
Model Driven Framework for the Configuration and the Deployment
of Applications in the Cloud

Hiba Alili, Rim Drira and Henda Hajjami Ben Ghezala
RIADI Laboratory, National School of Computer Sciences,

University of Manouba, 2010 la Manouba, Tunisia
E-mail: {alilihiba,drirarim,hhbg.hhbg}@gmail.com

Abstract—Cloud computing offers a distributed computing envi-
ronment where applications can be deployed and managed. Many
companies are seeing substantial interest to extend their technical
infrastructure by adopting cloud infrastructures. Although the
choice of such an environment may seem advantageous, users are
faced with many challenges, especially with regard to deployment
and migration of applications in the Cloud. To address some of
these challenges, we propose a new approach based on model-
driven engineering techniques (MDE), called MoDAC-Deploy,
for the assistance to the configuration and the deployment of
applications in the Cloud. This paper focuses on the design and
the implementation of our approach. In fact, we developed a
model-driven Framework with generative mechanisms to simplify
and to automate cloud services deployment process, to overcome
APIs heterogeneity, to minimize the vendor lock-in and to enable
application portability among different cloud infrastructures by
reusing configurations/deployments ”Model a configuration once
and deploy it anywhere”. We conducted also a case study
in order to validate our proposed approach. Our empirical
results demonstrate the effectiveness of our MDE Framework
to seamlessly deploy services in the cloud and to migrate easily
between different Cloud Service Providers (CSPs) without any
programming efforts.

Keywords-Deployment; Cloud Computing; Model Driven Engi-
neering.

I. INTRODUCTION

Cloud Computing is a paradigm shift that involves dynamic
provisioning of shared computing resources on demand. It is a
pay-as-you-use billing model that offers computing resources
as a service in an attempt to reduce IT capital and operating
expenditures [1].Particularly, Infrastructure as a Service (IaaS)
allows users to allocate computational, storage and networking
resources from Cloud Service Providers (CSPs). It offers to
users the ability to customize the environment to suit their
applications and even it supports the deployment of legacy
applications without any modification in their source code. In
order to make efficient use of such an environment, tools are
needed to automatically deploy, configure and run services in
a repeatable way. In this context, we focus in this paper on
the deployment of applications in IaaS environment.

Deploying applications in cloud infrastructures is not a
trivial task, as it relies on handcrafted scripts and it requires
increased complexity and additional effort. Doing so is time
consuming and error prone, especially for deployments with a
large number of nodes. Moreover, the growing trend towards
migrating applications and services to the cloud has led to
the emergence of different CSPs, in turn leading to different
specifications of provided resources and to heterogeneous
APIs. These challenges make it hard for cloud customers to
seamlessly transition their services to the cloud or migrate

between different CSPs. These challenges can be classified
into three main categories:

• Deployment Complexity: the deployment in the cloud
is a very complex process given the large number
of operations required to finish with a successful
deployment (e.g., the restructuring of each application
layer for the cloud, the auto-scaling of services, the
monitoring and the optimization of the application
services to take advantage of the cloud benefits) [2].
In fact, to successfully deploy an application in the
cloud, a good preparation of the target environment is
essential to be compatible with its architecture.

• Programming and Deployment Heterogeneity: CSPs
such as Amazon Web Services [3], Google Cloud
Platform [4], Rackspace, and Microsoft Azure [5] pro-
vide different APIs to their customers to manage their
resources on the cloud, which is often carried out pro-
grammatically using this APIs. This API heterogeneity
imposes a steep learning curve for cloud customers
[6]. To overcome this concern, CSPs often provide a
web-based management console. Unfortunately, these
user interfaces are very specific to the CSP and hence
do not resolve the original problem.

• Vendor lock-in and Portability: The fear of vendor
lock-in is often cited as a major impediment to cloud
service adoption. In fact, the proprietary APIs pro-
vided by each CSP are incompatible with those of
other CSPs and as a result it limits the ability of
cloud customers to seamlessly migrate their services
between different CSPs. For that reason, many cus-
tomers stay with a provider that doesnt meet their
needs, just to avoid the cumbersome process.

