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Abstract—Cognitive Computer Systems (CCS) like IBM 

Watson implement a brain-like system in a centralized 

location. Limitations of current networks and 

organization structure necessitate the development of a 

distributed cognitive system, in effect a distributed 

federated brain. This distributed federated brain is 

composed of the different types of devices in the system, 

ranging from hand-held devices at the edge of the 

network to large systems in the cloud. It needs to 

demonstrate the properties of resilience, proactivity, 

agility and collaboration. In this vision, we discuss the 

factors that drive the need for the distributed brain, its 

technical requirements, and propose an architecture to 

attain the concept of a distributed brain for military 

coalition operations. We provide a roadmap that can 

attain this vision, moving intelligence from a centralized 

cloud location to a distributed collection of smart devices 

which are connected together using a cognitive Internet 

of Things technology. 
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I.  INTRODUCTION 

Cognitive computing [1] refers to an approach for 
developing computer systems that augment human 
capabilities in a seamless manner. A Cognitive Computing 
System (CCS) consists of humans and software that work 
together, with the computer systems showing characteristics 
of a human brain to assist humans in an intuitive manner.  
CCS’s improve their capabilities over time, learning from the 
environment and changing their characteristics without 
requiring manual programming or reprogramming. The IBM 
Watson Jeopardy [2] machine is a well known example of a 
CCS, but not the only cognitive system being worked upon. 
A CCS can be envisioned as the cyber-equivalent of a human 
brain implemented in software. A CCS can be viewed as a 
specialized instance of the broader notion of distributed 
cognition [3] which refers to a socio-technical system in 
which cognitive processing routines are distributed across 
the constituent social and technological elements   

Most current industrial CCS’s adopt a cloud-centric 
approach, with the brain component such as a deep learning 
algorithm being a centralized entity. Data, whether for 
training purposes, or for analysis, is uploaded to a central 
site, where the brain software processes it. While the 
centralized approach has proven successful in several 

domains, it does suffer from a number of limitations. When 
the data volume is large, the delays and costs associated with 
uploading the information to a central site, whether to a 
cloud site or a data center, may render cognitive computing 
solutions slow and expensive. As the processing power of 
distributed devices increases over time, decentralized 
cognitive solutions have the potential to become more 
responsive, scalable and inexpensive. Thus, there is a need to 
move from the paradigm of a centralized brain to a 
distributed brain. Furthermore, in many cases, the distributed 
brain may leverage assets across several administrative 
domains resulting in a federated distributed brain.  

In this paper, we examine the challenge of creating a 
distributed federated brain, and propose an architecture and a 
roadmap for attaining this vision. The rest of the paper is 
organized as follows. Section II provides the motivating 
factors behind the need for a distributed federated brain.  
Section III provides a definition of the distributed federated 
brain, and discusses the technical challenges that need to be 
addressed to attain this vision. The following Section 
proposes a high level architecture which can be used to 
create a distributed brain. Section V discusses the concept of 
cognitive Internet of Things (IoT) and approach proposed for 
the physical realization of the distributed brain. Section VI 
discusses a possible evolution of the capabilities of such a 
system. Finally, Section VII lays out a roadmap for how the 
cognitive capabilities of the ‘distributed federated brain’ may 
increase over time.      

II. MOTIVATIONS FOR DISTRIBUTED CCS 

While the concept of a CCS has primarily focused on a 
centralized processing paradigm. When all entities within a 
network are connected together with a high speed reliable 
inexpensive network, centralized CCS has many advantages. 
However, there are many situations where such network 
connectivity is not present. Furthermore, there are several 
conditions under which a centralized CCS may underperform 
compared to a distributed CCS, even where the network 
connectivity is favorable.  

Situations where network connectivity can be 
problematic include environments with mobile endpoints, 
including automobiles, ships, drones, trains and robotic 
mules, which need to move over a wide geographical area.  
Connectivity to a cloud site for such devices can only be 
provided by wireless communication networks such as 
cellular or satellite. These networks have high latencies and 
can be very expensive when a large amount of data needs to 
be transmitted.  
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In some areas, even cellular or satellite communications 
may be absent or be of poor quality. Mountainous terrains, 
hilly areas, or underground mines are likely to have poor 
network connectivity. There are many areas in the world 
where networking infrastructure is inadequate. In military 
coalition operations, which occur in areas with poor 
infrastructure, connectivity to a backend cloud system can be 
very sporadic and frequently absent. Any cognitive 
capabilities in these situations have to be provided in a 
manner that does not depend on continuous network 
connectivity to a cloud site.  

