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Abstract—This paper proposes an autonomous distributed
algorithm that can construct spatial structures for clustering in
MANETs. Since the topology of a MANET changes frequently,
a fast, light-weight, and autonomous clustering mechanism is
required. However, existing autonomous clustering mechanisms
are based on differential equations and thus demand a lot
of calculations for generating the spatial structures that yield
clustering. This paper proposes an autonomous clustering algo-
rithm that is based on Huygens’ principle. The most remarkable
characteristics of our proposal are calculation simplicity and
fast convergence on the cluster structures. We verify the basic
characteristics of the proposed algorithm.

Keywords-autonomous decentralized control; structure forma-
tion; asymptotic stability; Huygens’ principle; renormalization
transformation.

I. INTRODUCTION

In large-scale communication networks, hierarchical ar-
chitectures are effective for scalable network control. Let
us consider how to introduce a hierarchical structure into a
network. In a network having fixed topology, we can consider
the desired hierarchical structure when designing the network.
Unfortunately, this is not possible in a network with a dynamic
topology. A typical example of such a network is the mobile
ad hoc network (MANET) [1]. A MANET consists of mobile
terminals that offer routing functions and data forwarding. Two
terminals can directly communicate if their coverage areas
overlap. If the areas do not overlap, the terminals do not
directly communicate, but by relaying data through terminals
between the two terminals, they can establish multihop com-
munication. To achieve multihop communication, routing is
one of most important issues in MANETs.

The primitive approach to route finding is called flood-
ing [2]. In flooding, the sender terminal sends route finding
packets to all adjacent terminals, which resends them to all
their adjacent terminals until at least one copy of the packet
reaches the destination terminal. The total amount of route
search packets sent in MANETs increases exponentially with
network size (the number of terminals). One of the challenges
in MANETs, realizing scalable routing control [3], [4], is best
addressed by setting a hierarchical structure through clustering
[5]–[7].

Hereafter, we call a MANET terminal a node. An au-
tonomous clustering mechanism for generating a hierarchical
structure requires several characteristics, as follows:

• Each node acts autonomously based on local informa-
tion about its neighboring nodes.

• The generated cluster structure should reflect the state
information of the network (e.g., battery power of
nodes).

• The generated cluster structure should be flexible so
that it can adapt to the dynamic environment.

• The convergence time of clustering should be suffi-
ciently shorter than the timescale of topology change
enforced by node movement. This is because cluster-
ing should dynamically adapt to the network topology.

• Action rules of each node should be as simple as pos-
sible in order to reduce the battery power consumed
by computation or processing at the node.

Since ad hoc networks are expected as an effective commu-
nication tool after serious disaster, the above requirements are
essential for realizing clustering in ad hoc networks.

Takano et al. has proposed a clustering mechanism based
on the Fokker-Planck equation and includes the drift motion
given by back-diffusion [8], [9]. Let us call it the back-
diffusion based approach. This mechanism satisfies the first
two requirements listed above. Hamamoto et al. [10] recently
proposes a guaranteeing mechanism of the asymptotic stability,
and clarifies that, by using the guaranteeing mechanism, the
back-diffusion based approach can satisfy the third require-
ments listed above. In addition, it also implies that we might
be able to make the clustering algorithm that satisfies all the re-
quirements listed above by replacing back-diffusion algorithm
with other simple and fast-converging rule. This is because
the guaranteeing mechanism of the asymptotic stability does
not depend on details of the clustering mechanism. In this
paper, we use Huygens’ principle [11] as the simple and fast-
converging rule, and propose a new clustering mechanism that
satisfies all the requirements listed above.

The paper is organized as follows: Section II explains the
guaranteeing mechanism of the asymptotic stability, which is
the foundation of this research. Section III proposes an au-
tonomous clustering mechanism based on Huygens’ principle.
Section IV discusses the initial condition of the proposed
mechanism with the goal of ensuring robust controllability
of cluster size. In addition, it also shows cluster structures
generated by the proposed mechanism using numerical exam-
ples and verifies that they reflect the network condition. The
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Fig. 1. Concept of cluster forming.

conclusion is discussed in Section V.

