than one result value. Following JS,
called functions return only one value by convention. The
number and names of function parameters are known at

compile time. Only functors (referenced functions stored in
variables) may change at run time and cannot be checked
ahead of time.

Translated functions and parameters are named just like
their JS-counterparts (except for their usr_ prefix).

B. Scopes

As JS uses a scoping mechanism different to GML, it has
to be emulated. This is a rather difficult task, which has to
take the following properties of JS scopes into account.

• JS functions may call other functions or themselves.
• Called functions may declare the same identifiers as the

calling functions.
• Within functions other functions may be defined.
• Blocks might be nested inside functions, redefining

symbols or declaring symbols of the same name.
The translator uses GML’s dictionary mechanism to emulate
JS-scopes. A dictionary on the dictionary stack can be
opened and it will take all subsequent assignments to GML-
identifier (variables). Since only the opened dictionary is
affected, this behavior is the same as the opening and closing
scopes in different scoped programming languages, such as
C or Java.

Thus an assignment /x 42 def can be put into an isolated
scope by creating a dictionary (dict), opening it (begin),
performing the assignment, and closing the dictionary (end).
The following example shows how such GML scopes can
also be nested:
dict begin

/x 3.141 def %% x is 3.141
dict begin %%

/x 4 def %% x is 4.0
end %% x is 3.141

end %% x is unknown

As noted before, JS supports redefinition of identifiers that
were declared in a scope below the current one. Fortunately,
GML exhibits just the same behavior when reading out the
values of variables/keys from dictionaries of the dictionary
stack. Consequently, the following example works as ex-
pected.
dict begin

/x 42 def
dict begin

/y x 1 add def %% y is now 43
end

end

However, assignments to variables have to be handled
differently in GML. The Generative Modeling Language
does not distinguish between declaration and definition, any
declaration must be a definition and vice versa.

The translator solves this problem. It uses a system
function (which is included into all translated JS sources
automatically) called sys_def. This function applies GML’s
where operator to the dictionary stack in order to find the
uppermost dictionary, where the searched name is defined.

16

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0

The operator returns the reference to the dictionary, in which
the name was found.

C. Control Flow for Functions

The Generative Modeling Language and all PostScript
dialects lack a dedicated jump operation in control flow.
Imperative functions often require the execution context to
jump to a different point in the program at any time - and
to return from there as well.

Fortunately, GML provides an exception mechanism. A
GML exception is propagated down GML’s internal execu-
tion stack until a catch instruction is encountered. In this
way it overrides any other control structure it encounters. We
use GML’s exception mechanism to jump outside a function
as illustrated in the following empty function skeleton:
/usr_foo {

dict begin
/return_issued 0 def
{ dict begin

%% ... function body omitted ...
end }

{ /return_issued 1 def }
catch

return_issued not
{ Nulls.Types.undefined

Types.undefined sys_init_data } if
end
sys_exception_return_handler

} def

In this empty skeleton, the function opens a new anony-
mous scope. Inside this scope dict begin . . . end the
local identifier /return_issued is set to 0. Afterwards
a GML try-catch-statement { try_block } { catch_block

} catch contains the JS-function implementation. In this
translation, the catch block redefines /return_issued

to 1 to indicate that a JS return statement has
been executed in the function body. JS functions with-
out any return statement, automatically return null

resp. in GML Nulls.Types.undefined Types.undefined

sys_init_data. A corresponding JS-return statement, e.g.,
return 42;, is translated to

42.0 Types.number sys_init_data end throw

In this example, the number 42.0 is put onto the stack. The
actual function body’s scope is closed end, and the throw

operator is applied. The distinction of whether the end of
the function body was reached by normal program flow or
via a return statement determines, if a return value needs to
be constructed (null) and put onto the stack.

Parameters to functions are simply put on the stack. The
function body retrieves the expected number of parameters
and assigns them to dictionary entries of the outer scope
defined in the function translation. A complete example of a
translated JS-function shows the interplay of all mechanisms.
The simple JS-function
function foo(n) { return n; }

is translated to

/usr_foo {
dict begin
/usr_n edef
/return_issued 0 def
{ dict begin
usr_n
end
throw
end }

{ /return_issued 1 def }
catch

return_issued not
{ Nulls.Types.undefined
Types.undefined sys_init_data } if

end
sys_exception_return_handler

} def

A function call, for example foo(3), yields the translation
3.0 Types.number sys_init_data usr_foo. If we assign
the function foo to a variable foo_functor, the calling
convention in GML would change significantly.
/usr_foo_functor /usr_foo Types.function sys_init_data def

is called via
[3.0 Types.number sys_init_data]
usr_foo_functor sys_execute_var

and represents the JS call foo_functor(3.0);

D. Exceptions

The language JS supports throwing exceptions; e.g., throw
"Error: unable to read file.";. Its syntax is similar to
a return statement. To implement such behavior, we also
use GML’s exception handling mechanism. The Euclides
translator adds a call to the predefined system function
sys_exception_return_handler at the end of each trans-
lated function (see example above).