Even when adequate network connectivity to cloud 
servers is available, there are many scenarios where a 
distributed CCS approach will be better. For instance, when 
devices are generating a significant amount of data, 
extracting insights from the data can be computed more 
efficiently near the location of data generation, as opposed to 
moving the data to a central location. As an example, 
consider a CCS which relies on video input to train itself. 
The code which extracts patterns from the video data, or 
finds interesting events in the video code, is likely to be 
much smaller, e.g. around a few Megabytes in size compared 
to streaming high resolution video, which at the rate of 4-
8Mbps and can easily run into tens of Gigabytes. In these 
cases, it will be more efficient to move the code near the 
source of data, and extract patterns near the point where data 
is generated. The smaller of the two elements needed for 
cognition, code implementing intelligence or data which 
needs examination, needs to be moved for optimal 
performance.  

Another scenario where distributed CCS is needed 
despite sufficient network connectivity occurs in relation to 
issues of regulatory compliance. Many types of data, e.g. 
healthcare data, are subject to regulations which may prevent 
it being sent to a central location for processing. Several 
countries restrict information on their citizens to be moved 
across borders. Extracting insights from data, subject to such 
restriction, requires a distributed cognitive infrastructure.  

In some cases, security, privacy and licensing concerns 
may prevent the movement of data to a central location. In 
other cases, cost considerations may lead to a distributed 
cognitive infrastructure i.e. if a distributed cognitive system 
reduces the workload on the cloud site, it reduces the cost of 
cloud hosting. Furthermore, given the increasing processing 
capacity of end points like smart-phones, drones and robotic 
mules, this reduction in cost can be performed without 
impacting the cognitive capabilities of the system.  

Because of the above motivating factors, we need to 
develop technologies that can enable distributed cognition 
that can leverage, but not be reliant on, a centralized 
infrastructure. The reasons for distributed cognition have a 
strong commonality with the driving forces behind 
approaches such as fog computing [4] or mobile edge 
computing [5].   

III. DEFINITION AND TECHNICAL CHALLENGES 

With the explosion in low cost phones, wearable devices 
and the IoT, future computing environments will have a 
diverse set of small elements capable of computation, storage 

and communication. Leveraging cognitive software on all of 
these devices leads to the concept of the distributed federated 
brain. The distributed federated brain is a socio-technical 
hybrid system capable of taking proactive actions based on 
the current and anticipated future situation on the ground. It 
is composed from the different types of devices present in 
the environment (sensors, hand-held devices, UAVs, robots, 
backend cloud computing sites, data center server farms 
etc.), along with the people who use those devices. This 
system provides a self-organizing self-healing predictive 
analytics capability, which is capable of functioning as a 
whole even when connectivity to the backend systems is 
missing. It will leverage all the services offered by a wired 
backend infrastructure (e.g. a backend cloud system, data 
center or available cellular network infrastructure) but it will 
not be critically dependent on a continuous form of 
connectivity to the backend.  

The distributed federated brain operates seamlessly 
across networks and systems belonging to different 
organizations. In the context of military coalition operations, 
it uses assets belonging to coalition members or sub-groups 
within a single coalition member, while complying with any 
policies and guidelines required by individual coalition 
members. In the context of a civilian infrastructure, the brain 
uses assets across several enterprises and consumers, taking 
into account any restrictions imposed by the owners of the 
assets.  

The distributed brain can analyze the situation on the 
ground in real-time, anticipate the situation likely to happen 
in the future, and determine whether the situation requires 
human involvement. If the situation does not require human 
involvement, the brain would undertake the most appropriate 
automatic action to the situation. When the situation needs 
human involvement, the brain will recommend alternative 
courses of actions, along with their pros and cons. 

The brain is frequently charged with performing tasks 
that require creating dynamic groups on a short notice. Such 
dynamic groups may be transient and short-lived (days or 
hours), but could also last for a longer period (months). 
Differences in the pedigree of disparate systems belonging to 
different organizations necessitate the development of 
approaches that work with partial visibility, partial trust, and 
cultural differences, while simultaneously dealing with the 
challenges of a dynamically changing situation in which 
power, computation and connectivity may be severely 
constrained. 