II. PRELIMINARY

A. Concept of Cluster Formation

In our clustering model, each node has certain value and
cluster formation is conducted by the distribution of the values
of nodes. The initial value is determined by considering the
network condition (e.g., battery power of each node). The
clustering algorithm is to extract a coarse grained spatial
structure from the initial distribution of the values and this
procedure corresponds to clustering. Fig. 1 shows an example
cluster formation in a simple 1-dimensional network. The
horizontal axis represents node ID, and the vertical axis
represents the value of the distribution for each node. The top
part of Fig. 1 represents the initial initial distribution, which is
reflecting network state (e.g., battery power of each node).
The bottom part of Fig. 1 represents the generated coarse
grained spatial structure. The peaks of the coarse grained
distribution correspond to clusters and they are reflecting the
initial condition.

The back-diffusion based approach is an example of this
mechanism, and has a relatively faster convergence rate than
conventional bio-inspired approach [12]. However, this clus-
tering mechanism does not consider the change of the initial
condition, and therefore it cannot adapt to the dynamic envi-
ronment. That is why this mechanism does not satisfy the third
requirement listed in the previous section.

B. Guaranteeing Mechanism of Asymptotic Stability

To adapt the spatial structure to the dynamic environment,
the guaranteeing mechanism of the asymptotic stability of
cluster structures has been proposed by Hamamoto et al.
[10]. In this mechanism, generated cluster structure can adapt
dynamic environment, and it also can generate stable spacial
structure under the fixed initial condition.

Let us consider a one-dimensional network model for
simplicity, and let q(i, t) be the value of distribution at node
ID i at time t. The distribution q(i, t) determines the cluster
structure. Examples of the initial condition q(i, 0) and cluster
structure q(i, t) obtained at time t are shown in Fig. 1.
The conventional back-diffusion based approach described in
Takano et al. [9] presents a rule governing the temporal
evolution of the distribution q(i, t). However, as shown in the
previous section, it is difficult to guarantee the stability of
q(i, t) for large t. In other words, the cluster structure is not
stable in a dynamic environment.
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Fig. 2. Outline of the guaranteeing mechanism of asymptotic stability.

Let us consider discrete time tk (k = 1, 2, . . . ), and
distribution q(i, tk). Since we need an autonomous decentral-
ized algorithm, the temporal evolution of distribution q(i, tk)
is determined by its local information. By introducing the
temporal evaluation operator of T , the temporal evolution is
formally described as

q(i, tk+1) = T (q(i− 1, tk), q(i, tk), q(i+ 1, tk)) (1)

This rule states that the distribution of node i at the next time is
completely determined by the values of the present distribution
at node i and its adjacent nodes.

To guarantee the mechanism of asymptotic stability, we
consider a vector of the distribution. Each node i has the
following N + 1 dimensional vector

q(i, tk) = {q0(i, tk), q1(i, tk), . . . , qN (i, tk)} (2)

Here, we define the rule for the temporal evolution of the
vector q(i, tk). Let qinit(i, tk) be the distribution describing
the network state (e.g., battery power of a node) at time tk.
Then we set

q0(i, tk+1) = qinit(i, tk+1) (3)

If qinit(i, tk) is independent of time, q0(i, tk+1) = q(i, 0), that
is, the initial condition of the conventional mechanism. Note
that, in general, we allow the time-dependence of qinit(i, tk).
Next, for qn+1(i, tk+1) (n = 0, 1, . . . , N − 1), we set

qn+1(i, tk+1) = T (qn(i− 1, tk), qn(i, tk), qn(i+ 1, tk))
(4)

Although the above rule may look complicated, we can easily
understand it through graphical representation. Fig. 2 explains
the temporal evolution of vector (2) at node i. The horizontal
axis represents discrete time as t0, t1, . . . , and qinit(tk) ex-
presses a certain metric of network state of a node at time
tk. Each component of the vector is a distribution value and
(4) is the temporal evolution rule for the nth component
(n = 1, 2, . . . , N − 1). The temporal evolution of each
component will be updated to the upper-right component in
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Fig. 3. Renormalization transformation as per Huygens’ principle.

