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Abstract—Database benchmarks have been used for decades to
load test systems and to compare systems or system configurations
with each other. However, their methods and assumptions are
hardly suitable for multi-tenant cloud database services. Those
systems have to provide both performance isolation of a lot of
tenants with dynamic workloads and cloud computing features
like scalability, elasticity, and reliability. In this article, the open
source benchmark framework MuTeBench is presented. It allows
the creation of OLTP benchmarks for multi-tenant databases and
combines extensibility, portability, and evolved workload support
of the underlying OLTP-Bench with flexible scheduling, statistic
gathering across tenants, and individual service level agreements.

Keywords-Benchmarking; Multi-Tenancy; OLTP; Database Sys-
tem; Service Level Agreements.

I. INTRODUCTION

Centralization of infrastructure due to cloud computing is
an increasingly important attempt of IT enterprises. Multi-
tenant architectures enable cloud service providers to share
resources and costs across various tenants (organizations,
customers, or companies). Particularly, multi-tenancy database
management systems (MT-DBMSs) have become an important
field of research for academia and industry.

In MT-DBMSs, several or even all tenants share a single
DBMS instance and its available resources. Assuming that not
all tenants are active simultaneously, high resource utilization
can be achieved by avoiding an allocation of resources required
for the peak load of each tenant [1]. Consolidation can be
implemented by three different approaches [2]. In the shared
machine approach, each tenant receives a dedicated database
resulting in high tenant isolation at the expense of high costs
per tenant. In the shared process approach, tenants share
databases but operate on separate tables or separate schemas.
This approach enables partial resource sharing across tenants
and allows an appropriate isolation level. The shared table
approach achieves the highest degree of sharing and efficiency
by sharing tables and indexes among tenants. A special column
associates each row with the appropriate tenant. Allowing
customized database schemas and individual administration for
each tenant is very challenging with this approach.

Resource competition of simultaneously active tenants
bears a new challenge for DBMSs, in particular with high
degree of resource sharing. The performance of tenants must
not be affected by resource-intensive activities and volatile
workloads of other tenants, for example, in order to meet per-

formance service level agreements (SLAs) of tenants. More-
over, tenant data has to be protected against unauthorized
access by other tenants and a MT-DBMS must provide tenant
metering, low operating costs and tenant-specific database
schemas. These requirements are supplemented by providing
general cloud computing features such as zero downtime,
elasticity, and scalability. For scalability reasons, a MT-DBMS
should run on low cost commodity hardware and scale out to
a lot of servers for many customers.

Classical benchmarks are not able to adequately assess MT-
DBMSs with respect to the above-mentioned requirements. A
new generation of database benchmarks is required, which is
suitable for the difficult terrain of clouds and multi-tenancy.
In this article, appropriate methods and metrics of MT-DBMS
benchmarks are summarized. The purpose, architecture, and
configuration of the benchmark framework MuTeBench are
presented. By some experiments, its suitability to evaluate MT-
DBMSs concerning their major challenges is illustrated.

This article is structured as follows. Section II out-
lines challenges in benchmarking of MT-DBMSs and com-
pares them against conventional DBMSs. Section III presents
MuTeBench, a framework for creating MT-DBMS benchmarks
with evolving tenant workloads. After discussing experiments
in Section IV and related work in Section V, the article
ends with conclusions of our contributions and open issues
in Section VI.

II. MT-DBMS BENCHMARKING

The best known representative of benchmarks for trans-
action processing systems and databases are benchmarks of
the Transaction Processing Performance Council (TPC) [3],
which simulate real-world application scenarios. Like most
traditional benchmarks, they provide an infrastructure to run a
representative workload against a static non changing software
system in order to assess its average performance under
maximum load. Furthermore, some benchmarks include cost-
based metrics. The static setups of those traditional database
benchmarks contradicts to MT-DBMSs which have to handle
a varying number of active tenants with changeable workload
mixes and rates as described in [4]. For this purpose, they
may need to allocate additional hardware or save costs by
releasing underutilized resources. Therefore, evaluating MT-
DBMSs requires benchmarks with the ability to run changing
workloads of several tenants in parallel. Such benchmarks
can be used by service providers to improve their services.
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Under certain circumstances, they may also assist customers
in finding an optimal database service.

A. Metrics

Appropriate metrics are needed to assess the impact of
other active tenants on the query processing performance of
a single tenant. Typical performance metrics, such as request
throughput, average latency, or latency percentiles of a single
tenant are only partially suited for this purpose. We call them
absolute tenant performance metrics.