Throwing an exception in JS translates into a global
GML variable exception_thrown being set to 1, clos-
ing the current dictionary and calling GML’s throw.
The sys_exception_return_handler will check if an ac-
tual exception is being thrown, and if so, calls throw

again. A catch-block inside a JS program would set
exception_thrown to 0.

IV. OPERATORS

The evaluation of expressions demands variables to be
accessed. While GML provides operators that operate on
their own set of types, they obviously cannot be used to
access the translated/emulated JS-variables. For this reason,
the Euclides translator automatically includes a set of pre-
defined GML functions that substitute operators defined in
JS.

A. Value Access

Performing the opposite operation to sys_init_data,
sys_get_value will retrieve the data saved in a JS-variable
resp. its GML-dictionary. For example, to retrieve v.value

the function sys_get_value is applied to v.
/sys_get_value { begin value end } def

17

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0

B. Element Access

The system function sys_get implements string, array and
object access. Applied to a string / an array Arr and index
k, it will return the element Arr[k]. If its parameters are
an object Obj and an attribute name, the function sys_get

executes Obj.name. This may result in a value, which is put
on the stack or in a function, which is called. Conforming
to JS, it returns JS undefined for any requested elements
that do not exist.
/sys_get {

dict begin
/idx exch def /var exch def

var.type Types.string eq {
%% ... handling strings ...

} if

var.type Types.array eq {
%% ... handling arrays ...

} if

var.type Types.object eq {
var sys_get_value idx known 0 eq {

%% return null, if element doesn’t exist
Nulls.Types.undefined
Types.undefined sys_init_data

} if
var sys_get_value idx known 0 ne {

%% access element
var sys_get_value idx get

} if
} if
end

} def

Analogous to sys_get, sys_put inserts data into strings and
arrays, or defines members of objects. If sys_put encounters
an index k that is out of an array’s range, the array is resized
and filled with JS undefineds.

C. Functors

The already mentioned routine sys_execute_var inspects
a given variable. If it is a function, it will retrieve the array
supplied to hold all parameters and execute the function.
The dynamic binding of functions to variables requires to
consider two situations at run time: The functor receives
the correct amount of parameters for its function, or the
number of parameters does not correspond to the referenced
function. In the later case, the function is not called and
null is returned instead.

At compile time, a function is defined to expect a concrete
number of parameters. This information is kept to perform
parameter checks at run time. In this way, the correct number
of parameters for all functors can be determined any time.

D. JS built-in Operators

To illustrate the translation of relational, arithmetical or
bit-shift operators defined by JS, we discuss the equal
operator ==. It is (like all such operators) mapped to a
corresponding routine sys_eq. Depending of the operands’
types it delegates the comparison to subroutines such as
bool_eq, string_eq or array_eq that perform the actual

comparison. If the types and the values do match, sys_eq
directly returns the JS-value true. If types do not match, the
variable is converted to the type of the respective operand,
as specified by JS, and then compared.

V. CONTROL FLOW

A. Conditional Statement

The JS if-then-else statement corresponds one-to-one to
the same GML statement. Consequently, the conditional ex-
pression is translated straightforwardly. Using the expression
mapping introduced in the previous section (e.g. sys_eq

implements the equality operator), the JS statement if(a

== b) { c = a; } else { c = b; } is translated info:
%% if (a==b)
usr_a usr_b sys_eq sys_get_value
{ %% then:

dict begin {
dict begin

/usr_c usr_a sys_def
end

} exec end
}
{ %% else:

dict begin {
dict begin

/usr_c usr_b sys_def
end

} exec end
} ifelse

The exec-statements (and their closures) stem from the fact
that both sub-statements, the then-part and the else-part, are
statement blocks { ... }. These blocks are executed within
their own, new scopes.