The ‘distributed brain’, therefore, needs to have several 
key properties. It must be self-healing and resilient, since it 
has to operate in an environment where elements may lose 
connectivity to backend systems, and any of the small 
component systems may disappear in an unpredictable 
manner. It has to react rapidly to changing situations on the 
ground, so it must be predictive and proactive in the 
decisions it makes. To deal with a dynamic environment, the 
system must be self-configuring, agile and adaptive. Since it 
is dynamically assembled from a large number of 
independent components, it needs to be a cooperative and 
collaborative collective of individual components. Humans 
and machines have different types of analytic and cognitive 
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capabilities. The ‘distributed brain’ must integrate human 
analytics capabilities into the machine analytics capability in 
a seamless manner.  

A number of challenges confront the attempt to develop 
the distributed brain. Some insight into the nature of these 
challenges is provided by a consideration of the following 
four attributes: 

Composability: How do we compose smaller elements 
into a larger aggregate that works like a seamless whole? 
What are the principles that link the attributes of a 
component to the larger whole, and how can we compose 
components belonging to different organizations with partial 
visibility and control in an environment with limited 
resources?  

Interactivity: How do different computing elements and 
people interact with each other, both with other members of 
the groups and to external stimuli from the environment? 
How should we model and understand the interactions 
between different elements and information sources? How 
do different sub-brains work together as a larger aggregate 
brain?  

Optimality: How can elements work together to obtain 
the optimal results in an environment with constrained 
resources? How can analytics be performed so that optimal 
performance is obtained automatically, instead of requiring 
complex manual optimization?  

Autonomy: How can elements work together in a 
proactive manner understanding future situations sufficiently 
well to operate with a degree of autonomous behavior? How 
can a system determine that autonomous operation is 
inappropriate and human intervention is needed? How can 
different elements simplify the cognitive burden involved to 
best assist humans in the loop when intervention is needed? 

The four attributes are not independent, and progress 
along any one attribute can positively address the attainment 
of the other attributes. If we want to decompose the problem 
further into relatively independent technical topics, we can 
identify six key topics which can collectively provide 
approaches to obtain the four attributes identified above. 
These six key topics are:  

 Software Defined Federations: understand the principles 
by which different elements across a federated 
environment could be composed to form a virtualized 
larger element, and the properties of different types of 
architectures that enable such composition. 

 Generative Policy Models: explore architectures and 
algorithms which enable devices in a federated 
environment to automatically determine their own 
operational policies, under the loose guidance of a 
higher level manager, but not be a slave to the higher 
level manager.  

 Agile Composition: understand the architectures and 
principles which will allow different digital assets, such 
as code or data, to find each other in an optimal manner 
to generate insights.  

 Complex Adaptive Human Systems: understand the 
properties of groups of humans working with machines, 
and understand how such groups would react to external 
stimuli and interact with other groups.  

 Instinctive Analytics: create new techniques by which 
data and services can be automatically advertised, 
discovered and matched together to create analytics 
workflows that are autonomous and optimal.  

 Anticipatory Situational Understanding: create new 
analytics approaches that can attain proactive situation 
understanding by autonomous systems and help create 
intelligent advisors for human-in-the-loop systems.   

These six key topics are being investigated by an alliance 
of several universities, industrial and government research 
laboratories from the UK and the USA as part of the 
International Technology alliance in Distributed Analytics 
and Information Sciences (DAIS ITA) [6].  

IV. ARCHITECTURE ENABLING DISTRIBUTED BRAIN 

The ultimate goal of DAIS ITA is to investigate the basic 
science that would enable the creation of a distributed CCS 
that can perform analytics on demand across heterogeneous 
networks of interconnected devices. Some of the capabilities 
of such a system will be to (i) understand user requests for 
analysis, (ii) seamlessly compose the desired analytics 
functions from other functions and services available in the 
network, (iii) identify the right data set needed for the 
analytics, and (iv) bring together the data and analytics 
required to perform the function. 

One approach that is being considered is a CCS 
architecture inspired by the cloud computing paradigm [7], 
comprising (i) a cognition layer, (ii) a platform layer, (iii) 
infrastructure layer and (iv) a management layer, with the six 
key topics mapping onto the layers as shown in Figure 1. 

 

 

Figure 1.  Key Topics in relation to layered architecture 

An alternative approach maintains the CCS architecture, 
but considers the challenge from the perspective of an 
interacting network of cognitive micro-services. Our micro-
services are cognitive in the sense that they comply with 
established principles of cognition such as those defined by 
the Core Cognitive Criteria (CCC) [8] which to a large extent 
incorporates the four key attributes of composability, 
interactivity, optimality and autonomy described above.  In 
this approach micro-services are considered as semantic 
concepts and can be processed as such.  It is in this sense our 
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distributed CCS can truly be described as a ‘distributed 
federated brain.  