Kiefer et al. [5] proposed a metric called relative execution
time. We have adopted this approach and expanded it by rel-
ative throughput, relative average latency, and relative latency
percentiles, summarized as relative tenant performance met-
rics. For their calculation, the best possible tenant performance
in a simulated single-tenant environment has to be determined
first. For this purpose, tenants may run workload in an initial
baseline run without any resource competitors. Following this,
during actual multi-tenancy runs their absolute performance
will be gathered. According to formulas 1 and 2, these results
are set in proportion to their baseline equivalents relatively,
resulting in relative performance values.

throughputrel = throughputabs/throughputbase (1)
latencyrel = latencybase/latencyabs (2)

Performance SLAs and contract penalties due to non-
fulfillment of them are not common in DBMSs and cloud
database services yet [6]. They would cause a MT-DBMS to
prioritize tenants, statically or even dynamically. The metric
SLA compliance can be used to determine MT-DBMS capa-
bilities concerning performance reliability and tenant prioriti-
zation. It is calculated as total penalty amount.

B. Experiments

The proposed metrics in conjunction with scheduling of
evolved tenant workloads enable an evaluation of the main
challenges of MT-DBMS by various kinds of experiments.

Scalability tests: These tests refer to the MT-DBMS per-
formance with increasing load. On the one hand, single-tenant
scalability can be measured by increasing a tenant’s workload
rate in a simulated single-tenant environment and gathering its
absolute performance. On the other hand, system scalability
can be quantified by continuously increasing the number of
active tenants with constant workload rates and mixes. On
closer consideration of the performance degradations of active
tenants, the fairness of resource distribution can be measured.

Performance isolation tests: These tests estimate how
well a MT-DBMS isolates tenant performances from each
other. This can be achieved by calculating relative performance
of a tenant which runs a static workload while one or more
other tenants run a dynamic workload in parallel. Dynamic
workloads can be achieved either by changing the transaction
rate or its mix over time. Tenants may have equal importance
or a MT-DBMS prioritizes them by agreed individual SLAs.
Relative tenant performance can be used to assess resource
allocation fairness of the MT-DBMS, while SLA compliance
evaluates its performance reliability.

Further tests may determine database elasticity like
warmup times on workload changes. They can also be used to
evaluate database robustness on hardware failures or include
costs from the perspective of a provider (cost per tenant)

or a tenant (cost of delivered performance, etc.). Detailed
explanations of these tests are beyond the scope of this article.

III. MUTEBENCH

MuTeBench [7] is an open-source framework that allows
simple creation of highly diverse benchmarks for a variety of
multi-tenant DBMSs and cloud database services. We have
implemented it with the purpose of running scalability tests
and performance isolation tests, but it is not limited to these
experiments only. It provides flexible scheduling of various
tenant workloads implementing diverse and evolving usage
patterns. With the help of fine-grained statistic gathering, all
metrics mentioned in Section II-A can be determined.

Instead of developing a new framework, we decided to
extend an existing testbed called OLTP-Bench [8]. We will
reason why we regard it as an ideal starting point for a MT-
DBMS benchmark framework and point out our extensions
resulting in MuTeBench.

A. OLTP-Bench

OLTP-Bench is an open-source benchmarking framework
for relational databases. Currently it supports data generation
and workload execution of 15 online transaction processing
(OLTP) benchmarks consisting of classical OLTP benchmarks
such as TPC-C [3], modern web benchmarks like Yahoo Cloud
Serving Benchmark (YCSB) [9], generated synthetic micro-
benchmarks as well as workload traces of real-world appli-
cations like Twitter. Due to central SQL dialect management
and the use of standard database drivers, each benchmark can
be applied to all major relational DBMSs and cloud database
services. OLTP-Bench is able to simulate evolving usage pat-
terns by varying its transaction rate and mix. It is determined
in a configuration file in conjunction with connection settings
and the number of concurrent worker threads. Controlled by
a central workload manager, those threads execute requests
in parallel and gather transaction latencies. The results of
all workers are finally combined and aggregated for a given
time window, providing information about average latency,
latency percentiles, and throughput. This client-side database
performance monitoring can be brought into accordance with
server-side monitoring of its resource consumption. However,
OLTP-Bench is not suitable for modeling a challenging large-
scale multi-tenancy scenario, among other reasons, because it
cannot run a benchmark several times in parallel. [8]