Fig. 2. The component at the bottom, q0(i, tk+1), is overwritten
by the network condition qinit(i, tk+1) at the present time. The
component at the top will be discarded.

The temporal evolution of the conventional mechanism cor-
responds to the sequence indicated by the green broken line in
Fig. 2. In the guaranteeing mechanism of asymptotic stability,
we focus on the sequence of the same vector components. If
we choose small n for the nth component, we obtain a finer-
grained spatial structure as indicated by the blue line. A large
n yields a coarse grained spatial structure as indicated by the
red line.

III. DESIGN OF THE AUTONOMOUS STRUCTURE
FORMATION TECHNOLOGY BASED ON HUYGENS’

PRINCIPLE

A. Huygens’ principle and Renormalization

Huygens’ principle [11] describes the temporal evolution
of the wavefront and can explain the laws of reflection and
refraction. Let us consider spherical waves originating at
each point on a wavefront. The envelope of these spherical
waves gives the temporal evolution of the wavefront. This is
called Huygens’ principle or the Huygens-Fresnel principle.
Renormalization is a way to extract simple and important
macroscopic characteristics from a large-scale and complex
system, and its procedure is defined as the renormalization
transformation. This procedure is suitable for generating a sim-
ple cluster structure extracted from the spatial structure of the
network state. The renormalization transformation is defined as
the combination of coarse-grained transformation and scaling.
In this paper, we adopt the renormalization transformation
based on Huygens’ principle as temporal evolution operation
T . Concrete procedures of the renormalization transformation
are shown below.

Let us consider a one-dimensional network and a distribu-
tion on the network. The panel at the top of Fig. 3 shows an
example of the distribution at the present time. We consider
the shape of the distribution as the wavefront. The panel at
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Fig. 4. The wavefront of the spherical wave reaches an adjacent node.

the middle of Fig. 3 shows the temporal evolution of the
wavefront as given by Huygens’ principle. This procedure has
smoothing effect such that the fine-grained structure that takes
the shape of the distribution becomes smooth. The temporal
evolution of the distribution causes an increase in the value
of the distribution, that is, the wavefront proceeds upward. In
order to compensate for this increase, we introduce scaling
as shown in the panel at the bottom of Fig. 3. We define
the renormalization transformation as the combination of such
temporal evolution and scaling.

Let the value of distribution at node i at time tk be q(i, tk),
and let the set of nodes that are adjacent to node i at time tk be
M(i, tk). In addition, q̃(i, j, tk+1) is the wavefront of sphere
wave at node i at time tk+1 that originated from node j at
time tk. Our renormalization transformation is expressed as

q(i, tk+1) =
1

b
max

j∈M(i,tk)
q̃(i, j, tk+1), (5)

where, the maximizing operation in (5) means Huygens’ prin-
ciple; it determines the most advanced wavefront of spherical
waves that originated from the node itself and its neighbor-
hood, and b > 1 is the scaling parameter.

Next, we consider the concrete form of q̃(i, j, tk+1). Let
the propagation speed of spherical wave be v, the distance
between two adjacent nodes be ∆x, and the interval of the
temporal evolution (renormalization transformation (5)) be ∆t
(i.e., tk+1− tk = ∆t). Here, ∆x is not physical distance but is
a kind of hop count, so we can choose ∆x = 1. We consider
the situation that the temporal evolution (5) is determined only
by adjacent nodes, v is chosen as 1 ≤ v∆t < 2. As shown in
Fig. 4, the wave front of spherical wave originated from node
i influences both node i and its adjacent nodes. It is expressed
as

q̃(i± 1, i, tk+1) = q(i, tk) + v∆t sin θ, (6)
q̃(i, i, tk+1) = q(i, tk) + v∆t, (7)

where θ is a constant and, from v∆t cos θ = ∆x,

θ = arccos

(
∆x

v∆t

)
(8)

Since v, ∆t, and sin θ are constants and we can know them
in advance, the temporal evolution (5) is a simple operation.
In addition, with iterations of the temporal evolution (5), the
maximum value of distribution q(i, tk) converges to p∗ :=
v∆t/(b− 1), regardless of initial condition q(i, 0).
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Fig. 5. Determination of the cluster and cluster head.