Our challenge is to develop an approach where micro-
services are self-describing, can self-discover other micro-
services (including data services, network services, policy 
and security services) and where micro-services are self-
allocating and self-provisioning in the sense that they can 
optimally position themselves or be invoked within a 
network to perform the tasks demanded by users. To achieve 
these goals, we require a common way to represent our 
cognitive services and their capabilities.  Distributed 
cognitive processing is then the patterns of information flow 
and influence that occur across the network. The resulting 
cognitive phenomena are a property of the larger systemic 
organization, rather than a property of the individual micro-
services. 

V. EXAMPLE OF A COGNITIVE IOT  

To illustrate how our ‘distributed federated brain’ 
concept might be realized, we consider how it can be applied 
to micro-service architectures in IoT context.  Micro-services 
are an approach to developing a single application as a suite 
of small services, each deployed and running independently 
while communicating with each other via lightweight 
mechanisms. They typically require minimum centralized 
management and may be written in different programming 
languages and use different data storage technologies. They 
are widely adopted in the industry by companies like Netflix 
and Amazon, with a large number of developers, to 
streamline the software development lifecycle. They are also 
the basic building blocks of the IoT and can also be 
immensely useful in military and coalition scenarios being 
considered by the DAIS ITA, where each of the individual 
services may belong to different partners but a common goal 
needs to be achieved by composing them dynamically. 

Applications that use micro-service architectures, may be 
composed of hundreds or even thousands of micro-services 
[9]. To be able to learn feasible composition of micro-
services, dynamically compose new workflow graphs, and 
run learning algorithms on these workflows, we propose that 
micro-services self-describe in the form of vectors that 
capture not only the functionality that the service offers but 
also how it may be composed with other available services in 
the network, i.e., the feasible sequences of the service calls. 
These vector representations need to capture not just the 
semantic meaning of the service composition of which the 
micro-service is a part but also the order in which the micro-
services are called. One possible representation is to use 
vector symbolic architectures such as the Holographic 
Reduced Representations (HRR) [10] which use convolution 
algebra for compositional distributed representations, a form 
of symbolic binding and unbinding. Other potential vector 
representations include binary spatter coding (BSC) or 
random permutation (RP) [11].  These types of 
representation have been demonstrated to be capable of 
supporting a wide range of cognitive tasks including 
reasoning [12], semantic composition [13], analogical 
mapping [14] and representing word meaning and order [15].  
HRR’s form the basis of the Semantic Vector Pointer 

Unified Network Architecture (SPAUN)  [16] which claims 
to be a biologically plausible implementation of spiking 
neural network computation in a brain like manner, and can 
be used in military coalition contexts[17].  

In our distributed brain model, we envisage micro-
services being distributed across a heterogeneous network 
with micro-services being owned by different organizations. 
Rather than searching for micro-services and then centrally 
compiling a workflow, as in the standard service oriented 
architecture model, in our proposed model each micro-
service learns its role (i.e. position in the workflow) in each 
of the service workflows in which it has been invoked and 
binds this into its own symbolic vector representation (this is 
an online learning task). Essentially, the resulting vector is 
the micro-service’s memory of all of the workflow contexts 
in which it has been used. A user can request a high level 
task to be performed by declaratively specifying the precise 
service composition they require using a symbolic vector 
representation of the workflow. Alternatively, we are 
investigating how users can specify the service requirement 
(e.g. using natural language request) and the nearest 
matching service compositions are discovered automatically 
using semantic matching to automatically compute the 
corresponding symbolic vector representation. The resulting 
vector is broadcast to all nodes on the network that are 
capable of invoking micro-services and the micro-services 
respond by configuring themselves (self–provision and self-
allocate) to match the request.  Details of the online learning, 
matching and self-organization are described in [18]. 

VI. EVOLUTION OF  COGNITIVE COMPUTING SYSTEMS 

From an evolution perspective, we can envision how 
CCS’s will progress over time. This is illustrated in Figure 2.  

 
Figure 2.  Evolution of a distributed federated brain 

 
Our approach begins with the declarative approach 

described above, in which users request analytic services 
which are self-composed from multiple cognitive micro-
services. Using extensions of the vector symbolic 
representations we are investigating the mechanisms by 
which these micro-services can best organize themselves not 
only in in response to user demand but also within the 
constraints of network availability, location of data, policy 
and security requirements. We envisage this self-
organization to include the four principles of composability, 
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interactivity, optimality and autonomy outlined above, 
including the capability to for cognitive micro-services to 
learn from their environment and to exhibit proactive 
situation understanding and adapt accordingly.  