B. Architecture

Due to its features mentioned in Section III-A, OLTP-
Bench represents an appropriate benchmarking framework for
cloud databases. Hence, we decided to purposefully modify
and expand it in order to allow benchmarking of MT-DBMSs.
Figure 1 illustrates the resulting architecture based on [8],
with added components marked in gray. To simplify updates
on future OLTP-Bench versions, we changed its components
as little as possible. The most impactful change is an added
central controller. It schedules benchmark runs for all tenants
according to a scenario description file (see Section III-C).
For each benchmark run, it controls existing OLTP-Bench
components which are necessary for running a workload or
modifying data. The most notable changes of these com-
ponents are related to enabling concurrent benchmark runs,
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Figure 1: Architecture of MuTeBench

supporting service level agreements, calculating statistics after
finishing all benchmark runs, and calculating them both for
each tenant and across tenants. Statistics are stored as files and
visualized by charts using a graphical user interface (GUI) if
requested (see Section III-D).

C. Scenario Description

A scenario description file contains a number of events
whose definition is shown in Figure 2. Each event is compara-
ble to an OLTP-Bench run and can be executed by multiple ten-
ants at different times. Event execution times are specified by
time of first execution, time of last execution and a repetition
time interval (lines 2–4). At any execution time, the benchmark
may be performed for several tenants. The associated tenant
ID will be incremented for each run, starting from an initial ID
(lines 5–6). By Figure 2, benchmark runs for nine tenants will
be started. The tenants 2–4 will start immediately, 5–7 after
5 minutes, and 8–10 after 10 minutes. Actions to be executed
(table definition, data generation, benchmark execution, script
execution, or table truncating) and an universal OLTP-Bench
configuration file for the given benchmark have to be defined
(lines 7–9). A single configuration file enables tenant specific
settings by using wildcards, which will be replaced by the
corresponding tenant ID. This enables, for instance, individual
workload rates or custom connection settings to support shared
machine, shared process, and shared table consolidation (see
Section I). Combined with fain-grained workload control of
OLTP-Bench, this scheduling flexibility allows running quite
diverse large-scale experiments, despite compact definition.

D. Statistics and Service Level Agreements

MuTeBench collects statistics about the absolute perfor-
mance of each workload run. This is based on OLTP-Bench
statistic gathering and includes both performance of each
single tenant and overall performance. In addition, relative per-
formance (see Section II-A) may be determined by involving
result files of previous tenant baseline runs. Results can be
saved as raw data (list of transactions including start times and
latencies) and aggregated data by using a given time interval.
Furthermore, MuTeBench provides a GUI based on Java Swing
and JFreeChart [10] to visualize results as charts.

MuTeBench supports tenant-specific SLAs (line 10 in Fig-
ure 2). Each agreement is defined for an absolute performance
metric (see Section II-A) and a time window like five minutes.
Optionally, those agreements can be linked to specific transac-
tion types only. Each agreement may include several service
levels, which associate violations of performance targets with a
penalty. For example, a service level may predefine a penalty of

� �
1 <event> <!−− Time Format: hh:mm:ss −−>
2 <s t a r t>00 : 0 0 : 0 0</ s t a r t>
3 <r ep ea t>00 : 0 5 : 0 0</ r ep ea t>
4 <s t o p A f t e r>00 : 1 0 : 0 0</ s t o p A f t e r>
5 <t en a nt sP e rE xe c ut io n>3</ t en an t sP er E xe cu t io n>
6 <f i r s t T e n a n t I D>2</ f i r s t T e n a n t I D>
7 <benchmark>t p c c</ benchmark>
8 <a c t i o n s>c r e a t e , load , e x e c u t e</ a c t i o n s>
9 <c o n f i g F i l e>t p c c c o n f i g . xml</ c o n f i g F i l e>

10 <s l a F i l e>p r e m i u m s e r v i c e . xml</ s l a F i l e>
11 </ event>� �

Figure 2: Scenario Event Definition

US$50 if the 99th latency percentile for ’Delivery’ transactions
is above 50 ms within an interval of five minutes. MuTeBench
is able to measure DBMS reliability very conveniently by
computing penalty amount for a given tenant or across all
tenants. Because of a lack of standards and only marginal
DBMS support of performance SLAs, we have developed a
SQL extension to forward SLAs to our MT-DBMS prototype
for further research purposes.

IV. EXPERIMENTS

We have performed several experiments to analyze the
suitability of MuTeBench for creating various MT-DBMS
benchmarks. This article presents the results of two selected
experiments using just two machines. Further tests may evalu-
ate database clusters, compare different MT-DBMSs, consider
creation, migration, and deletion of tenant data, or evaluate
database predictability by using SLA compliance. We used
computers of identical construction (Intel Core i7-2600 with
4 cores running at 3.4 GHz, 8 GB of memory, a 7200 rpm
hard disk, Debian 4.7.2-4) for client and server, they were
interconnected by 1 Gbps Ethernet. For each tenant, 50 par-
allel worker threads with separate database connections were
executed running the YCSB benchmark [9] against MySQL
5.5.31. Due to a shared machine approach, each tenant uses a
dedicated database with a size of about 600 MB (YCSB scale
factor 500).