B. Loops

GML supports different types of looping control struc-
tures, which have similar names to JS-loops (e.g., both
languages have a for-loop). However, the GML counterparts
have different semantics (e.g., GML’s for-loop has a fixed,
finite number of iterations, which is known before execution
of the loop body, whereas JS-loops evaluate the stop condi-
tion during execution, which may result in endless loops).
The Euclides translator uses the GML loop mechanism,
which is an infinite loop that can be quit using the exit

operator.
An important problem is that control structures such as

for, while and do-while are not only controlled by the loop’s
stop condition, but also by JS statements such as continue

and break within the loop body (besides return and throw

as mentioned before). The statement break immediately
stops execution of the loop and leaves it, whereas continue

terminates the execution of the current loop iteration and
continues with the next iteration of the loop. Therefore, we
translate an empty while loop while(false) { ... } to
{ /continue_called 0 def

{ 0 Types.bool sys_init_data
sys_get_value not { exit } if
{ dict begin

%% ... loop body omitted ...
end

18

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0

} exec
} loop
continue_called not { exit } if

} loop

GML’s exit keyword terminates the current loop. This
behavior is leveraged by the Euclides translator to implement
break and continue. The translation uses two nested loops
that will run infinitely.

Prior to the begin of the inner loop /continue_called is
set to 0. At the top of the inner loop, the loop condition is
tested. If the condition evaluates to false, the inner loop is
exited using GML’s exit. Otherwise a new scope is created
and the loop-statement executed within that scope.

During loop iterations, there are three scenarios under
which a loop can terminate:

1) If the loop condition is met: When the condition
evaluates to false, the inner loop is exited. Since
continue_called is not set to true, the outer loop
will terminate as well.

2) If the loop body encounters JS break (resp. GML
exit): Again, the inner loop is left. continue_called
will not be set to true, hence the outer loop will also
terminate.

3) If the function returns: GML’s exception throwing
mechanism will unwind the stack until the catch-
handler at the end of the function is encountered.

If the loop body encounters a JS-continue statement,
continue_called will be set to true and the GML exit

command will immediately stop the inner loop. Since
continue_called is set, execution does not leave the outer
loop, however. As a consequence, continue_called be-
comes 0 again, and execution re-enters the inner infinite
loop.

The do-while-statement is translated very similar to the
while-statement. The only semantic differences in JS are
that execution will enter the loop regardless of the loop-
condition and that the loop-condition is tested after loop
body execution. Euclides translates an empty do-while-
statement do { ... } while (false) as follows:
{ /continue_called 0 def

{ { dict begin
%% ... loop body omitted ...
end

} exec
0 Types.bool sys_init_data
sys_get_value not { exit } if

} loop
continue_called not { exit } if
0 Types.bool sys_init_data
pop

} loop

Due to a semantic difference of JS continue in do-while-
loops, this statement needs to be handled differently. If
continue is encountered, the loop condition must still exe-
cute before the loop body is re-entered, because side effects
inside the loop condition may occur (such as incrementing
a counter). Euclides handles this problem by executing the

condition expression a second time in the outer loop. Since
expressions always return values, any value resulting from
the loop-expression has to be popped off the stack.

Although GML has a for operator, it is semantically in-
compatible with JS’s one. Its increment is a constant number,
and so is the limit. In JS, both increment and limit must
be evaluated at each loop body execution. Therefore, we
translate for just like the previous constructs by two nested
loops with the increment condition repeated in outer loop
(due to continue semantics). Finally, Euclides translates the
JS statement for (var i=0; i < 1; i++) { } to GML via
dict begin
%% initialization (i=0)
/usr_i 0.0 Types.number sys_init_data def
{ /continue_called 0 def

{ %% condition (i<1)
usr_i 1.0 Types.number sys_init_data sys_lt
sys_get_value not { exit } if
{ dict begin

%% ... loop body ...
end

} exec
%% increment (i++)
usr_i

usr_i 1 Types.number sys_init_data sys_add
/usr_i sys_edef
pop

} loop
continue_called not { exit } if
%% increment again (i++)
usr_i

usr_i 1 Types.number sys_init_data sys_add
/usr_i sys_edef
pop

} loop
end

The JS for-in statement for(var x in array) statement;

is semantically equivalent to:
for (var i = 0; i < array.length; i++) {

var x=array[i]; statement;
}

This construction loops over the elements of an array
provides the loop body with a variable holding the current
element.

C. Selection Control Statement

The translation of the JS switch statement poses several
difficulties:

• If a case condition is met, execution can “fall through”
till the next break is encountered.

• If a break is encountered, the currently executed
switch statement must be terminated.