Addressing these challenges requires a framework that
holistically focuses on the core set of the deployment prob-
lems. In parallel, MDE has emerged as a software engineering
paradigm for dealing with the problem of system interoperabil-
ity and portability across different execution platforms. Model
Driven Architecture (MDA) does this separating business and
technical concerns and proposing techniques to integrate them.
In addition, MDA techniques allow generating automatically
code from models. Thus, we believe that MDE techniques are
promising to address the challenges outlined above (automat-
ing the deployment process and ensuring the portability across
different cloud infrastructures).

In this context, we propose in this paper an intuitive
abstraction, based on MDE standards, to cloud customers to
model software deployment in the cloud and to enable various
CSP-agnostic. This abstraction is realized as a modeling tool
based on a domain specific modeling language (DSML) with

61Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

generative capabilities. Our proposal, which we call MoDAC-
Deploy (Model Driven Framework for the Assistance to Cloud
Deployment), includes three key artifacts: (1) IaaSEditor, a
modeling tool which provides an intuitive user interface that
allows cloud customers to define the deployment model of
their applications in the cloud. It presents an abstraction layer
isolating applications from the underlying cloud provider and
hiding APIs. This tool is based on (2) IaaSMetaModel, a meta-
model that captures all the concepts needed to specify an
accurate cloud deployment. And finally (3) ScriptGenerator,
a generative tool that concludes automatically the deployment
script from the deployment model created within IaaSEditor.
Our framework shields cloud users from having to manually
write scripts using low-level APIs and enables applicaion
portability among different CSPs.

This paper is organized as follows: Section 2 briefly
discusses scientific works closely related to ours. In Section 3 ,
we introduce the MDE basis, especially we describe the MDA
process. Section 4 describes our model driven framework for
the configuration and the deployment of applications in the
cloud. In Section 5, we illustrate a case study to evaluate and
to demonstrate the effectiveness of our deployment framework
and finally, Section 6 provides concluding remarks and outlines
future works.

II. RELATED WORKS

Our work has taken shape in the context of a rich literature
focused on simplifying the deployment of applications in
the cloud. In fact, several works have shown an interest
to automate the deployment process and to deal with API
heterogeneity. We propose in this section to analyze the state
of the art about software deployment and identifying the good
practices to be reused in our own solution.

Juve and al. [7] have developed a system called Wrangler to
provision, configure and manage virtual machine deployments
in the cloud. Wrangler allows users to specify the layout of
their application declaratively using an eXtensible Mark-up
Langage (XML) format and then to send this deployment
description to a web service that manages the provisioning
of virtual machines, the installation and the configuration
of software and services. This system is able to interface
with different resource providers,as it currently supports only
Amazon EC2 [8], Eucalyptus [9] and OpenNebula [10]. But
authors haven’t talk about the possibility to extend this system
in order to support other CSPs. While our solution is designed
specifically to support multiple CSPs and to easily add new
cloud artifacts. Our approach intends also to completely shield
software designers from any programming efforts contrary to
Wrangler that requires the preparation of an XML description
of the deployment model.

Caglar and al. [11] have proposed a solution based on
MDE, including a domain-specific modeling language (DSML)
for automating deployment of applications in the cloud and
generative technologies. The meta-model of the deployment
model in this DSML was designed in order to overcome
the challenges resulting from heterogeneity in CSP APIs
and deployment policies. It consists of Print, Sleep, Up-
load, Download, RunApp, Terminate, CreaeInstance, Waitfor-
Startup, Connect, Entity, and Keyfile model components,
which are used during the deployment process. Connections
between components are also defined in the meta-model.

The interpretation of the created deployment model generates
the appropriate deployment script in Python, which contains
and execute the deployment steps. Just like Wrangler [11],
this work is limited to VM management, while our work
supports also storage and network connectivity management.
In addition, it allows users to specify resources into groups
(availability group, security group and auto-scaling group).