Fig. 6. An example of randomized initial condition

B. Amplification of Amplitude of the Distribution

Our renormalization transformation (5) makes the distri-
bution flat and we can obtain coarse-grained spatial structure.
However, differ from physical phenomena, there are situations
that the distribution does not change when the difference of
distribution values are small. This is because the positions
of nodes in the network are discrete. If the value of the
distribution at a node can affect that of the adjacent node,
the following relation is required,

|q(i± 1, tk)− q(i, tk)| > v∆t (1− sin θ) (9)

When the smoothing proceeds and the condition (9) is no
longer met, two adjacent nodes do not interact and the
distribution is unchanged. To avoid this phenomenon, we
introduce amplification of the amplitude of the distribution
in addition to the renormalization transformation (5). The
additional operation is

q(i, tk+1)← p∗ + a (q(i, tk+1)− p∗) , (10)

after the renormalization transformation (5). This operation
means that the difference between the value of distribution and
p∗ is amplified by a factor of a times. Here, aforementioned
p∗ = v∆t/(b − 1) is the fixed point of the renormalization
transformation, and also is the convergence point. The value
of the parameter a should be chosen as a > b.

Finally, we explain how to determine clusters and cluster
heads from the generated spatial structure (Fig. 5). By follow-
ing the direction of the steepest gradient of the distribution,
we can find a node with local maximum value. We define it
as a cluster head, and the nodes belonging to the same cluster
head belong to the same cluster.

IV. PERFORMANCE EVALUATION

This section investigates the convergence speed with re-
spect to the range of the initial distributions, and proposes a
way to guarantee the controllability of our proposed mecha-
nism. In addition, we verify the initial distribution dependency
of our clustering.
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Fig. 7. The number of generated clusters for randomized initial conditions
w.r.t. time.

A. Dependence Characteristics on the Range of Initial Distri-
bution

First, we investigate the convergence speed with respect to
the range of the initial distributions. The network model in
this evaluation is a two-dimensional lattice network with torus
boundary and it has 100 × 100 nodes. The reason of torus
boundary condition is to eliminate the effect of the network
edge, and to concentrate our attention on the characteristics of
clustering mechanism itself. The initial distribution of q(i, 0)
for all the node position, i, are given by a uniform distribution;
three kinds of uniform distributions are examined: their ranges
are [0, 1], [0, 10], and [0, 100]. An example of an initial
condition is shown in Fig. 6.

We calculate the temporal evolution of the distribution
by using (5) and (10), every discrete time. The interval of
discrete time is set to be ∆t = 1. Here, we investigate the
change in the number of generated clusters. Fig. 7 shows the
temporal evolutions of cluster number, from three different
initial conditions. The parameters were set as v = 1.5, a = 1.2,
b = 1.1. From this result, we can recognize that the number of
clusters strongly depends on the range of the initial condition.
Huygens’ principle or the maximizing operation in (5) has
strong impact when the adjacent nodes have very different
values.

This characteristic triggers a loss of control over cluster
size (or the number of clusters). The number of clusters in the
initial state (the number of local maximums in Fig. 6) is about
2, 000 as shown in Fig. 7. The horizontal axis denotes time but
also corresponds to iteration number of temporal evolution or
the component of the vector (2). If we need 1, 000 clusters, we
can choose about 20 iterations or the 20th component of vector
q(i, tk), for the initial condition of [0, 1]. However, we cannot
choose the appropriate value for [0, 100]. Since we cannot
know the network condition in advance, we cannot control the
number of clusters.

Let us consider how this situation corresponds to difficulty
in controllability. If we describe the initial condition of nodes
by their battery power, we should express the battery power in
numerical value. There are many ways to express the battery
power in numerical value: ampere-hour [Ah], mili-ampere hour
[mAh], coulomb [C], etc. Incidentally, 1 Ah = 1,000 mAh =
3,600 C. The above difficulty in controllability implies that
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the initial distribution having different range gives different
clustering structure even if the distributions come from the
same physical situation (only difference is in way to express
it).

