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Abstract —We propose an online sliding window based self-

organising fuzzy neural network (SOFNN) as the core 

component of a cognitive reasoning system for a smart home 

environment. The network has the ability to configure its 

neuronal structure through adding and pruning of neurons 

while exploring the relationships between the inputs and the 

desired reasoning outputs, thus enabling continuous learning 

and reasoning to provide meaningful cognitive understanding 

of the environment. Initially, the network is trained with 

environmentally realistic synthesised data thus demonstrating 

its adaptation capabilities. The network is then validated using 

unseen data. In the simulation, we have studied the network 

structures and responses for three different scenarios with and 

without online sliding window based approaches and the 

results obtained show the effectiveness of the proposed method. 

Keywords- self-organise; fuzzy logic; neural network; 

reasoning module  

I.  INTRODUCTION 

Smart home environments are emerging rapidly as sensor 
rich systems. These systems require substantial computation 
to extract high level knowledge and understanding from low 
level sensory information, so as to enable appropriate 
decisions to be made regarding the state of the environment,  
i.e., the ecology. The main objectives of introducing 
intelligence into a smart home environment are to identify 
events with various degrees of importance and automatically 
activate suitable responses [1]. The intelligence comes from 
the adaptive behaviour of the overall ecology as per the 
requirements of the user.  Different aspects of smart home 
environments have been reported in the literature [2][11]. 
These include an intelligent just-in-time Activity of Daily 
Living (ADL) assistance provision within an integrated 
system architecture [3], a home monitoring system for 
elderly-care application [2],   and a context aware system for 
smart home applications [9][11][19]. Researchers have used 
different methods for contextual representations.  
Mastrogiovanni et al., [5] have integrated ontology and logic 
based approaches to map numerical data to symbolic 
representations. Roy et al. [6] have used possibility theory 
and description logic (DL) as the semantic model of the 
agent’s behaviour for activity recognition.  

Detection of anomalous events within a smart home is an 
important aspect of situation awareness. Jakkula [4] has used 
One Class Support Vector Machines (OCSVM) techniques 
to address this issue. In [15], we have shown that the 

SOFNN based cognitive reasoning module can be utilised to 
extract knowledge from everyday events occurring within a 
smart home environment. The SOFNN has a self-organising 
capability to configure its structure and identify parameters 
of the fuzzy neural network from data. We explored the 
potential of the SOFNN as a core component of a cognitive 
system unfolding the relations of its inputs and the desired 
reasoning outputs and showed its ability to adapt its neuronal 
structure through adding and pruning of neurons. In this 
work, we show that the proposed sliding window based 
online SOFNN can achieve similar knowledge via a simpler 
structure with a reduced number of neurons.  

The remainder of this paper is organised as follows: 
Section II presents an overview of the SOFNN. A sliding 
window based online SOFNN is described in Section III. 
Section IV presents the implementation results of the 
proposed work in a smart home environment.  We consider 
three cases: case 1 represents purely offline training and 
testing; case 2 represents offline initial training and then 
online training and testing simultaneously during the 
verification stage with sliding window control; case 3 
represents fully online situation utilising the proposed 
method. Section V presents the overall conclusion of this 
work.  

II. AN OVERVIEW OF THE SOFNN  

The self-organising fuzzy neural network (SOFNN) [14], 

implementing Takagi-Sugeno (TS) fuzzy models [16] 

online, is a five-layer fuzzy neural network with the ability  

 
Figure 1. Structure of self-organising fuzzy neural networks 
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to self-organise its own structure during the learning 

process. The structure of SOFNN is shown in Fig. 1. 
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Here, u  is the number of neurons, 
ij

c is the centre of the i-th 

membership function in the j-th neuron, ijσ  is the width of 

the i-th membership function in the j-th neuron; j and k are 

variables of the number of neurons and i is the variable of 

the number of membership functions in each neuron. The 

row vector 0 1 2[ ]j j j jra a a a=jA LL  represents the set of 

parameters corresponding to the neuron j and 2 jw  is the 

weighted bias, which is defined for the TS model as 
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For learning purposes, the output of the network can be 

described in matrix form as 
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where W2 is the parameter matrix, jtψ  is the output of the j-

th neuron in the normalised layer when the t-th training 

pattern enters the network. 