In [12], the authors describe their automatic deployment
platform that they developed for the Microsoft Azure cloud,
driven by the need of a chemistry application performing
Quantitative Structure-Activity Relationship (QSAR) analysis.
The main goal was to enable the execution of existing non-.Net
software in the Azure infrastructure which was designed only
for applications based on the .Net framework, and which sup-
ports a specific, queue-based software architecture. By using
the proposed deployment framework, the QSAR application
was successfully running in the Azure infrastructure. However,
this solution is dedicated only to the Azure cloud and it needs
to be generalized.

Shekhar and al. [13] have proposed a framework for con-
ducting price/performance tradeoffs in executing MapReduce
jobs at various CSPs, selecting the best option and deploying
and executing the job on the selected CSP infrastructure. All of
these capabilities are driven by an MDE framework. However,
the MDE abstractions are being developed and the realization
as a web-hosted service is still under development. While this
efforts is promising, they need to be tested and evaluated.

Other recent efforts like Deltacloud [14], Libcloud [15] and
jclouds [16] have been developed to deal with API hetero-
geneity. These libraries hide away differences among multiple
cloud provider APIs and allow users to manage different cloud
resources through a unified common API. This has solved
the multi-cloud problem in a very detailed manner, but the
complexity is therefore even larger (i.e., users need to learn
how to program using these APIs).

A model-driven approach for automating cloud deployment
is also presented in [17]. Hamdaqa et al. have proposed a
(5+1) architectural view model, where each view corresponds
to a different perspective on cloud application deployment.
This view model enables cloud stakeholders (e.g., providers,
developers, administrators and financial managers) to leverage
cloud platform capabilities. The (5+1) view model has been
realized as a layered, domain specific modeling language
(DSML), called StartusML, and the capabilities of this lan-
guage have been illustrated using a representative domain
example. The model was derived by investigating the process
of architecting cloud applications, and then providing a set
of meta-models to describe cloud applications within their
ecosystem: an availability meta-model, an adaptation meta-
model, a performance meta-model, a service meta-model, a
workflow meta-model and finally a provider meta-model. Each
meta-model in the (5+1) view model is dedicated a layer in
StratusML. Our work has synergies with this work in the
context of providing a user interface in order to facilitate the
configuration and the description of the deployment model of
applications in the cloud. Our deployment framework presents
a fairly comprehensive DSML that allows the users to describe
their applications deployment architecture in terms of services
and interactions. It clarifies the cloud service model and its
requirements in terms most cloud customers would understand.
We developed also generative technologies to automate the de-

62Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

ployment process and to resolve the problem of the repetition
of tedious tasks.

In the reminder of this paper, we will focus on present-
ing and evaluating our proposed contribution with respect to
related work.

III. DEFINITIONS
This section gives a short overview of Model-Driven En-

gineering and its related concepts.

A. Model Driven Engineering
MDE is becoming an emergent software engineering

paradigm to specify, develop and maintain software systems.
In MDE, models are the primary artifact of the engineering
process and are used, for instance, to (semi)automatically
generate the implementation of the final software system.

According to the Object Management Group [6] MDE
is a specific approach to software engineering that defines
a theoretical framework for generating a code from models
using successive model transformations [18]. The main goal
of this approach is to separate the business side of a system
from its implementation. The business model of a system can
therefore drive its implementations on different platforms. In
this way, we can expect to obtain better coherence between
implementation and interoperability.

In brief, MDE aims to raise the level of abstraction in
program specification and increase automation in program
development. The best-known MDE initiative is the MDA
proposed by the OMG [19].

B. Model Driven Architecture
MDA states that it models the environment and the require-

ments for a system in a Computational Independent Model
(CIM). A CIM does not show the details of system structure.
Thus, a CIM can be used to build a Platform Independent
Model (PIM). A PIM focuses on the operation of the system
while hiding details related to the use of a particular platform.
PIM maintains platform independence in order to be suitable
for use with different platforms. The transformation of a
PIM into a Platform Specific Model (PSM) is based on the
associated Platform Model (PM). A PSM is a system model
for a specific platform. It combines PIM specifications with the
details that specify how that system uses a particular platform.
Figure 1 shows the main concepts used in MDA.