B. Robust Controllability of Cluster Size

The cause of the above problem is the excessive sensitivity
of cluster forming with respect to the range of the distribution.
The mechanism of the excessive sensitivity with respect to the
range of the distribution can be recognized by Fig. 8. Fig. 8
shows the behaviors of the proposed clustering mechanism for
the distributions having wide and narrow ranges. First, each
node performs temporal evolution obeying Huygens’ principle,
and next, scaling. Small-valued node, which is next to the
large-valued node, is greatly influenced by the large-valued
node, and the difference of the values between them is rapidly
decreasing. So, if the range of the initial distribution is wide,
the distribution is rapidly uniformized.

In order to avoid the above problem, we redefine the initial
condition. The details are as follows. We do not use the
network condition directly as the initial condition, but we use

q(i, 0) = log(1 + qinit(i, 0)) (11)

In the vector formulation, we replace (3) with

q0(i, tk+1) = log(1 + qinit(i, tk+1)) (12)

The reasons for introducing a logarithmic function are as
follows:

• It is possible to maintain the magnitude relation of the
value of the original initial distribution.

• As a value of the original initial distribution is large,
new value is smaller in the sense of the ratio.

Fig. 9 shows similar evaluations by using the redefined
initial condition (11). We recognize that the impact of the
initial condition is sufficiently weakened. In particular, the
initial conditions of [0, 10] and [0, 100] yield almost the same
result. This means we have a robust clustering mechanism that
can control the number of clusters by appropriately choosing
the number of iterations or the component of the vector (2).

C. State Dependent Characteristics of Clusters

Since the initial condition reflects the network state (e.g.,
battery power of each node), the generated cluster must be
influenced by the initial condition. This subsection introduces
a numerical example that shows that the cluster structures
generated by the proposed mechanism do reflect the network
condition.

We use the same network model and parameter setting
as the previous subsection. To verify the dependence on
initial conditions, we use two types of initial conditions. One
is a randomized condition, that was used in the previous
subsection. This initial condition is determined by logarithm of
random values, which obey a uniform distribution with range
of [0, 10], as shown in Fig. 6. The other initial condition has
spatial patterns as shown in Fig. 11. Three areas have relatively
high values, and the value of these areas is determined by
random values which obey a uniform distribution with range
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Fig. 8. An example of behavior of the our proposed mechanism on two
different distribution ranges
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Fig. 9. The number of generated clusters for logarithmic initial conditions,
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Fig. 10. The cluster structures generated from randomized initial condition.

[0, 10]. The value of other area is determined by random values
which obeys the uniform distribution with range [0, 1]. The
logarithm of these values is used as the initial condition.

Figs. 10 and 12 show the cluster structures generated
from the initial conditions of Figs. 6 and 11, respectively.
The three panels of each figure show the number of iteration
or, equivalently, the vector component. If we choose few
iterations, we obtain a finer-grained cluster structure, and if
we choose more iterations, we get a coarse grained cluster
structure. We can also recognize that the cluster structures
reflect the spatial structures of the initial conditions.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an autonomous clustering mech-
anism based on Huygens’ principle and renormalization. In
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Fig. 11. An example of initial conditions with the spatial structure

Fig. 12. The cluster structures generated from the initial conditions with
spatial structure.

verification, we used a two-dimensional lattice network to
evaluate the characteristics of the proposed algorithm. The
pros of the proposed algorithm are in its simplicity and in
the ability to keep the spatial structure of the initial condition
in the configuration of clusters. However, unfortunately, the
convergence speed of cluster configuration strongly depends on
the value of the initial distribution. Since we can not know the
value of distribution for each node in advance, the difference of
convergence speed causes the situation that we cannot control
the number of clusters. To avoid this problem, we introduced
new distribution defined by the logarithm of the original distri-
bution. Consequently, the difference of the convergence speed
is significantly reduced, and the number of clusters becomes
controllable. The above obtained characteristics are suitable
for clustering in MANET. As future work, we will consider
the adaptability of our mechanism in dynamic environment.
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