The learning process of the SOFNN can be divided into 

structure learning and parameter learning. The structure 

learning combines adding new EBF (ellipsoidal basis 

function) neurons and pruning unimportant EBF neurons 

[14]-[15]. The parameter learning is based on the linear least 

squares method and the recursive least squares algorithm 
[17]. The recursive parameter matrix learning algorithm 

developed in [14] is as follows 

 

[ ] 1

)()1()(1)()1()()()(
−

−+−== tptQtptptQtptQtL
T  (7) 

 

[ ] )1()()()( −−= tQtptLItQ
Tα  

 

(8) 

)]1()()[()1()( −
∧
Θ−+−

∧
Θ=

∧
Θ ttTp

t
dtLtt α  

(9) 







<

≥
=

)()(,0

)()(,1

tte

tte

ε

ε
α  

(10) 

 

where 
1

(t)P(t)TPQ(t)
−





=  is an MxM Hermitian matrix 

(Q-matrix),
T

(t)Tp(2)Tp(1)TpT
ΨP(t)





== L , 

)1( +×= ruM
,

[ ]T
M
θ

2
θ

1
θ

T
2

WΘ(t) L== ,  

)1()()( −
∧
Θ−= tt

T
p

t
dte  is the estimation error and 

)()()( ttpdydt
T

ttt

∧

Θ−=−=ε  is the approximation error. 

More details can be found in [14]. 

III. THE PROPOSED ONLINE APPROACH OF SOFNN  

The dynamic structure of a SOFNN enables the 

cognitive system to learn different situations online via self-

adaptation. To facilitate online training a sliding-window 

(SW) [12][13], as a data pool, has been employed. In this 

case the Q-matrix has to be updated based on limited 

historical data and current data.  
The proposed online approach implements a first-in-

first-out sliding window (FIFO-SW) (Fig. 2) with the 

SOFNN. When new data are obtained the oldest data will be 

discarded and the new data will be added to this window. 

The data in the sliding window include the current input-

target learning pair as in (11) and limited historical input-

target learning pairs as shown in (12) where W is the width 

of the sliding window. 

 

[ ]Tttt dData Χ=                                     (11) 
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Fig. 3 is the block diagram of the proposed online SOFNN. 

The structure of the SOFNN is self-organised during the 
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Figure 2. First-in-first-out sliding window 

 
Figure 3. Block diagram of the online SOFNN 

 

 
 

Figure 4. Outline of cognitive reasoning system 

 

learning process.  A new SOFNN structure is generated if 

EBF neurons have been added or pruned in the existing 

SOFNN structure.  In the proposed recursive parameter 

matrix learning algorithm, the size of the Hermitian matrix 

(Q-matrix) depends on the number of neurons as 

1
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−



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=  and T

ΨP(t) = . If the number of 

neurons in the SOFNN structure is changed, the data 

organized in the sliding window will be used to update the 

parameter ( )t
∧

Θ  and Q-matrix )(tQ  through equations (13) 

and (14) as follows 
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where [ ]T
tWtWt dddtD L21)( +−+−= . The proposed 

recursive parameter matrix learning algorithm is then 

applied to update the parameters during subsequent 
learning. It is clear that if the width of the sliding window is 

the same as the number of entire training data, then this can 

be considered as offline training. 

IV. RESULTS  

In order to evaluate the proposed approach we consider a 
smart home environment with different sensors and 

actuators as in the EU FP7 RUBICON project (contract no. 

269914) [7]. There are four technical layers named learning, 

control, communication and cognitive layers, which explore 

and support the smart home environment. The learning layer 

addresses sensory information for event classification, the 

control layer employs robots for different goals within the 

ecology whereas the communication layer is responsible for 

data transmission among the layers. The cognitive layer 

seeks to acquire knowledge and understanding of the state 

of the ecology as per the event information, while accurately 

reflecting its dynamics. The proposed online algorithm is 
employed in the reasoning module of the cognitive layer as 

shown in Fig. 4. To demonstrate the cognitive capability, it 

is necessary to handle multiple events that may occur in the 

ecology, and in particular extract higher-level intelligence. 

We have anticipated 19 events as inputs from a home 

environment reflecting activities of a user and the states of 

the environment and a set of 10 reasoning goals as outputs 

are chosen to reflect the network’s capabilities of reasoning 

across user activities and current state of the ecology. Table 

I and II show the chosen inputs and outputs [15]. Values of 

inputs and outputs represent confidence levels between 0 
and 1. We synthesize 4500 data samples including data for 

19 inputs and 10 reasoning outputs. To validate the 

performance of the proposed online algorithm, three cases 

have been designed. 

A. Case 1: Offline Training and Learning 

The first 3900 data are chosen as the training data and 
the last 600 data are used as the testing data. We use the 

training data to obtain the SOFNN structure. We then test 

the performance using the testing data based on the obtained 

SOFNN structure during which the structure is not refined. 

This is an offline training process without sliding window 

control. 

B. Case 2: Pseudo Online Training and Learning  

In case 2, the first 3900 data are used as the first group 

of training data. The remaining 600 data are used as the 

testing data, as well as the second group of training data. 