C. MDE for the Cloud deployment
Considerable attention has been focused recently on MDE

as an alternative solution to overcome some of the deployment
concerns in the cloud. In fact, the MDE approach holds
promise in:

1) Simplifying and (semi)automating the process of
deployment of applications in the cloud, by cre-
ating specific modeling languages/ tools that hide
development complexity while also significantly re-
ducing the learning curve involved in moving to a
cloud platform. They allow accurate descriptions with
a semantic precision.

2) Ensuring portability and interoperability of sys-
tems across different platforms, by developing

Figure 1. Main concepts of the MDA approach

generic and extensible cloud artifacts. This shields
the users from the variabilities in CSPs.

In the literature, a number of recent papers have already
explored this possibility as StartusML [17] and works done
in [11][12][13]. Nevertheless, all of these works have focused
only on resolving the heterogeneity problem. Our current
research focuses on resolving all of the challenges mentioned
above in Section 1 and on providing a complete solution for
an automated deployment in the cloud.

IV. MODAC-DEPLOY: A MODEL DRIVEN
FRAMEWORK FOR THE ASSISTANCE TO CLOUD

DEPLOYMENT
Our goal is to provide a complete solution that assists

software designers to configure and to deploy successfully their
applications in the Cloud. In this section, we present more
details about the MoDAC-Deploy architecture, giving the main
steps required for deploying an application in the cloud and
its capabilities.

A. Overview

The key idea of the MoDAC-Deploy framework is to
simplify as much as possible the deployment process in the
cloud by proposing an abstraction layer isolating applications
from the underlying environment and hiding API details. In
fact, shielding users from having to manually write scripts
using low-level APIs hides the deployment complexity and
dramatically reduces manual efforts and the time required to
configure cloud resources. In addition, our framework has
been designed specifically to support multiple CSPs in order
to enable application portability among different CSPs. So
applications can be easily moved from one cloud infrastructure
to another which would satisfy more their needs without
any additional efforts: ”model the software deployment once
and deploy it anywhere”. In fact, users have only to change
the selected provider from the available list presented in our
framework and then reuse the same deployment model to

63Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

deploy their applications in the new chosen cloud infrastruc-
ture. Figure 2 shows our framework architecture. It includes
three main modeling tools: IaaSEditor, IaaSMetaModel and
ScriptGenerator. We have used Eclipse Modeling Framework
to develop the DSML and the generative capabilities within
our framework.

Figure 2. Overview of the MoDAC-Deploy approach

Both IaaSEditor and ScriptGenerator use the deployment
meta-model IaaSMetaModel in order to guarantee the creation
of a valid model and the generation of an executable deploy-
ment script.

B. Deployment process
Following MDA practices, an application deployment is

achieved in three-step process:
First, users specify and define the hosting architecture of

their applications through creating a new deployment model
under IaaSEditor. The deployment model is saved as an
XMI description consisting of several nodes (components).
Each node may correspond to a virtual machine or to a
storage medium, then it would be associated to a named
group, namely a SecurityGroup, an AutoScaling-Group or an
AvailibilityGroup. This deployment model is defined using the
meta-model IaaSMetaModel. A simple validation should be
done at this level to guarantee a valid deployment model and
then an executable deployment script.

Second, a model transformation engine with specific rules
is used to transform the preceding model into a CSP-specific
model.

Finally, ScriptGenerator ensures the generation of the
deployment script script.sh from the XMI document generated
within IaaSEditor. The generated script presents an executable
bash script which should be token later and executed on
the command line interface of the underlying provider. Users
have access to the generated script and they can identify
possible values as wanted. Figure 3 illustrates the process that
the MoDAC-Deploy framework goes through to facilitate and
semi-automate the deployment into cloud infrastructures.

C. IaaSMetaModel
IaaSMetaModel is depicted in Figure 4. This meta-model

captures all the concepts that are needed to specify a cloud

Figure 3. Deployment Process

deployment. It comprises multiple extensible and customiz-
able classes, all of these classes are generic cloud artifacts,
describing the functioning and the dependence of the different
components and application services to be deployed on the
cloud. The meta-model components and their responsibilities
are as follows:

• Hosting Architecture: is the main class of our de-
ployment meta-model. It presents the hosting ar-
chitecture of the application to be deployed in the
cloud. Through this class, users can specify the cloud
provider and their authentication credentials required
by the provider. A good design of the hosting archi-
tecture is essential to have a successful deployment.