During an initial baseline run, a single tenant ran a YCSB
workload mix (50% ’ReadRecord’ and 10% of each other
transaction type) without any rate limitations for 30 minutes.
After initial overhead for connection buildup, the performance
increased almost steadily due to improved buffer utilization.
Figure 3a illustrates the results of this experiment with a
maximum performance of about 2,800 transactions per second
(TPS) and an average latency of 17 milliseconds at this time.

After re-establishing equivalent test conditions, we have
performed a system scalability test with 10 tenants, which used
the workload profile of the baseline run. They were run one
by one at a starting interval of three minutes. The absolute
throughput increased up to 4,900 TPS with five active tenants,
respectively 250 parallel connections (see Figure 3b). However,
the performance decreased with increasing number of connec-
tions. The situation was aggravated by exhausting the available
memory after 28 minutes. It relaxed again by less active
connections near the end of the test. The relative throughput of
tenant 1 highlights periodical performance impact by incoming
connections of other tenants. Altogether, MySQL distributed
resources quite fair among tenants. Performance deviations of
active tenants were relatively small at each point in time.
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Figure 3: Experiment results

Another experiment shall give further explanation about
tenant performance isolation. Tenant 1 used the workload
profile of the baseline run once again, while tenant 2 started an
evolving workload mix with unlimited rate after three minutes.
At the beginning it only ran the transaction ’ReadRecord’ and
shifted to the next transaction type by changing the ratio (100:0
→ 75:25 → 50:50 → 25:75 → 0:100) every minute. This shift
was repeated for all YCSB transaction types. Figure 3c shows
the tremendous throughput variations of tenant 2. Surprisingly,
the achieved 32,758 point queries per second over one minute
barely affected the performance of tenant 1. Only range queries
resulted in a significant performance impact of tenant 1.

V. RELATED WORK

To the best of our knowledge, Multe [5] is the only existing
benchmark framework for MT-DBMSs so far. Its purpose
is similar to MuTeBench. However, it was not designed for
OLTP benchmarks exclusively. It is suitable for real workload
simulation just to a limited extent because workload mixes of
tenants cannot be changed dynamically and their workload can
only be enabled or disabled instead of providing fine-grained
rate control. In addition, its statistic gathering is limited and it
provides only a sample implementation of a single benchmark
for two supported DBMSs so far.

Aulbach et al. [2] presented a MT-DBMS benchmark
called MTD Benchmark. It simulates an OLTP component
of a hosted customer relationship management offering and
has been primarily designed to compare the performance of
different tenant consolidation approaches by providing schema
variability. Hence, its purpose differs from benchmarks built
by MuTeBench.

Krebs et al. [11] created a multi-tenancy benchmark to
compare multi-tenancy and tenant isolation for dedicated vir-
tual machines on cloud platforms based on TPC-W [3]. There-
fore, they address a complete service infrastructure, consisting
of web servers, application servers, and database servers.

TPC-VMS [3] requires parallel executions of identical
workloads in separate virtual machines, consolidated onto one
logical server. It describes an environment with static tenant
workloads. By contrast, an intermediate state of TPC-V [12]
describes a similar scenario, but with evolving usage patterns
and database sizes of tenants. Both benchmarks specify work-
loads, scenarios, and their environment precisely in order to
ensure comparability, while MuTeBench has been designed to
perform in a wide range of scenarios.

VI. CONCLUSION AND FUTURE WORK

In this article, we summarized our expectations towards
capabilities of a MT-DBMS benchmarking framework and rea-
soned that classical database benchmarks cannot fulfill them.
In our opinion, OLTP-Bench represents an ideal basis for such
a framework because of its extensibility, portability, statistic
gathering, and support of evolving workloads. Our benchmark
framework MuTeBench benefits from that and combines it
with flexible tenant workload scheduling, SLA support and
new metrics to cope with challenges of MT-DBMSs.

However, MuTeBench has some limitations. For instance,
compatibility with all OLTP-Bench features is not tested yet
and its numerous parallel workers may limit its scalability.
Hence, as an extension we plan to properly decompose a given
scenario for distributed running a benchmark on several clients
and combining their statistics. Transaction-specific SLAs are
not yet evaluated and further tests with different database
systems and cloud database services are required.
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