The first phase is offline training without sliding window 

control. In the testing process using the second group of 

data, the obtained structure is also updated based on the 

FIFO sliding window with the size of 300 samples. In this 

phase, the refining process is based on the proposed online 

training algorithm as equations (7) to (14). The testing data 

are used to validate the performance of the obtained SOFNN 
structure. This case is a combination of offline and online 

training process (pseudo online). This process also shows 

that the approach can continue its training and learning from 

a previously offline trained network.  
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TABLE I. THE EVENT INPUTS FOR REASONING MODULE 

Synthesized Input Events 

1 User in room 1 

2 User in room 2 

3 User in room 3 

4 Visitor detection 

5 Phone event 

6 Doorbell event 

7 Dripping event 

8 Music event 

9 Fire alarm 

10 Microwave usage 

11 Dishwasher usage 

12 TV usage 

13 Cleaning operation 

14 Cooking 

15 Use of oven 

16 Smoke detection 

17 Room temperature  

18 Burglary alarm 

19 Front door usage 

 

TABLE II. TARGETED OUTPUT OF SOFNN REASONING 

ID Potential reasoning outputs 

1 User exercise 

2 User relaxing 

3 User in kitchen 

4 Bring phone 

5 Open door  

6 Cooking activity 

7 Fire alert situation 

8 Burglary alert situation 

9 Dripping alert situation 

10 Cleaning situation 

 

C. Case 3: Fully Online 

In case 3, all 4500 data are used as the training data. The 

rear 600 data are the testing data used to validate the 

performance of the obtained SOFNN structure. For this 

case, we use the training data to train the SOFNN structure, 

based on the FIFO sliding window with the size of 300 
samples from the beginning of the training. No offline 

training occurs in this case. To compare with case 1 and 

case 2, the testing data are used to validate the performance 

of the obtained SOFNN structure. In this testing process, the 

obtained structure is also continuing its refinement. So, the 

structure and parameters are also changing based on the 

proposed online algorithm. 

During the training process in all cases, event inputs and 

reasoning outputs form the training data as presented in 

(11). However, during the testing phase, only event data are 

presented to the network and the reasoning outputs are 
obtained from the trained network. The results achieved for 

each of the three cases are presented in Tables III, IV and V. 

It is observed in Table III that case 1 through to case 3 have 

42, 42 and 28 neurons respectively to reason across the 

reasoning outputs for the smart home environment.  The 

root mean square errors (RMSE) of the training are 

presented in Table IV for the first set of 3900 data. As case 

2 incorporates offline training with the first set of data, the 

RMSEs are same as case 1. RMSEs of testing of case 2 are 

better than those of case 1 (Table V) as the obtained 

structure for case 2 has been refined during the testing 

process. For a number of the reasoning outputs, the RMSEs 
of the training and testing of cases 1 and 2 are smaller than 

the corresponding values in case 3. This is because of the 

sliding window with limited data has been applied in case 3 

from the beginning of the training process as opposed to 

offline training without sliding window in other cases. 

However, the reduced number of neurons in case 3 than 

those in case 1 and case 2 highlights the potential for the 

proposed online sliding window based approach. Fig. 5 

shows the change in neuronal structure for each of these 

cases. It is observed that case 3 has 28 neurons compared to 

42 neurons for cases 1 and 2 respectively. Hence in 

comparison with the offline approach in case 1 and the 
pseudo online approach in case 2, the fully online approach 

in case 3 with FIFO sliding window has the capability to 

generate a simple structure and achieve similar 

performances. 

Fig. 6 presents an example of the online case 3 with the 

output “User Exercise”. Fig. 6-(a) shows the training 

process where the network has identified the transitions 

when the user starts and ends exercising. In this case, the 

plot shows only data samples from 3301 to 3900 for clarity. 

It shows the desired state and the training output of the user 

exercise situation. It is observed that the network is able to 
learn this situation. For this output, there are two neurons 

generated during the training process, which are shown in 

Fig. 7. It also shows that the number of neurons in the 

network is changed dynamically during the training process 

illustrating the self-organising capability of the proposed 

network. The final 600 data, from 3901 to 4500, have been 

used in the testing process. The testing results are given in 

Fig. 6-(b). It is observed that the network is capable of 

identifying the user exercise situation as desired. 