• Application: presents the name of the application to
be deployed, its version, the URL designated by the
developer to access to this application. It contains also
entities named File such as text file, executable file, or
any other library files to be uploaded onto the VMs
that it is connected to. The application’s set up and
log files are copied from a local directory to another
directory on a VM in the cloud.

• VirtualMachine: is used to define requested VMs from
clients and to specify their characteristics such as
the image ID, the VM size, the availability zone
and the number of instances required to execute the
application in the cloud. Through this class, we can
also enable the monitoring of our instances VM.

• StorageMedium: we classify the storage mediums
into three categories: DataBaseStorage, SimpleStorage
and VolumeStorage. DataBaseStorage offers both rela-
tional and NoSQL database infrastructure. SimpleStor-
age provides a persistent storage of large amounts
of distributed object, highly scalable, sustainable and
available while VolumeStorage provides disk support,
we can associate multiple disks to a virtual machine.

• Group: designates a collection of virtual machines
or storage mediums with common characteristics, we
distinguish between three group categories: Availi-
bilityGroup, AutoScalingGroup and SecurityGroup. A
SecurityGroup consists of a set of access control
rules that describe traffic filters to our VMs. It is
analogous to an inbound network firewall, for which
we specify the protocols, ports, and source IPs ranges
that are allowed to reach the VM instances. An
AutoScalingGroup presents scaling factors to apply
on a set of virtual machines. The number of running
VM instances can be dynamically scaled out and in,
according to certain conditions in order to handle
changes in traffic: it is possible to increase the size
of a group of instances to meet a load peak or to

64Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 4. IaaSMetaModel

reduce the executing park in the case of the decrease of
traffic. Finally, an AvailibilityGroup nests components
which need to be hosted in the same location. It is a
superclass for the three geolocation groups (i.e., Zone
Region and Datacenter).

• EndPoint: handles incoming network traffic to cloud
components. An endpoint is a URL that is the entry
point for a web service. For each endpoint, we as-
sociate a range of IP addresses and the port through
which a cloud component/ task can connect to others.
An endpoint uses a specific protocol that determine
the syntax and semantics of the messages that are
exchanged between the two communication parties.
An endpoint can be external if it is publicly visible
or internal if it is only accessible within the cloud
application. Also, each endpoint has a public port
and a private port: the public port is used to listen
for incoming traffic to the virtual machine from the
Internet while the private port is used to listen for
incoming traffic, typically destined to an application
or service running on the virtual machine.

This meta-model was developed after inspecting manually
three cloud infrastructures, namely Amazon Web Services,
Windows Azure and Google Cloud Platform. Furthermore,
adding additional provider concepts is designed to be relatively
simple.

D. IaaSEditor
As described above, IaaSEditor provides an intuitive user

interface that allows cloud customers to define their application
services and to configure the target environment through a
simple graphical modeling, shielding them from programming
efforts. Once users have created the deployment model of their
applications, they can choose any CSP supported by our frame-
work and the created deployment model can then be reused
to move the application into another Cloud infrastructure by
changing only the selected CSP under IaaSEditor and some
CSP-specific properties such as the VM image ID.

Figure 5 presents the editor IaaSEditor. it is composed of
three layouts:

• Design workspace : Here users can design and
validate their deployment models, and ask for the
generation of the script deployment.

• Palette : it contains the different components to use
in creating the deployment model, grouped together
in different categories (Resources, Groups, Relations)
according to their role.

• Configuration Tabs : Each tab opens a view that
displays the properties of the selected element in the
design workspace. These properties can be edited to
change or set the parameters related to a particular
component.

E. ScriptGenerator
We have used Acceleo, a code generation tool under the

framework Eclipse, to implement our ScriptGenerator.

Figure 5. Generation of the deployment script

65Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 6. IaaSEditor

Users launch the generation of the deployment script with
a simple click as shown in Figure 5.