• Of course, switch statements may be nested.
To develop a semantically consistent solution, we did

not want to alter the translation of JS-break inside switch
statements (compared to loops). We solve the problem of
breaking outside the switch statement by implementing it
as a loop that is run exactly once. In GML it reads like 1 {
loop_instructions } repeat. This way our translation of
break shows semantically correct behavior, it terminates the
loop. Consider the following JS-program:

19

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0

var x = 0, y = 0;

function bar() { return 3; }

function foo(i) {
switch(i) {

case 0:
case 1:
case 2: x = 1;
case 4: x = 3;
case bar(): x = 2; break;
default: y = 5;

} }

The function foo will be translated to:

/usr_foo
{ dict begin

/usr_i edef
/return_issued 0 def
{ dict begin

/switch_cnd_met1 0 def
1 { usr_i 0.0 Types.number sys_init_data sys_eq

sys_getvalue switch_cnd_met1 1 eq or {
/switch_cnd_met1 1 def

} if

usr_i 1.0 Types.number sys_init_data sys_eq
sys_getvalue switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
} if

usr_i 2.0 Types.number sys_init_data sys_eq
sys_getvalue switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
%% x = 1;
/usr_x 1.0 Types.number
sys_init_data sys_def

} if

usr_i 4.0 Types.number sys_init_data sys_eq
sys_getvalue switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
%% x = 3;
/usr_x 3.0 Types.number
sys_init_data sys_def

} if

usr_i usr_bar sys_eq
sys_getvalue switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
%% x = 2;
/usr_x 2.0 Types.number
sys_init_data sys_def
exit

} if
%% y = 5;
/usr_y 5.0 Types.number
sys_init_data sys_def

} repeat
currentdict /switch_cnd_met1 undef end
}
{ /return_issued 1 def } catch

return_issued not {
Nulls.Types.undefined
Types.undefined sys_init_data

} if
end
sys_exception_return_handler

} def

This example shows that we introduce an internal vari-
able /switch_cnd_metX for traversing the case state-
ments. As soon as a case statement condition is met,
/switch_cnd_metX is set to true, leading execution into
every encountered case statement.

The Euclides translator takes into account that switch
statements may be nested. As it traverses the AST,
it keeps book of all internal variable to ensure a
unique name (switch_cnd_met1, switch_cnd_met2, . . . ,
switch_cnd_metN).

The example translation shows that for foo(3) the cases
0, 1, 2, 4 and 3 (= bar()) will only execute case 3, where
the 1 { } repeat statement will be broken out of with the
GML exit operator. The default block will be executed in
any case if execution is still inside the repeat statement, no
further state is checked for default.

VI. EXAMPLE

To demonstrate the interplay of all translational building
blocks, this section shows a non-recursive, subtraction-based
version of the Euclidean algorithm to calculate the greatest
common denominator and its translation to GML. It can be
shown by induction that two successive Fibonacci numbers
are the computational worst-case of the Euclidean algorithm.
We use them as input data.
function fibonacci(index) {

switch (index) {
case 0:
case 1: return 1;
default: return fibonacci(index-2)

+ fibonacci(index-1);
}

}

function gcd(a,b) {
if (a == 0) return b;
while (b != 0)

if (a > b) a = a - b;
else b = b - a;

return a;
}

var x = gcd(fibonacci(5), fibonacci(6));

The corresponding GML code is:
/usr_fibonacci {

dict begin
/usr_index edef
/return_issued 0 def
{ dict begin

/switch_cnd_met1 0 def
1 {usr_index 0.0 Types.number sys_init_data

sys_eq sys_getvalue switch_cnd_met1 1 eq or {
/switch_cnd_met1 1 def

} if

usr_index 1.0 Types.number sys_init_data
sys_eq sys_getvalue switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
1.0 Types.number sys_init_data
end throw

} if

usr_index 2.0 Types.number sys_init_data
sys_sub usr_fibonacci
usr_index 1.0 Types.number sys_init_data
sys_sub usr_fibonacci
sys_add
end throw

} repeat
currentdict /switch_cnd_met1 undef end

}
{ /return_issued 1 def } catch
return_issued not {

20

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0

Nulls.Types.undefined
Types.undefined sys_init_data } if

end
sys_exception_return_handler

} def

/usr_gcd {
dict begin
/usr_a edef
/usr_b edef
/return_issued 0 def
{ dict begin

usr_a 0.0 Types.number sys_init_data
sys_eq sys_getvalue
{ usr_b end throw }
{}
ifelse

{ /continue_called 0 def
{ usr_b 0.0 Types.number sys_init_data

sys_ne sys_getvalue not { exit } if

usr_a usr_b sys_gt sys_getvalue
{ /usr_a usr_a usr_b sys_sub sys_def }
{ /usr_b usr_b usr_a sys_sub sys_def }
ifelse exec