Fig. 8 presents an example of the online case 3 for the 

open door situation. Fig. 8-(a) shows the desired and actual 

outputs during the training process where the network has 
identified the requirements to open the door of the home. In  

TABLE III. NUMBERS OF NEURONS FOR 3 CASES 

Outputs Case 1 Case 2 Case 3 

User Exercise 3 3 2 

User Relaxing 9 9 4 

User in Kitchen 2 2 2 

Bring Phone 2 2 2 

Open Door 2 2 2 

Cooking Activity 2 2 2 

Fire Alert Situation 2 2 2 

Burglary Alert Situation 3 3 3 

Dripping Alert Situation 14 14 6 

Cleaning Situation 3 3 3 

Total Number 42 42 28 
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TABLE IV. RMSES OF THE TRAINING FOR 3 CASES 

Outputs Case 1 Case 2 Case 3 

User Exercise 0.0566    0.0566    0.0566 

User Relaxing 0.0463    0.0463    0.0478 

User in Kitchen 0.0562    0.0562    0.0551 

Bring Phone 0.0641    0.0641    0.0596 

Open Door 0.0540    0.0540    0.0507 

Cooking Activity 0.0629    0.0629    0.0617 

Fire Alert Situation 0.0393    0.0393    0.0311 

Burglary Alert Situation 0.0395    0.0395    0.0463 

Dripping Alert Situation 0.0359    0.0359    0.0378 

Cleaning Situation 0.0385 0.0385 0.0481 

 

TABLE V. RMSES OF THE TESTING FOR 3 CASES 

Outputs Case 1 Case 2 Case 3 

User Exercise 0.0580    0.0577    0.0631    

User Relaxing 0.0492    0.0490    0.0558    

User in Kitchen 0.0558    0.0557    0.0555    

Bring Phone 0.0652    0.0650    0.0683    

Open Door 0.0498    0.0496    0.0533    

Cooking Activity 0.0658    0.0650    0.0705    

Fire Alert Situation 0.0401    0.0397    0.0432    

Burglary Alert Situation 0.0189    0.0184    0.0187    

Dripping Alert Situation 0.0484    0.0481    0.0832    

Cleaning Situation 0.0443 0.0526 0.0532 
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Figure 5. Change of neuronal structure for case 1 through to 3 

 

this case, the plot shows only data samples from 3301 to 

3900 for clarity. For this output, there are two neurons 

generated during the training process, which are shown in 

Fig. 9. It also shows that the number of neurons in the 
network is changing dynamically during the training 

process. The final 600 data, from 3901 to 4500, have been 

used in the testing process. The testing results are given in 

Fig. 8-(b). It is observed that the network is capable of 

identifying the situation as desired. 

    The Mackey-Glass time-series with a 6-step-ahead 

prediction model [18] is simulated to show the advantage of 

the proposed online algorithm in machine learning. This is a 

benchmark example of a chaotic system. We have chosen 

the parameters as in [18] for consistency with earlier work.  
 

 
Figure 6. Results of case 3 for user exercise situation 
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Figure 7. Growth of neurons for user exercise in case 3 

 

 
Figure 8. Results of case 3 for open door situation 

 

 
Figure 9. Growth of neurons for open door situation in case 3 
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TABLE VI. RESULTS OF MACKEY-GLASS TIME-SERIES 
PREDICTION 

Approach Number 

of 

neurons 

RMSE 

of 

training 

RMSE 

of 

testing 

WNN [18] 4 - 0.0153 

Case 1 (no SW) 4 0.0114 0.0116 

Case 2 (SW 100 during testing) 4 0.0113 0.0151 

Case 2 (SW 200 during  testing) 4 0.0114 0.0148 

Case 2 (SW 300 during testing ) 4 0.0113 0.0123 

Case 3 (SW 100) 4 0.0141 0.0151 

Case 3 (SW 200) 4 0.0142 0.0148 

Case 3 (SW 300) 4 0.0142 0.0123 

 

The results of this simulation are shown in Table VI. We 

compare our results with the wavelet based neural network 

(WNN) in [18] which also tabulated further comparative 

results with other existing methods. It is observed from the 

RMSE values that our approach produces better results for 

all three cases presented when compared with the WNN. 

V. CONCLUSIONS  

This paper presents an online self-organising fuzzy neural 

network based on the sliding window. The proposed online 

algorithm has been applied to a smart home situation. The 
method is also compared with two other designed cases 

(cases 1 and 2) to show its advantage. A more compact 

structure and similar performance are obtained using this 

proposed online algorithm (case 3). Furthermore, we also 

show through case 2 that the proposed algorithm can be 

combined with a previously learnt system for continuous 

learning with new available data. From these results, we can 

conclude that the proposed method is suitable for online 

cognitive reasoning. We also consider a benchmark chaotic 

system prediction using our proposed method and present 

comparative results with an existing wavelet neural network 

based approach. The results show that the proposed sliding 
window based online approach is suitable for machine 

learning.  
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