Through a set of model transformation templates, Script-
Generator synthesizes the deployment script from the de-
ployment model created within the editor IaaSEditor for the
underlying CSP (cf. Figure 6). In fact, templates convert data
from the input model into the deployment script to configure
cloud environment and to deploy the application.

In this Section, we described how the modeling capabilities
are used to implement our framework and how the developed
modeling tools can help to facilitate the deployment of services
into cloud infrastructures. In the next Section, we will illustrate
a case study in order to evaluate our deployment framework
and to demonstrate its effectiveness.

V. CASE STUDY
We consider here a stock management application, suffi-

cient to demonstrate the effectiveness of our deployment solu-
tion. we deployed this application across two different cloud
infrastructures: Amazon Web Services (AWS) and Google
Cloud Platform in order to underline the deployment porta-
bility among different CSPs.

To provision and to configure all necessary infrastructure,
we need first to design the application architecture in order
to ensure that it meets our requirements. This application is
structured into logical tiers. The first tier is the web browser,
which is responsible for presenting the user interface. The
middle tier is an application server, which is responsible for the
application’s functionality. The third tier is a database server,
which is responsible for data storage.

To this end, we defined two virtual machines and the
number of instances to create from each one, one instance for

MySQL (the database server) and 3 instances for Apache/PHP
(application servers). In fact, we decided to deploy the MySQL
database on an independent machine to properly manage the
scalability of the application. Then we created a security group
for each virtual machine to control and to filter the traffic
allowed to reach the instances and we specified rules to each
security group. In our case, we enabled inbound HTTP access
from anywhere and inbound SSH traffic from our computer’s
public IP address so that we can connect to our instances.
MySQL port was only opened for the Apache/PHP instances.
In addition, an AutoScalingGroup is associated to PHP Servers
in order to launch or terminate instances as demand on the
application increases or decreases. So we configured auto-
scaling to launch an additional Apache/PHP instance whenever
CPU usage exceeds 60 percent for ten minutes and to terminate
an instance whenever CPU usage under 30 percent. Every new
added instance connect to the same MySQL database. Once
our system was setup and configured, we installed needed
repositories such as Apache 2 and PHP and we deployed our
code to the application servers (PHP servers) and finally we
associated a domain name with our web application. The final
deployment model is presented in Figure 6.

Thanks to MoDAC-Deploy, all these steps are simply
conducted by drag and drop operations and by filling properties
in the tab ”Configuration Tabs”.

Figure 7 depicts the deployment script of the underlying
application in AWS. The captured lines of code creates a
MySQL instance and defines the characteristics of the virtual
machine to be provisioned. We chose a linux image-32 bits
for the MySQL server. It creates also a Key Pair, which
presents the credentials we used to SSH into the box. Then,
we opened the SSH port (22) and the HTTP port (80) for the

66Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

MySQL server. And finally, we imported the database backup
file ”stockProduits.sql” and we started the MySQL instance.

Figure 7. The deployment script in Amazon Web Services

We reused the same deployment model to move the man-
agement stock application into the Google Cloud Platform. All
what we did is to change the CSP as illustrated in Figure 8.

Figure 8. Cloud Services Provider Selection

We modified also the VM imageID from ”ami-0c87ad78”
in AWS to ”https://www.googleapis.com/compute/v1/projects/
ubuntu-os-cloud/global/images/ubuntu-1404-trusty-v20150316
” in Google Cloud Platform.

Figure 9. The deployment script in Google Cloud Platform

The generated deployment script is depicted in Figure 9.

VI. CONCLUSION AND FUTURE WORK
This paper presented the results of investigations on the

main challenges of the deployment of applications in the cloud
and on the modeling capabilities that can help to implement
our proposed solution.

So, we have developed a model-driven framework for
cloud deployment, which facilitates and semi-automates the
deployment of services to cloud infrastructures. This reduces
the deployment complexity and errors that can occur during
manual configurations as well as costs. It helps also to shield
users from complex programming efforts, the low- level API

details and from the heterogeneity in cloud providers. In
addition, our solution enables application portability between
different clouds and allows to minimize the vendor lock-in.
Generated script can be executed only on unix machine, we are
currently working on generating deployment scripts running on
windows.