} loop
continue_called not { exit } if

} loop
usr_a end throw
end
}
{ /return_issued 1 def } catch
return_issued not {

Nulls.Types.undefined
Types.undefined sys_init_data } if

end
sys_exception_return_handler

} def

/usr_x
6.0 Types.number sys_init_data usr_fibonacci
5.0 Types.number sys_init_data usr_fibonacci
usr_gcd

def

VII. CONCLUSION

In this article, we presented a JS to PostScript translator.
While this translation is a simple infix-to-postfix notation
rewrite for mathematical expressions (1+2 becomes basically
1 2 add), the correct translation of control flow structures
is a non-trivial task, due to the fact that there is no concept
of goto in the PostScript language and its dialects.

The main contribution of this work is the complete trans-
lation of JS into a PostScript dialect including all control
flow statements. To the best of our knowledge, this is the first
complete translator. Other projects (PdB by ARTHUR VAN
HOFF, pas2ps by DULITH HERATH and DIRK JAGDMANN)
do not support, e.g., return statements.

As Euclides offers a new access to GML, all GML users
will benefit from its results. The possibility to use GML via
a JS-to-GML translator reduces the inhibition threshold sig-
nificantly. Everyone, who knows any imperative, procedural
language (Pascal, Fortran, C, C++, Java, etc.) is familiar with
the language concepts in JS and can use Euclides. Advanced
GML users, who already know how to program in PostScript
style, can use Euclides to translate algorithms, which are
often presented in a imperative, procedural (pseudo-code)
style [14].

ACKNOWLEDGMENT

We would like to thank Richard Bubel for his valuable
support on ANTLR and the JS grammar. In addition, the
authors gratefully acknowledge the generous support from
the European Commission for the integrated project 3D-
COFORM (www.3Dcoform.eu) under grant number FP7
ICT 231809, from the Austrian Research Promotion Agency
(FFG) for the research project METADESIGNER, grant
number 820925/18236, as well as from the German Research
Foundation (DFG) for the research project PROBADO under
grant INST 9055/1-1 (www.probado.de).

REFERENCES

[1] Adobe Systems, Inc., PostScript Language Reference Manual
(first ed.). Addison-Wesley, 1985.

[2] “Document management – Portable Document Format,” 2008.

[3] Adobe Systems, Inc., Display PostScript System. Adobe
Systems Incorporated, 1993.

[4] J. Gosling, “SunDew – A Distributed and Extensible Win-
dow System,” Methodology of Window Management (Euro-
graphics Seminars); Proceedings of an Alvey Workshop at
Cosener’s House, Abingdon, UK, vol. 5, pp. 1–12, 1986.

[5] C. Geschke, S. McGregor, J. Gosling, L. Hourvitz, and
M. Callow, “Screen postscript,” International Conference on
Computer Graphics and Interactive Techniques archive; ACM
SIGGRAPH 88 panel proceedings, vol. 22, pp. 1–43, 1988.

[6] S. Havemann, “Generative Mesh Modeling,” PhD-Thesis,
Technische Universität Braunschweig, Germany, vol. 1, pp.
1–303, 2005.

[7] J. M. Snyder and J. T. Kajiya, “Generative modeling: a
symbolic system for geometric modeling,” Proceedings of
1992 ACM Siggraph, vol. 1, pp. 369–378, 1992.

[8] P. Müller, P. Wonka, S. Haegler, U. Andreas, and L. Van Gool,
“Procedural Modeling of Buildings,” Proceedings of 2006
ACM Siggraph, vol. 25, no. 3, pp. 614–623, 2006.

[9] S. Havemann and D. W. Fellner, “Generative Parametric
Design of Gothic Window Tracery,” Proceedings of the 5th
International Symposium on Virtual Reality, Archeology, and
Cultural Heritage, vol. 1, pp. 193–201, 2004.

[10] G. C. Reid, Thinking in Postscript. Addison-Wesley, 1990.

[11] C. Reas, B. Fry, and J. Maeda, Processing: A Programming
Handbook for Visual Designers and Artists. The MIT Press,
2007.

[12] E. A. Vander Veer, JavaScript for Dummies. For Dummies,
2004.

[13] T. Parr, The Definite ANTLR Reference – Building Domain-
Specific Languages. The Pragmatic Bookshelf, Raleigh,
2007.

[14] T. H. Cormen, C. Stein, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms. B&T, 2001.

21

COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0