The use of vector symbolic representation in the SPAUN 
architecture suggests that a future distributed federated brain 
may operate as a highly parallel non Von Neumann machine 
where the micro-services are themselves implemented as 
neuromorphic machines using spiking neural network 
processing.  Such machines, which mimic the processing 
capabilities of the neo-cortex, have the distinct advantage of 
being extremely low power, operate at much lower 
frequencies than conventional microprocessors and 
potentially have less stringent bandwidth and latency 
requirements for inter service communication [14, 15].  
Using a symbolic vector representation lends itself to both a 
conventional computing paradigm and to a neuromorphic 
computing model or a hybrid approach. For this reason, we 
believe that this is a fruitful area of research that will produce 
valuable insights as we move towards our goal of a 
distributed federated brain. 

VII. A ROADMAP FOR LEARNING IN CCS 

While the current state for cognitive computing systems 
is that of a centralized environment, the eventual state will be 
that of a fully distributed cognitive system with a peer to 
peer relationship among different nodes in the system. 
Learning is a core capability of such systems. From a 
learning perspective, the roadmap in Figure 3 shows one way 
in which cognitive systems may progress in their learning 
capabilities over time.  

The working of any cognitive computing system can be 
defined into two distinct functions, the first being that of 
analyzing data to understand the patterns that lie within it, 
and the second one trying to assess the current situation on 
the ground, as to whether it matches one of the previously 
encountered patterns. We can refer to the first step as 
learning and the second as inference.  

From a physical infrastructure perspective, we can divide 
the devices into two categories, cloud and edge. The cloud 
consists of a central location, while the edge consists of 
devices not in the cloud.  Depending on the physical 
topology of the system, the edge may consist of mobile 
devices, sensors, gateways or other network devices.  

In the roadmap shown in Figure 3, the current state is that 
of cloud based cognition in which the edge devices are just 
feeders of data. They send in information to the cloud based 
site, and the cloud performs both learning and inference for 
them.  

The next stage of distributed cognition in CCS consists of 
the situation when learning happens in the cloud, while 
inference happens in the edge devices. In this stage, the 
cloud interprets all the data that it receives to create models 
of knowledge, e.g. a trained neural network, or a calculated 
decision tree, and sends that model to the edge devices that 
are not in the cloud. The edge devices use those models of 
knowledge to perform the task of inference.  

 

Edge: Data Feed

Cloud: Learning & Inference

Edge: Inference

Cloud: Learning

Edge: Learning & Inference

Cloud: Coordination

Edge: Learning & Inference

Cloud: Model Merging

Edge: All functions

Cloud: No Role

  

Figure 3.  Roadmap for CCS Capabilities 

Note that in this stage of CCS, none of the individual 
elements at the edge is cognitive on its own. However, when 
they are taken together, and the capabilities in edge devices 
combined with the capabilities in the cloud, cognitive 
computing capabilities are realized. A higher-level cognitive 
function is realized by the coordinated activity of distinct 
elements, each engaged in its own form of processing, some 
of which is cognitive (e.g. learning in the cloud) and some of 
which is not cognitive (functions at the edge-devices). 

In the third stage, the edge devices perform both tasks of 
inference and learning, but rely on the cloud for coordinating 
their learning. The cloud can provide coordination such as 
directing different edge nodes to learn about different types 
of information, and then share the learnt models with each 
other. As an example, the cloud may instruct one edge node 
to learn models for identifying cars, another to learn models 
for identifying trucks, and yet another to learn models for 
identifying planes. The models can then be exchanged 
among the edge-devices, each of whom benefit from the 
models learnt by the other edge devices. In this stage, 
cognitive functions are enabled at the edge, while the task in 
the cloud, that of coordination, can be considered non-
cognitive (standard computer processing). The net result is a 
distributed cognitive computing system.  

In the next stage, the edge devices learn models that may 
potentially be for the same type of information. Since models 
learnt by one edge device may not always match with the 
models of the other edge device, a merging of the models 
needs to be performed. The cloud provides this capability for 
merging models.  In this stage, both the edge devices as well 
as the cloud based system are performing cognitive 
processing. Distributed cognition is obtained by a 
combination of many different cognitive elements, some on 
the edge and some in the cloud.  

In the final stage of distributed cognition, the role of the 
cloud can be dispensed with, and the merging of the models 
happens using peer to peer information exchanges among the 
edge devices.  
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