As a minority of providers that offer autoscaling capabil-
ities to automatically add or remove virtual machines from
an instance group based on increases or decreases in load
as Amazon Windows Azure (within an Auto Scaling group),
Google Cloud Platform (i.e., define the autoscaling policy and
the autoscaler performs automatic scaling) and Windows Azure
(through configuring the autoscale status), our next research
thread will definitely revolve around this feature, we plan to
develop algorithms and techniques for dynamically scaling
deployments in response to application demand in other IaaS
and for re-configuring deployments. Cloud computing comes
with a cost where the accounting is based on a utility model.
Making decisions on how many cloud resources to use to host
a service, and when and how much to autoscale is a significant
challenge for the cloud customers. Understanding what will the
impact of these decisions be on both the expected performance
delivered to the service and cost incurred by the customer
is even harder. In that context, developing mechanisms for
estimating deployment performance and cost and selecting the
proper cloud deployment is an issue to be addressed in ongoing
work.

Besides, the current capabilities presented by this frame-
work can be extended further to handle complex architectures
such as network applications by adding new cloud artifacts
and why not make it able to deploy multi-cloud architectures
(i.e., deploying applications across multiple cloud providers,
e.g., deploy a single workload on one provider, with a backup
on another). We plan also to move in the direction of making
the deployment DSML as mature and complete by covering
new CSPs as well as private IaaS.

REFERENCES

[1] M. Hamdaqa, T. Livogiannis, and L. Tahvildari, “A reference model for
developing cloud applications,” in CLOSER, 2011, pp. 98–103.

[2] R. Gadhgadhi, M. Cheriet, A. Kanso, and S. Khazri, “Openicra: Towards
a generic model for automatic deployment and hosting of applications
in the cloud,” in IJ-CLOSER, 2013, pp. 249–275.

[3] Amazon Web Services, http://aws.amazon.com, [Accessed 09 Novem-
ber 2015].

[4] Google Cloud Platform, http://cloud.google.com, [Accessed 24 October
2015].

[5] Windows Azure, http://azure.microsoft.com, [Accessed 04 November
2015].

[6] OMG, Object Management Group, http://www.omg.org.
[7] G. Juve and E. Deelman, “Automating application deployment in

infrastructure clouds,” in CLOUDCOM ’11, pp. 658–665.
[8] Amazon, Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2,

[Accessed 09 November 2015].
[9] D. Nurmi et al., “The eucalyptus open-source cloud-computing system,”

in CCGRID ’09, 2009, pp. 124–131.
[10] OpenNebula, http://www.opennebula.org, [Accessed 27 October 2015].
[11] F. Caglar, K. An, S. Shekhar, and A. Gokhale, “Model-driven perfor-

mance estimation, deployment, and resource management for cloud-
hosted services,” in DSM ’13, 2013, pp. 21–26.

[12] J. Cala and P. Watson, “Automatic software deployment in the azure
cloud,” in Distributed Applications and Interoperable Systems, 2010,
vol. 6115, pp. 155–168.

67Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

[13] S. Shekhar et al., “A model-driven approach for price/performance
tradeoffs in cloud-based mapreduce application deployment,” in MOD-
ELS, 2013, pp. 37–42.

[14] Deltacloud, https://deltacloud.apache.org/, [Accessed 18 September
2015].

[15] Libcloud, http://libcloud.apache.org/, [Accessed 22 September 2015].
[16] jclouds, http://jclouds.apache.org/, [Accessed 28 September 2015].
[17] M. Hamdaqa and L. Tahvildari, “The (5+1) architectural view model

for cloud applications,” in 24th CSSE, 2014, pp. 46–60.
[18] J. Bézivin, “Model driven engineering: An emerging technical space,” in

Generative and Transformational Techniques in Software Engineering,
2006, pp. 36–64.

[19] MDA, Model Driven Architecture, http://www.omg.org/mda, [Accessed
27 November 2015].

68Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

